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Abstract—Recent advances in radio environmental mapping 

enable novel, practical and efficient cognitive radio and dynamic 

spectrum access solutions. A crucial aspect of such solutions is to 

ensure the reliability of the constructed Radio Environmental 

Maps (REMs). Especially important is the accurate and up-to-

date Radio Interference Field (RIF) estimation based on 

distributed spectrum use measurements. This paper analyzes the 

use of spatial interpolation techniques that allow robust, yet 

sufficiently reliable, RIF estimation from a limited number of 

field measurements. Several spatial interpolation techniques 

based on Inverse Distance Weighting (IDW) are analyzed and 

compared in terms of reliability bounds of the interpolation 

errors for an indoor environment. Performance evaluation using 

REM prototype implementation and a wireless testbed shows 

that the spatial interpolation techniques can provide a robust and 

reliable RIF estimation within the entire REM concept. 

Keywords–Radio Environmental Map (REM), Radio 

Interference Field (RIF), spatial interpolation, IDW, reliability.  

I.  INTRODUCTION 

One of the key concepts of Mitola’s original definition of 

cognitive radio (CR) [1] is the use of context information for 

adaptation and performance optimization. While much of the 

recent work in the cognitive radio domain has focused on 

dynamic spectrum access (DSA) related problems, this more 

general goal remains highly topical. In fact, several recent 

research results have started to demonstrate the potential 

performance gains that can be obtained by incorporating 

information on the state of the radio environment into radio 

resource management decisions. The concept of Radio 

Environment Maps (REMs) [2],[3] has become very 

prominent in this line of work. REMs can be thought of as 

databases or knowledge bases in which different kinds of radio 

environmental information can be stored. Examples of 

relevant information types include locations of transmitters 

and receivers, models of the propagation environment, and 

various spectrum use measurements conducted by wireless 

devices. Based on such information further details of the radio 

environment can be estimated and modeled, such as levels of 

interference a particular transmission would cause in its 

surroundings. Despite the potential benefits, most of the work 

on REMs carried out until has been theoretical in nature, with 

less focus on practical use cases and implementation details. 

In this paper we discuss our work towards implementing a 

flexible REM prototype, and in particular on our approaches 

for robust estimation of interference and coverage 

characteristics of wireless systems based on small number of 

measurements. When a large amount of data is available, well-

known techniques from spatial statistics can be applied for 

accurate estimation as discussed in [4],[5]. However, many of 

these techniques do not work well if only small amount of 

measurements are available. We show how robust estimates 

can be made also in such situations, significantly improving 

the practical applicability of REM designs for network 

optimization especially in the start up phase of the system. We 

also discuss our overall REM design and implementation in 

some level of detail, especially focusing on the functional 

architecture, the data model adopted for the REM knowledge 

base, and how these are mapped to the actual implementation. 

We emphasize that even though we focus here on one 

particular use case, namely on coverage estimation, the 

architecture and implementation of the REM are quite general, 

and can be used in a much broader range of applications.  

The rest of this paper is structured as follows. Section II 

explains in details the minimum required REM backend 

functional blocks and interfaces for practical deployment. 

Section III provides the explanation on three different inverse 

distance weighting (IDW) spatial interpolation techniques, 

while Section IV evaluates the REM reliability using the 

explained techniques. Finally, section V concludes the paper. 

II. REM DESIGN AND PROTOTYPE IMPLEMENTATION 

REMs are a fundamental enabling technology to 

implement practical cognitive radio networks and dynamic 

spectrum access solutions. This section presents a general 

REM architecture and prototype, the REM data model and 

representation with special focus on the radio interference 

field (RIF) estimation through spatial interpolation. 

A. REM Architecture 

A general architecture for REM generation and evaluation 

should comprise several key functionalities, starting from the 

spectrum measurements execution and data acquisition, 

through the data processing and REM construction, to the 

REM data presentation and utilization for various spectrum 
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management purposes. In order to satisfy these requirements, a 

functional REM architecture (Fig. 1) should consist of (at 

least) the following functional entities [6]: Measurement 

Capable Devices, REM data Storage and Acquisition unit, 

REM Manager and a REM User. The subsequent paragraphs 

briefly explain these entities and the respective interfaces. 
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Figure 1.  The developed functional REM architecture. 

