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Abstract—Correlated shadowing can have significant effects
on the performance of cooperative spectrum sensing. In this
paper, we investigate a grid based cooperative spectrum sensing
in cognitive networks under correlated shadowing. We study
three types of grids: equilateral triangular, square and hexagonal
grids, where the sensing users are deployed at the intersections
of the polygons. The collaboration is formed as a location
testing problem with Gaussian noise, where the shadow fading is
modeled as a multivariate Gaussian process with two dimensional
exponential correlation model. We have evaluated the results
regards to the number of collaborating users combined with
the separation distance of two adjacent users. It is found that
the three layouts yield the same detection performance as that
of experiencing independent shadowing when the separation
distance exceeds approximately 6 times the decorrelation distance
in urban areas.

I. I NTRODUCTION

Cognitive Radio has been widely regarded as the technique
to increase spectrum utilization in the next generation wireless
communication systems through implementing opportunistic
spectrum access. A critical component of cognitive radio is
spectrum sensing which enables secondary users to detect the
absence or presence of licensed transmissions over primary
bands and hence make use of the unused spectrum slots.
The spectrum sensing itself can be used also to enhance the
performance of other existing and future wireless systems,e.g.,
femtocell based LTE systems have been shown to benefit from
the better knowledge of their radio environment.

Many spectrum sensing techniques have been proposed in
the literature [1]. A typical technique for detecting the exis-
tence of primary transmissions is energy detection. Although
the energy detection has some merits, it is susceptible to
random variations of the received power due to multipath
fading and shadowing. Also, the limited sensitivity of a radio
does not allow a secondary user to detect very low power
signals. These result in the well known spectrum sensing
problems of missed detection and false alarm. In order to
eliminate the detection errors, cooperative spectrum sensing
has been proposed to counteract the fading effects as well as
the limitations of energy detection in the extremely low signal
regime. In cooperative schemes, observations of different
sensors are processed locally to generate compressed messages
which are sent to a fusion center for combinationally making
a final decision on the presence or absence of primary signals.

One key challenge of cooperative spectrum sensing is the
selection of sensing users. A cooperative scheme is most

effective when it can achieve maximum spatial diversity gain
with a minimum number of sensing users. Recent studies
have shown that the expected benefits of cooperation could be
severely hampered when signals sensed by cooperative users
experience correlated shadowing [2], [3]. Too many correlated
sensors could become a detrimental to the spectrum detection
performance due to limited spatial diversity and excessive
transmission overhead during information combining. The
cooperative spectrum sensing performance can be maximized
only when the sensors experience independent shadowing and
multipath fading.

Considerable research has been conducted to investigate the
impact of correlated shadowing on the cooperative detection
and sensing user selection [2]–[10]. The authors in [5] has
built a location testing model under correlated shadowing and
figured out a lower bound of false alarm probability which
is regardless of the growth of number of sensors over a
finite area. The work in [8] and [9] focuses on the linear
combinations of local observations and studies the power sum
of correlated log-normal random variables. In [7], without
delving into the detection performance, the sensor selection
is analyzed regardless of the optimal number of sensors. The
authors assume that the desired number of sensors is fixed
and known in advance, and propose methodologies to select
sensors which can minimize the total geographic correlation
measures. In [3], [6], [10], the authors have studied the number
of collaborating users in terms of distance spread. However,
they only study one-dimensional distributions where sensors
are deployed on a line, which makes the results limited in
terms of generality and real world application.

In this paper, we consider two dimensional distributions of
collaborating sensors and investigate the cooperative detection
performance under distance dependent log-normal correlated
shadowing. We studied three types of regular grid: triangle,
square and hexagon. The sensors are distributed at the grid
intersections. The grid distributions of sensors are not nec-
essarily optimal but can play a crucial role in the prediction
and resolution of the spectrum sensing cooperation solutions.
Typically, the grid based analysis may be especially useful
for some modern cities with straight grid layouts where the
sensors could be distributed along the streets.

