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Abstract—Correlated shadowing can have significant effects effective when it can achieve maximum spatial diversityngai
on the performance of cooperative spectrum sensing. In this with a minimum number of sensing users. Recent studies
paper, we investigate a grid based cooperative spectrum s&Ng  4y6 shown that the expected benefits of cooperation could be

in cognitive networks under correlated shadowing. We study v h d wh ) | db fi
three types of grids: equilateral triangular, square and heagonal Severely hampered when Signals Sensed Dy cooperative users

grids, where the sensing users are deployed at the intersemts €Xperience correlated shadowing [2], [3]. Too many coteela
of the polygons. The collaboration is formed as a location sensors could become a detrimental to the spectrum detectio

testing problem with Gaussian noise, where the shadow fadinis  performance due to limited spatial diversity and excessive
modeled as a multivariate Gaussian process with two dimersnal .5 ygmission overhead during information combining. The
exponential correlation model. We have evaluated the restd - . L
regards to the number of collaborating users combined with cooperative spectrum Sensing perfprmance can be max|m|zed
the separation distance of two adjacent users. It is found tat Only when the sensors experience independent shadowing and
the three layouts yield the same detection performance as ¢ multipath fading.
of experiencing independent shadowing when the separation  Considerable research has been conducted to investigate th
distance exceeds approximately 6 times the decorrelatioristance impact of correlated shadowing on the cooperative detectio
in urban areas. . . .
and sensing user selection [2]-[10]. The authors in [5] has
|. INTRODUCTION built a location testing model under correlated shadowimd a
Cognitive Radio has been widely regarded as the technidiigured out a lower bound of false alarm probability which
to increase spectrum utilization in the next generatiomless is regardless of the growth of number of sensors over a
communication systems through implementing opportunisfinite area. The work in [8] and [9] focuses on the linear
spectrum access. A critical component of cognitive radio @mbinations of local observations and studies the power su
spectrum sensing which enables secondary users to detectofhcorrelated log-normal random variables. In [7], without
absence or presence of licensed transmissions over primdeyving into the detection performance, the sensor selecti
bands and hence make use of the unused spectrum slistéinalyzed regardless of the optimal number of sensors. The
The spectrum sensing itself can be used also to enhanceatthors assume that the desired number of sensors is fixed
performance of other existing and future wireless systengs, and known in advance, and propose methodologies to select
femtocell based LTE systems have been shown to benefit fregnsors which can minimize the total geographic correfatio
the better knowledge of their radio environment. measures. In [3], [6], [10], the authors have studied thelmem
Many spectrum sensing techniques have been proposedafircollaborating users in terms of distance spread. However
the literature [1]. A typical technique for detecting thesex they only study one-dimensional distributions where senso
tence of primary transmissions is energy detection. Algflou are deployed on a line, which makes the results limited in
the energy detection has some merits, it is susceptible tewsms of generality and real world application.
random variations of the received power due to multipath In this paper, we consider two dimensional distributions of
fading and shadowing. Also, the limited sensitivity of aioad collaborating sensors and investigate the cooperativectien
does not allow a secondary user to detect very low poweerformance under distance dependent log-normal coecklat
signals. These result in the well known spectrum sensisgadowing. We studied three types of regular grid: triangle
problems of missed detection and false alarm. In order square and hexagon. The sensors are distributed at the grid
eliminate the detection errors, cooperative spectrumisgnsintersections. The grid distributions of sensors are nat ne
has been proposed to counteract the fading effects as welleasarily optimal but can play a crucial role in the predictio
the limitations of energy detection in the extremely lownsity and resolution of the spectrum sensing cooperation solsitio
regime. In cooperative schemes, observations of differehtpically, the grid based analysis may be especially useful
sensors are processed locally to generate compressedgegssgar some modern cities with straight grid layouts where the
which are sent to a fusion center for combinationally makirgensors could be distributed along the streets.
a final decision on the presence or absence of primary signalsThe shadow fading has been widely approximated by a log-
One key challenge of cooperative spectrum sensing is thermal distribution in the literature. However, it is notett,
selection of sensing users. A cooperative scheme is mdse to the inherent complexity of handling multidimensiona
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correlated log-normal random variables, signals sensed by v
different users over various locations are usually assumbd
log-normal distributed with the same mean and variance) eve
though shadowing effects over different locations couldyva
significantly due to different propagation conditions. tleit

attention has been paid to different shadowing variances. O s a

work models the shadowing variance over a two dimensional ” *
space as a random variable following a uniform distribution (a) triangular grid (b) square grid
Meaningful results have been obtained. Y