Measurement Capable Devices (MCDs). The REM 

architecture should be able to integrate different types of 

spectrum sensing capable devices, considering their 

limitations, taking advantage of the diversity. The MCDs 

report their measurements to the REM storage (which can be 

implemented centrally or in distributed manner) and provide 

options for remote reconfiguration and measurements 

querying. The REM architecture envisions and allows for the 

usage of the measurement capabilities of existing 

infrastructure components such as base stations, terminals etc., 

or a dedicated sensor network. These different types of MCDs 

should be seamlessly integrated into the REM architecture, i.e. 

the referred should support heterogeneous MCD deployments. 

REM data Storage and Acquisition unit (REM SA) 

represents the main data storage in the REM architecture. 

Besides the spectrum measurement data coming from the 

different types of MCDs, the REM SA should keep REM-

relevant information, such as information about the positions 

and configuration on radio transmitters and receivers, 

environment characteristics, as well as restituted REM 

processed data. Section II. B. provides more information on 

the constructed REM data model. 

REM Manager is a fundamental part of REM architecture 

performing the main processing tasks for REM data creation 

and evaluation. It should be modularly constituted, comprising 

various toolboxes that serve for localization of transmitters, 

statistical analyses of the spectrum usage, assessment of the 

environment propagation characteristics, estimation of RIFs 

etc. Particularly, the spatial interpolation toolbox (the focus of 

this paper) should provide the ability to synthesize RIFs using 

the limited amount of spectrum data stored in the REM SA. 

REM users. The REM data can be utilized by different types 

of REM users, i.e. entities that govern the frequency/power 

allocation, spectrum access/(re-)usage, network optimization 

etc. Representative examples are radio resource and policy 

managers, network administrators and regulator entities. 

The REM architecture (Fig. 1) comprises three main 

interfaces, i.e. a MCD–REM SA interface handling the 

measurement data reporting and the MCDs registration and 

(re)configuration, a REM SA–REM Manager interface 

relaying the communication between the referred entities in 

terms of the extraction of measurement data and restitution of 

processed REM data; and a REM Manager–REM User 

interface providing the REM Users access to REM data and 

ability to query on-demand some specific REM processing. 

B. Types of REM Information  

The current REM data model [7] consists of three major 

categories of information: 

1. Location and configuration information of transmitters, 

receivers and possible dedicated spectrum sensors. This 

information can either be preconfigured (for example, 

obtained from the operator deployment records) or 

inferred using, for example, localization and transmit 

power estimation techniques. 

2. Information about the environmental characteristics, such 

as statistical propagation models. 

3. Radio interference fields, which consist of spatial “maps” 

of received signal strengths, and other measurable 

quantities defined over a given region. 

Note that these information types are not independent of each 

other. For example, given transmitter locations and 

configurations together with a propagation model, the 

resulting RIF can be estimated. On the other hand, if nothing 

is known about the transmitters, the MCDs can gather 

information about the RIF corresponding to power 

measurements on a particular channel, and these 

measurements can be used to infer the transmitter 

configuration in the region. Due to space reasons we focus 

here on one type of estimation problem related to RIF 

estimation, namely the spatial interpolation or spatial 

estimation of the RIF structure from a limited number of 

measurements towards regions in which measurements are not 

directly available. 

Such a spatial interpolation problem is very important in a 

number of application scenarios. For example, a wireless 

network performing dynamic spectrum access can use 

interpolation techniques for estimating the coverage area of 

the primary system, and take that estimate into account when 

deciding on the used transmit power. Cellular network 

operators can exploit these methods for interpreting results 

from drive tests, or in the future for processing data from 

measurements carried out by mobile devices in the fashion of 

the ongoing Minimization of Drive Tests work in 3GPP [8]. 

The propagation and RIF maps thus obtained have in turn 

several applications for network operators, such assisting in 

network planning, fault detection, and so on [3]. Finally, 

regulators and dedicated public bodies could use these 

techniques for large-scale estimation of how radio frequencies 

are being actually used, and thereby either track compliance to 

regulations, or estimate the effectiveness of frequency 

planning carried out by them. 