The shadow fading has been widely approximated by a log-
normal distribution in the literature. However, it is notedthat,
due to the inherent complexity of handling multidimensional
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correlated log-normal random variables, signals sensed by
different users over various locations are usually assumedto be
log-normal distributed with the same mean and variance, even
though shadowing effects over different locations could vary
significantly due to different propagation conditions. Little
attention has been paid to different shadowing variances. Our
work models the shadowing variance over a two dimensional
space as a random variable following a uniform distribution.
Meaningful results have been obtained.

The rest of the paper is organized as follows. Section II
describes the general model and assumptions used in our study.
In Section III, we present the grid based cooperative spectrum
sensing and derive the detection and false alarm probabilities
based on the soft fusion rule. In Section IV, we conduct the
numerical results analysis with conclusion given in Section V.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider that a secondary network is located far away
from the primary transmitter with a distancer and the size
of the secondary network is small compared tor, so that all
secondary users are assumed to experience the same path loss.
The secondary network consists ofn sensing nodes distributed
in a D ×D square area and a fusion center which does not
perform sensing. The statistic of received signal power in a
logarithmic scale at theith sensing node is denoted byγi and
simply expressed as:

γi(r) = γtr − 10α lg(r) + χi, (1)

whereγtr is primary transmitter power;α denotes the signal
power decay factor; andχi represents the shadowing effects
with log-normal uncertainty in estimation of the received
power. The symbolχi denotes a Gaussian random variable
with mean zero and varianceσ2

i (r). According to (1),γi fol-
lows a Gaussian distribution with meanµ(r) = γtr−10α lg(r)
and varianceσ2

i (r). µ(r) of all the sensing nodes is assumed
to be identical due to the large value ofr. The standard
deviationσi usually varies at different locations in the range
between 4dB and 13dB, since different propagation paths may
experience different environmental shadowing effects dueto
various types of obstructions such as hills, buildings and trees.
Let γ denote a vector containingγi (1 ≤ i ≤ n). We have the
following n-dimensional multivariate normal distribution:

γ ∼ N(µ(r),Σ), (2)

whereµ is an-dimensional vector ofµ(r); andΣ represents
the n × n covariance matrix of the shadowing effects as
follows:

Σij =

{

ρijσiσj , i 6= j
σ2
i , otherwise

(3)

whereρij is the correlation coefficient between nodei and
node j. In our model, we adopt the popular Gudmundson
correlation model [11] in whichρij = e−rij/Dcorr , and rij
is the distance between nodei and nodej. The decorrelation
distanceDcorr depends on the environment. Through fitting
of measured data, Gudmundson derivedDcorr to be 503.9m
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Fig. 1. Grid distributions of sensing nodes.

in suburban areas at 900MHz and 8.3058m in urban areas at
1.7GHz.

The probability density function (p.d.f) ofγ is given by:

fγ(γ̂) =
1

√

(2π)n|Σ|
exp

{

−1

2
(γ̂ − µ)TΣ−1(γ̂ − µ)

}

,

(4)

where |Σ| and Σ
−1 are the determinant and inverse ofΣ,

respectively.
The binary hypotheses detection problem can be formed as

a location testing problem with Gaussian noise. Denote the
distanceR as a safe distance from the primary transmitter
beyond which unlicensed transmissions statistically do not
generate harmful interference to the licensed users. Thus,the
spectrum sensing is reduced to question to determine whether
the mean received power at a certain location is higher than
the power expected at the edge of the protection zone defined
by R. Hence we have:

H0 : γ ∼ N(µ(R+ ε),Σ), (5)

H1 : γ ∼ N(µ(R),Σ), (6)

whereε specifies how far the node is located outside the range
defined byR. H0 andH1 denote the absence and presence of
primary signals on the channel respectively.