The rest of the paper is organized as follows. Section I
describes the general model and assumptions used in oyr stud
In Section Ill, we present the grid based cooperative spectr
sensing and derive the detection and false alarm prohabilit
based on the soft fusion rule. In Section IV, we conduct the
numerical results analysis with conclusion given in Sectio

[

c) hexagonal grid
II. SYSTEM MODEL AND ASSUMPTIONS © g g

We consider that a secondary network is located far away Fig. 1. Grid distributions of sensing nodes.
from the primary transmitter with a distaneeand the size
of the secondary network is small comparedrtcso that al in suburban areas at 900MHz and 8.3058m in urban areas at
secondary users are assumed to experience the same path O?&Hz
The secondary network consistsrofensing nodes distributed™ :
in a D x D square area and a fusion center which does not
perform sensing. The statistic of received signal power ina , ., 1 1l Ts-10s _
logarithmic scale at théth sensing node is denoted by and F () = V(@2m)r X xp 2(7 2 G-y
simply expressed as: 4)

The probability density function (p.d.f) of is given by:

Yi(r) = vt — 10a1g(r) + X, (1) where|X| and =~! are the determinant and inverse Bf

where~y,,. is primary transmitter poweky denotes the signal respectively.
Ver 1S P y P @ ) 9 The binary hypotheses detection problem can be formed as
power decay factor; ang; represents the shadowing effects

. ; : o : location testing problem with Gaussian noise. Denote the
with log-normal uncertainty in estimation of the received. . . .
. ~ ~distanceR as a safe distance from the primary transmitter
power. The symboly; denotes a Gaussian random variabl : : o o
. ; . eyond which unlicensed transmissions statistically do no
with mean zero and varianeg’ (). According to (1),y; fol- . .
) o h generate harmful interference to the licensed users. Tthas,
lows a Gaussian distribution with meafr) = ~;, — 10 1g(r) I . :
. 9 . : pectrum sensing is reduced to question to determine whethe
and variancer; (r). u(r) of all the sensing nodes is assume . : P
: L e mean received power at a certain location is higher than
to be identical due to the large value of The standard

deviationo; usually varies at different locations in the rangthe power expected at the edge of the protection zone defined

between 4dB and 13dB, since different propagation paths m% R. Hence we have:

experience different environmental shadowing effects tue Hy:v~N(p(R+e),X), (5)

various types of obstrucuong s_uch as h_|IIs, buildings aads. Hi v~ N(uR), ), (6)

Let v denote a vector containing (1 < ¢ < n). We have the - _ _

following n-dimensional multivariate normal distribution: ~ Wherez specifies how far the node is located outside the range
defined byR. Hy, and H, denote the absence and presence of

v ~ N(p(r), %), (2)  primary signals on the channel respectively.
wherep is an-dimensional vector ofi(r); and3X represents I1l. GRID BASED COOPERATIVE SENSING
the n x n covariance matrix of the shadowing effects

8. Grid based Sensor Deployment

., We consider three types of grid distributions as shown

i = { Pijoias, z)tﬁejrwise (3) in Fig. 1: equilateral triangular, square and hexagonalsgri

i which are the only three regular polygons to completely fill a
where p;; is the correlation coefficient between nod@nd Euclidean plane without any gaps and overlaps. The sensing
node j. In our model, we adopt the popular Gudmundsomodes are distributed at the corners of the polygons.d.et
correlation model [11] in whictp;; = e~ "ii/Peorr - and r;; denote the separation distance from one sensing node to its
is the distance between nodand nodej. The decorrelation most adjacent nodes. For any sensing node located away from
distanceD.,,.» depends on the environment. Through fittinghe edge, the number of nearest neighbors for three types of
of measured data, Gudmundson derived,.. to be 503.9m distributions is different: 6 for triangle, 4 for square a8d

follows:



for hexagon. It is clear that the triangular distributiorstihe given by (4). HenceA(~) is derived as:

highest sensor density. The number of sensors it a D
square for three grid distributions are derived as follows:
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where [a] rounds thea to the nearest integer greater than