C. REM Spatial Interpolation Toolbox 

This subsection focuses on the aspects of spatial 

interpolation which is tightly related to the RIF estimation 

feature of the REM Manager. The subsequent classification of 



 

the existing spatial interpolation methods intends to briefly 

explore the possibilities for the RIF’s estimation problem.  

There are a variety of interpolation methods which target the 

spatial interpolation [9] problem in different scientific and 

research areas. In general, different interpolation methods can 

be divided in three main groups, i.e. local neighborhood 

approaches, geostatistical approaches and variational 

interpolation approaches, each explained below. 

Interpolation based on local neighborhood: These methods 

assume that the influence of a spatial point is limited with the 

distance. The interpolated values are computed by predefined 

functions that reflect the neighboring points influence in the 

most realistic manner. The most commonly used methods and 

their variations in the literature are Inverse Distance Weighted 

interpolation [10],[11], Natural Neighbor interpolation [12] 

and Triangular Irregular Network (TIN) interpolation [13].  

Geostatistical interpolation: This type of interpolation 

extends far beyond the basic interpolation problems and relies 

on statistical models that are based on the theory of random 

functions and variables to model the uncertainty associated 

with the spatial estimation process. The most widely used 

geostatical interpolation is based on the kriging method and its 

variations [9]. These are essentially optimal linear 

interpolation techniques in the sense of having minimum root-

mean-squared-error. However, in order to apply kriging, the 

correlation structure of the data has to be either known, or 

estimated from the data. This is difficult to do reliably if only 

small number of measurements is available, and can lead into 

unreliable results and lack of robustness.  

Variational interpolation: The variational interpolation 

approach is based on the assumption that the interpolation 

function should have very small deviations from the data 

points while tending to be as smooth as possible. These two 

requirements are combined into a single condition that 

represents a spline function that reflects the interpolation 

method. The Thin Plate Spline (TPS) interpolations [14] are 

the most widely used variational interpolation methods. 

This paper focuses particularly on the IDW based spatial 

interpolation methods and variations as the most applicable 

RIF estimation methods, due to their robustness and lack of 

need for second–order structure knowledge. In addition, these 

methods provide the flexibility to cope with different sensor 

geometries and limited number of spatial measurements. 

D. REM prototype implementation 

The REM architecture comprising the previously detailed 

components and interfaces, complying with the REM data 

model, information flows and processing, has been realized 

into a REM prototype [7],[15],[16]. It was developed as 

C++/C# based modular structure, including an SQL database 

based realization of the REM storage with the defined data 

model. The REM prototype incorporates support for several 

heterogeneous MCDs, such as high-precision spectrum 

analyzers (Anritsu MS2690A, R&S FSL6), commercially 

available mid- and low-end spectrum sensors (USRP2, TI 

eZ430 RF2500, SunSPOT) and a custom made versatile 

spectrum sensing device (IMEC’s SCALable raDIO [17]). The 

REM Manager implementation includes a spatial interpolation 

toolbox (performing IDW based interpolation), a statistical–

analyses toolbox (estimating propagation models, empirical 

probability models, historical spectrum occupancy etc.) and a 

transmitter localization toolbox (performing an ML estimation 

of transmitter location and transmit power [18]).  

III. SPATIAL INTERPOLATION BASED ON 

INVERSE DISTANCE WEIGHTING METHODS 

The IDW methods are the simplest and the most robust 

spatial interpolation methods [10],[11]. They represent a class 

of local neighborhood methods that assume that each spatial 

point influences the spatial field only up to a certain distance 

by the means of using inverse distance weighting coefficients 

in the interpolation function. The widespread usage of these 

interpolation methods is owed to their flexibility, i.e. ability to 

operate in different scenarios with regularly–placed or 

irregularly–scattered spatial data. Furthermore, they have the 

capability to robustly work with limited number of samples, 

whereas geostatistical based approaches require significant 

sample size for statistical correctness.  

In the following we elaborate on three IDW interpolation 

methods: the classical IDW method [10], a modified version 

of the classical IDW method [10] and a modified Shepard’s 

method [11], each explained in the next subsections. Although 

the presented interpolation functions work on two-dimensional 

data, only slight modifications are required for the 3D case.  