III. G RID BASED COOPERATIVE SENSING

A. Grid based Sensor Deployment

We consider three types of grid distributions as shown
in Fig. 1: equilateral triangular, square and hexagonal grids,
which are the only three regular polygons to completely fill a
Euclidean plane without any gaps and overlaps. The sensing
nodes are distributed at the corners of the polygons. Letd
denote the separation distance from one sensing node to its
most adjacent nodes. For any sensing node located away from
the edge, the number of nearest neighbors for three types of
distributions is different: 6 for triangle, 4 for square and3



for hexagon. It is clear that the triangular distribution has the
highest sensor density. The number of sensors in aD × D
square for three grid distributions are derived as follows:

nt =

{

d 2D√
3d
e ∗ dD

d e, rem(Dd ) ∈ [ 12 , 1)

dD
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− 1
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e ∗ dD

3de − d D√
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2e),
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3d ) ∈ [ 16 ,
1
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2d 2D√
3d
e ∗ dD

3de − (d D√
3d
e+ 2d D√

3d
− 1

2e),
rem(D

3d ) ∈ [0, 16 )

(7)

where dae rounds thea to the nearest integer greater than
a; rem(ab ) is the remainder ofa/b. nt, ns and nh denote
the number of sensors for triangular, square and hexagonal
distributions respectively. The relationship of them withthe
separation distanced is shown in Fig. 2.
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Fig. 2. Number of sensing nodes in three grids

B. Soft Decision Fusion Strategy

In soft decision, each cooperative sensor sends the statistics
of its local observation to the fusion center which uses a
Square-Law Combing mechanism to combine multiple obser-
vations and make a final decision on the state of the primary
channel. The cooperative spectrum detection is given by the
Neyman Pearson Lemma:

Λ(γ) =
f(γ|H1)

f(γ|H0)

H1

≷
H0

λ, (8)

whereΛ(γ) is the likelihood ratio of the observations from
n sensing users.f(γ|Hi) is the p.d.f. of the received power

given by (4). Hence,Λ(γ) is derived as:

Λ(γ) = exp

{

∆
T
Σ

−1(γ − µ1 + µ0

2
)

}

, (9)

whereµ1 = µ(R), µ0 = µ(R+ ε), and∆ = µ1 − µ0. The
detection and false alarm probabilities are further derived as
[12]:

PD = Q(
λ̂− µD

ω
), (10)

PF = Q(
λ̂− µF

ω
), (11)

where λ̂ = lnλ + 1
2∆

T
Σ

−1(µ1 + µ0); µD = ∆
T
Σ

−1
µ1;

µF = ∆
T
Σ

−1
µ0; and ω =

√
∆TΣ−1∆; Q(x) is the

complementary distribution function of a standard Gaussian
variable and is given by 1√

2π

∫∞

x
e−t2/2dt.

The relationship betweenPD andPF becomes:

Q−1(PF )−Q−1(PD) =
√
∆TΣ−1∆, (12)

whereω =
√
∆TΣ−1∆ can be interpreted as a measure of

signal-to-noise ratio.
Since all sensing nodes form only a small sized network

with the very large separation distanceR from the pri-
mary transmitter, we can make an assumption that the mean
µ0 = µ(R + ε) is the same for all the nodes as the small
variance ofε can be ignored compared toR. The quantityω
becomes∆

√
1TΣ−11, where1 is a n-dimensional vector of

ones. Given a fixedPF , PD increases monotonically as the
separation in means∆ and the quantityψ(n, d) = 1

T
Σ

−1
1.

According to (1), ∆ is given by ∆ = α lg R+ε
R and is

independent of the distributions of sensors.ψ(n, d), which is
the same as the derivation in [5], reflects the diversity order
of cooperative spectrum sensing. As a result, the performance
of optimum cooperative detection in lognormal noise can
be improved by increasingψ(n, d) through adjusting the
separation distanced. An optimum number of sensorsn can
then be obtained corresponding to the optimald.

IV. N UMERICAL RESULTS

In this section, numerical results are provided based on
the analysis of previous sections. We compute false alarm
probabilityPF given a predefined detection probabilityPD =
0.95, and investigate howPF varies with the separation
distanced and the number of sensorsn. In the calculation,
Dcorr = 8.3058, α = 3.5, and ε

R = 0.01 are used.
The shadowing varianceσk of each sensor is different and
uniformly distributed over a range[a, b]. The obtained results
are averaged over 10000 different realizations of shadowing
variances through the Monte-Carlo approach.

To analyze the detection performance of grid based coop-
erative sensing, the first task is to define and obtain then-
dimensional covariance matrixΣ. Let the set of secondary
users indices given by(1, · · · , k, · · · , n), and (l,m) be the
row and column indices of one secondary user in the Carte-
sian coordinate system as shown in Fig. 1. We definek
as k(l,m) =

∑l
i=1 li + m, where li denotes the number
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Fig. 3. Detection performance of square grid withD = 100m

of sensors onith row. Correspondingly, we can find the
coordinates for each secondary user and hence obtain the 2-
dimensional correlation coefficientρij between nodei and

nodej: ρij = exp(−
√

(xi−xj)2+(yi−yj)2

Dcorr
).

Fig. 3 shows the detection performance of square grid
distributions withD = 100m. In the figure, it is clear that
the false alarm probabilityPF is inversely proportional to the
the quantityψ(n, d) = 1

T
Σ

−1
1. We varyD/d from 1 to

20 at the step of one to evaluate the impact of separation
distanced. For each givend, there is a corresponding number
of sensorsn as shown in Fig. 2. The x-axis in Fig. 3 stands
for the combination of(n, d). It can be seen that the detection
performance is improved asd decreases, but at the cost of
increasingn.

The shadowing effects on the detection performance are also
examined in Fig. 3. For each run of computation, the log-
normal shadowing variance at each sensor location follows
a uniform distribution over the range[a, b]. A great number
of simulations have been run with different sets of[a, b].
Through observations, it is found that the optimal detection
performance is likely to be obtained with a small value ofa,
even though the uniform distributions have the same average.
For example, in the figure,[2, 13] and [6, 9] have the same
mean 7.5 and different variances. However, the detection
over correlated shadowing of the former even outperforms
that over independent shadowing of the latter. Hence, we
deduce that, among a group of sensors, those located at sites
experiencing small shadowing effects contribute dominantly
to the cooperative spectrum sensing. In the figure, we also
have one interesting finding. Note that under independent
and identically distributed (i.i.d.) shadowing,ψ(n, d) can be
expressed as:

ψ(n, d) =

n
∑

i=1

1

σ2
i

. (13)

The average ofψ(n, d) over the interval[a, b] is given by:

E(ψ(n, d)) =
n

ab
, (14)

We can see that, for cooperative sensors which experience
independent shadowing, the detection performance increases
monotonically as the product ofa andb.

Fig. 4 shows the comparison of detection performance for
three types of grids. The square grid slightly outperforms the
triangular grid when the value ofD/d is less than 6 (i.e.,
smaller number of sensing nodes). The triangular grid has the
best performance as the separation distanced continues to
decrease. However, this performance enhancement is achieved
at the cost of more sensors.

In Fig. 5, the number of sensing nodes is fixed atn = 16 for
three grids. The separation distanced is varied. The shadowing
variance of one node is taken from[2, 13]. It can be seen
that, the false alarm probabilities of three layouts are different
for small d and eventually converge to the same value with
the increase ofd. The three layouts start having the same
performance at around 6 times the decorrelation distance when
the correlation coefficientρ becomes around 0.0025. This
observation is also reflected by the average correlation coeffi-
cients obtained in Fig. 5(b) where the coefficients tend to zero
when the separation distance meets the conditiond ≥ 6Dcorr,
which represents independent shadowing effects. Also, it is
observed that among three distributions, the hexagonal grid
has the best performance. This is because the hexagonal grid
has a less dense distribution than the other two grids, and
hence is less affected by the shadow correlation.