A. Classic IDW Method 

The classical IDW method [10] uses all the available 

spatial data observations (N) to perform the interpolation: 
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Here, Pi is the measured output at the point (xi, yi), di is the 

Euclidean distance between the referred point and the 

interpolation point (x, y) and dexp is the distance exponent. 

There are several drawbacks of this classical IDW method. 

The processing requirements rise as the number of observed 

spatial points increases and the method does not take the 

direction into account. Finally, this method assigns a zero 

gradient of the interpolation surface at the observed locations 

resulting in each of them representing an extreme.  

B. Modified  classic IDW method 

The modified version [10] of the classic IDW method 

accounts for the direction, the number and set of considered 

neighboring points and the slope of the interpolation function. 

The estimated value is calculated with the subsequent formula: 
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Here, only the spatial points in a circle of radius r around the 

interpolation point are taken into account. In addition, the 

number of considered observed spatial data points is limited to 

be in the range [Nmin, Nmax], thus having an adaptive radius 

when the limits are exceeded. The weighting coefficients for 

each neighboring point are calculated as in 
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where si represents the inverse distance coefficient and ti is 

accounting for the directivity of the interpolation points. It can 

take values in the range [0, 2], and the limits correspond to the 

cases of neighboring points in the same or the opposite 

direction respective to the interpolation point. Finally, ΔPi 

relates to the slope of the interpolation function calculated as  
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where Ai and Bi represent the desired slopes in the x and y 

directions at the data point (xi, yi), and v is the parameter 

bounding the maximums slope effect.  

C. Modified  Shepard’s Method 

The IDW based modified Shepard’s method (MSM) [11] is 

a local interpolation that makes the estimation based on 

multivariate functions, often referred as nodal functions. This 

is the main enhancement compared to the classical IDW 

methods. Namely, this method fits a local real multivariate 

function (two-dimensional surface) for each observed spatial 

point, obtained with weighted least squares (WLS) fitting on 

the nearest neighbors values. The nodal functions can take 

different analytical forms (may be quadratic, linear, etc.), and 

the appropriate one should be selected in compliance with the 

inspected phenomena. The estimation of their parameters for 

an observed location (xk, yk) is performed minimizing 
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where Qk(xi, yi) is the output of the nodal function of the data 

point (xk, yk) at the location of the neighboring point (xi, yi). 

The weighting coefficient wi(x, y) assigned to the point i at an 

arbitrary location (x, y), is calculated as 

   











qi

qi
d

iqiq
i

Rd

RddRdR
yxw

0

exp

),( . (6) 

In this formula, Rq represents the radius of influence about 

node (xi, yi). Finally, the interpolation value for an arbitrary 

spatial point (x, y) is calculated using  
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where Qk and Wk  are the output of the nodal function of the 

data point k, and the weight assigned to the referred 

neighboring point at location (x, y). The weights Wk are once 

again calculated using the same formula as in (6), replacing Rq 

with Rw. Here, Rw represents the maximum distance at which a 

neighboring point (its nodal function output) is taken into 

account. Instead of using fixed radii of influence Rq and Rw, 
another approach can be to fix the number of considered 

neighboring points Nq and Nw, adapting the radii accordingly.  

D. General Remarks on IDW Based Methods 

The IDW based methods have been widely used for spatial 

interpolation of various observations. Each phenomenon has a 

different spatio–temporal distribution yielding different 

estimation performances. In most of the cases, a distance 

exponent dexp equal to two results in best performances.  

When the radio propagation environment is in the focus of 

investigation, the IDW methods require particular tuning to 

adapt to the nature of this phenomenon. The MSM 

interpolation is the most flexible of the three considered. A 

reasonable solution for the RIF interpolation is to have an 

adaptive Nq and Nw parameters (depending on the interpolated 

location), providing the ability of the interpolation function to 

adjust to the specific surrounding (obstacles, walls etc.).  

The analysis in section IV will focus on the aspects of 

using and proper tuning of these IDW spatial interpolation 

methods for the RIF estimation. 