V. CONCLUSIONS

In this paper we formulate the cooperative spectrum sensing
over correlated log-normal shadowing as a location testing
problem, and compare the detection performance for three
types of regular grid distributions of collaborative sensing
users. Different shadowing variances across various locations
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Fig. 4. Comparison of detection performance for three gridswith D = 100m
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Fig. 5. Comparison of detection performance for three gridswith n = 16

have been taken into account in our study and the values of
variances are drawn from uniform distributions. Our results
show that among a group of collaborative sensing users, the
sensors experiencing the least shadowing effects contribute
dominantly to the cooperative detection performance, which
means decisions made by sensing users with high detection
SNRs are more reliable. Moreover, when the separation dis-
tance exceeds approximately 6 times the Gudmundson decor-
relation distance, the three layouts yield the same detection
performance as that of experiencing independent shadowing.
It is found that hexagonal grid deployment behaves the best
due to its sparse distribution compared to the other two types
of grids. Our study has practical implications as the grid based
analysis can provide some insight into the required resolution
of cooperative spectrum sensing in terms of the user selection
and deployment. The application of our results is limited in
the sense that the real world shadow fading map may not be
simply modeled using uniform distributions [13]. Including

more realistic shadowing correlation model could be part of
our future work.

ACKNOWLEDGMENT

We acknowledge a partial financial support from European
Union through EU FP7 project INFSO-ICT-248303 QUASAR.
We also thank the support from DFG through UMIC research
center.

REFERENCES

[1] D. Noguet et al., “Sensing techniques for cognitive radio– state of
the art and trends,” http://grouper.ieee.org/groups/scc41/6/documents/
whitepapers/P1900.6WhitePaperSensingfinal.pdf, 2009.

[2] A. Ghasemi and E. S. Sousa, “Collaborative spectrum sensing for
opportunistic access in fading environments,” inProceedings of IEEE
Dyspan, Nov. 2005, pp. 131–136.

[3] A. Ghasemi and E. Sousa, “Asymptotic performance of collaborative
spectrum sensing under correlated log-normal shadowing,”IEEE Com-
munication Letter, vol. 11, no. 1, pp. 34–36, Jan. 2007.

[4] I. Akyildiz, B. Lo, and R. Balakrishnan, “Cooperative spectrum sens-
ing in cognitive radio networks: A survey,”Physical Communication
(Elsevier) Journal, vol. 4, no. 1, pp. 44–62, Mar. 2011.



[5] E. Visotsky, S. Kuffner, and R. Peterson, “On collaborative detection of
tv transmissions in support of dynamic spectrum sensing,” in Proceed-
ings of IEEE Dyspan, November 2005, pp. 338–345.

[6] Y. Chen, “Analysis of user selection in collaborative spectrum sensing
with correlated shadowing,”Wireless Communications and Mobile Com-
puting, Feb. 2011.

[7] Y. Seln, H. Tullberg, and J. Kronander, “Sensor selection for cooperative
spectrum sensing,” inProceedings of IEEE Dyspan, 2008, pp. 1–11.

[8] M. Di Renzo, F. Graziosi, and F. Santucci, “Cooperative spectrum sens-
ing in cognitive radio networks over correlated log-normalshadowing,”
in Proceedings of IEEE VTC, Apr. 2009.

[9] N. Reisi, V. Jamali, M. Ahmadian, and S. Salari, “Cooperative spectrum

sensing over correlated log-normal channels in cognitive radio networks
based on clustering,” inProceedings of IEEE ConTel, 2011, pp. 161–
168.

[10] S. M. Mishra, A. Sahai, and R. W. Brodersen, “Cooperative sensing
among cogntiive radios,” inProceedings of IEEE ICC, 2006.

[11] M. Gudmundson, “Correlation model for shadow fading inmobile radio
systems,”Electronics Letters, vol. 27, pp. 2145–2146, Nov. 1991.

[12] H. Poor, An Introduction to Signal Detection and Estimation, second
edition. New York: Springer Verlag, 1994.

[13] I. Forkel, M. Schinnenburg, and M. Ang, “Generation of two-
dimensional correlated shadowing for mobile radio networksimulation,”
in Proceedings of WPMC, Sept. 2004.