IV. PERFORMANCE EVALUATION OF IDW BASED 

SPATIAL INTERPOLATION TECHNIQUES 

This section focuses on the performance evaluation of the 

IDW based spatial interpolations, when applied to the RIF 

estimation problem. The aim is to test the behavior of the 

methods detailed in Section III in terms of the RIF estimation 

reliability with a limited number of MCDs. For these 

purposes, a testbed comprising ten TI eZ430 RF2500 devices 

and three USRP2 devices was set up in an indoor 

environment. The devices were placed in a 25m
2
 area in a 

classroom having a large number of chairs and tables as 

obstacles and shadowers. The TI sensors were used as MCDs, 

while the USRP2 devices were employed as signal sources 

generating 5 MHz wide OFDM signals. The experiments 

focused on the 2.4 GHz ISM band evaluation. Fig. 2 illustrates 

the placement of the sensors and the signal sources. A total of 

24 different scenarios (combinations) were tested, having each 

of the signal sources active as a single transmitter or in a pair 

of transmitters, with three possible transmit power levels, i.e.  

-5,  -15 and -25 dBm. Each inspected scenario was evaluated 

for 5 minutes to gain sufficient time domain statistics. It is 

important to note that the radio environment during the 

measurements was not completely controlled, and some of the 

errors may originate from the outer interference.  
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USRP2-1
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Figure 2.  Evaluation scenario. 

The IDW methods of interest (Section III) are: the classical 

IDW, the modified classical IDW, the modified Shepard’s 

method, referred as IDW, IDWM and MSM, respectively. An 

adaptive MSM (AMSM) approach, which used adaptive Nq 

and Nw parameters depending on the location of the 

interpolation point was also tested. Oppositely, the classical 

MSM interpolation used static parameters, proven to give the 

best results in overall for all interpolation points. An additional 

modification of the MSM approach was also evaluated. 

Namely, this approach used an inverse covariance matrix of 



 

the input values (x, y coordinates) for the WLS estimation of 

the nodal functions parameters, instead of using the proposed 

weights in (6). Respectively, the MSM and AMSM methods 

taking this approach are subsequently referred as MSMC and 

AMSMC. All MSM approaches used linear nodal functions 

proven to offer better results for small number of observations.    

The evaluation on each of the abovementioned methods 

focused on the error, the absolute error (AE) and the mean 

absolute error (MAE) per sensor. The calculations of the errors 

were made with a sensors exclusion approach, averaging over 

all combinations starting from nine (out of ten) active sensors 

down to only five active ones.  The errors were calculated as 

residuals of the interpolated values and the values measured 

by the excluded sensors. Only the corner sensors with IDs 2, 4, 

8 and 10 were not excluded to alleviate the border effects. 

The obtained results are cumulative for all 24 inspected 

scenarios. They are presented as box plots, where the central 

mark is the median, the edges of the box are the 25
th
 and 75

th
 

percentiles and the whiskers extend to the most extreme data 

points not considered as “outliers”. The used whisker length is 

1.5 times the interquartile range. 

Fig. 3 presents the comparison between the different IDW 

methods in terms of the MAE per sensor for the case of nine 

active sensors. In addition, the figure presents the impact of 

the distance exponent in the interpolation MAE. The results 

prove that the IDW methods generally perform better when 

the distance exponent dexp is equal to 1. The AMSMC method 

with dexp=1 is the most reliable interpolation in overall, 

because it offers the lowest and the less variable MAE. It is 

important to note that the MSM based methods do not perform 

well when the used dexp is equal to 2. The IDW and the IDWM 

methods have similar behavior, the latter experiencing slightly 

lower variance of MAE but having more “outliers”. 
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Figure 3.  Comparison of IDW based methods in terms of MAE per sensor, 

impact of distance exponent for interpolation with 9 active sensors. 

The following analyses focus only on the interpolation 

methods having dexp equal to 1, due to the better interpolation 

performances. The focus of the MSM based interpolations 

remains on the MSMC and the AMSMC approaches, since 

they provide significantly better performances.  

Fig. 4 depicts the box plots presenting the MAE per sensor 

performances of the IDW interpolation methods of interest 

with respect to the number of active sensors in the 

interpolation. As verified by the testbed results, the AMSMC 

approach (with dexp=1) provides the best MAE performances 

for each case, with the standard deviation of MAE per sensor 

ranging from 1.04 dB to 1.56 dB, for nine and five sensors, 

respectively. However, this interpolation is mostly affected by 

the decrease of the number of sensors. This is due to the fact 

that the optimization (adaptation) space of the Nq and Nw 

parameters is reduced with the decrease of the number of 

active sensors. While the classic IDW approaches are more 

robust to “outliers”, the MSM approaches are not. 
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Figure 4.  Impact of the number of active sensors to the MAE per sensor for 

the different IDW based methods. 
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Figure 5.  AEs at the excluded sensor ID locations for 9 active sensors. 

Fig. 5 presents the dependence of the absolute error on the 

location of the interpolation point. Namely, the AEs are 

evaluated at the locations of the excluded sensor, for the case 

of nine active sensors. The AMSMC interpolation approach 

again provides the best results for most of the interpolation 

points (excluded sensors positions). The results show that 

some of the locations suffer higher interpolation errors, i.e. 

locations of excluded sensors with IDs 5 and 7 are mostly 

affected. The standard deviation of the AE at these sensors 

positions for the AMSMC approach is 3.74 dB and 3.44 dB, 

while for the classic IDW the respective values are 5.03 dB 

and 4.53 dB. The error has a negative bias at these locations 

for all tested IDW methods. This is logical, considering Fig. 2 

and the positions of the signal sources – the sensors with IDs 5 

and 7 are the closest ones, receiving the highest signal power. 

When these points are excluded and the dynamic range of the 

field is high (high power transmissions), the interpolation 

surface “down-fits” the extremes. Fig. 6 serves to clarify the 

causes of this effect. It represents the propagation model 

estimate in the inspected area, obtained with LS fitting of the 

parameters in the simplified propagation model function [19]. 

The estimated standard deviation of the shadowing was  



 

4.46 dB. Referring to the problem of the high “down-fits” 

nearby the signal sources, these results prove that these areas 

are the most critical, since the power drop at distance of 1m is 

around 30 dB (Fig. 6). The IDW based methods are unable to 

estimate this extreme in the lack of a nearby observation.  
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Figure 6.  Propagation model estimate in the inspected area. 

The results presented in this section serve to prove the 

applicability of the IDW based methods to the problem of 

spatial interpolation of RIFs with a low number of 

observations. Out of all methods, the AMSMC interpolation, 

with dexp equal to 1 has proven to offer the lowest interpolation 

errors. However, the main concern of the IDW based spatial 

interpolation is the erroneous RIF estimation in nearby 

transmitter areas. A reasonable approach in these cases would 

be to use the measurements to perform an initial transmitter 

location and power estimation. This information can be fed to 

the IDW based interpolation to reliably synthesize the RIF. 

V. CONCLUSION AND FUTURE WORK 

REMs are practical enablers for cognitive radios and 

cognitive radio networks. They foster enhanced radio 

environmental knowledge facilitating adaptive and context 

aware optimization and resource management decisions. In 

this paper we have described a practical REM concept 

elaborating on a general REM architecture and a prototype 

built on top of a clearly defined REM data model. We have 

explained RIFs, which form a new key part of the REM data 

model. REMs and RIFs provide benefit to all stakeholders, i.e. 

operators (to gain knowledge on their coverage areas), 

regulators (to track the spectrum usage) and cognitive users (to 

improve their communication).  

The focal point of the paper has been on the reliable 

estimation of RIFs with small number of measurements, a key 

challenge in robust construction of REMs. The proposed 

approach adopts a solution based on IDW spatial interpolation 

methods, which have proven robustness when dealing with 

limited number of observations. The standard deviations of the 

interpolation errors of all inspected methods prove to be in the 

range of well below ten dB, depending on the measurements 

number and the employed technique. These interpolation 

errors as well as the shadowing variance need to be taken into 

account when calculating the coverage areas, setting up safety 

margins for cognitive reuse of frequencies, and other related 

resource management decisions. 

Our future work will focus on improvements of the 

existing IDW techniques, evaluation of additional spatial 

interpolation methods, and quantifying further the benefits that 

can be gained by adopting REMs in operational networks.  
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