; ay i :
a; rem($) is the remainder qfa/b. nt, ns and n;, denote wherew — VATSTA
the number of sensors for triangular, square and hexago

distributions respectively. The relationship of them witre
separation distancé is shown in Fig. 2.
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Fig. 2. Number of sensing nodes in three grids

B. Soft Decision Fusion Strategy

In soft decision, each cooperative sensor sends the &isitis:
of its local observation to the fusion center which uses
Square-Law Combing mechanism to combine multiple obs
vations and make a final decision on the state of the primar
channel. The cooperative spectrum detection is given by i

Neyman Pearson Lemma:

A() = f(y|Hy) Pg A

f(7|HO) Hy

Aly) = exp{ATzl(v - M)} o

2

, rem(£) € [1,1) wherep; = u(R), po = p(R +¢), andA = pq — po. The

detection and false alarm probabilities are further derige

12]:

); (10)

Pr=Q( ); (11)

where ) = In \ + TATS Y py + po); up = ATZ pg;
pur = ATES lpe andw = VATE-TA; Q(x) is the
complementary distribution function of a standard Gaumssia
variable and is given by L [ e~t*/2dt.

The relationship betweeRp and Pr becomes:

Q '(Pr)—Q '(Pp) = VATE 1A,

w

(12)

can be interpreted as a measure of
E@Inal—to—noise ratio.
Since all sensing nodes form only a small sized network
with the very large separation distande from the pri-
mary transmitter, we can make an assumption that the mean
o = u(R + ¢) is the same for all the nodes as the small
variance ofe can be ignored compared #®. The quantityw
becomesAv173-11, wherel is an-dimensional vector of
ones. Given a fixedPr, Pp increases monotonically as the
separation in meand and the quantity)(n,d) = 17X 11,
According to (1), A is given by A = alg% and is
independent of the distributions of sensar$n, d), which is
the same as the derivation in [5], reflects the diversity orde
of cooperative spectrum sensing. As a result, the perfocsman
of optimum cooperative detection in lognormal noise can
be improved by increasing/(n,d) through adjusting the
separation distancé. An optimum number of sensors can
then be obtained corresponding to the optimial

IV. NUMERICAL RESULTS

In this section, numerical results are provided based on
the analysis of previous sections. We compute false alarm
probability P given a predefined detection probabiliy, =
0.95, and investigate howPr varies with the separation
distanced and the number of sensors In the calculation,

corr 8.3058, a = 3.5, and ; = 0.01 are used.

ahe shadowing variance; of each sensor is different and

uniformly distributed over a range, b]. The obtained results

er-

are averaged over 10000 different realizations of shadpwin
driances through the Monte-Carlo approach.

%o analyze the detection performance of grid based coop-
erative sensing, the first task is to define and obtainsthe
dimensional covariance matriX. Let the set of secondary
users indices given byl,---  k,---  n), and (I,m) be the
row and column indices of one secondary user in the Carte-

where A(v) is the likelihood ratio of the observations fromsian coordinate system as shown in Fig. 1. We define

n sensing usersf (v|H;) is the p.d.f. of the received poweras k(I,m) =

Zli:lli + m, where(; denotes the number
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Fig. 3. Detection performance of square grid with= 100m

of sensors onith row. Correspondingly, we can find theThe average ofi(n,d) over the intervala, b] is given by:

coordinates for each secondary user and hence obtain the 2- n
dimensional correlation coefficient;; between node and E(p(n,d)) = —, (14)

: = 3) 2+ (yi—y))° , . ,
nodej: p;; = exp(— - I,]:,)(y W), We can see that, for cooperative sensors which experience

Fig. 3 shows the detection performance of square gritidependent shadowing, the detection performance ineseas
distributions with D = 100m. In the figure, it is clear that monotonically as the product ef andb.
the false alarm probability’r is inversely proportional to the  Fig. 4 shows the comparison of detection performance for
the quantity(n,d) = 17X~11. We vary D/d from 1 to three types of grids. The square grid slightly outperforhes t
20 at the step of one to evaluate the impact of separatisiangular grid when the value ab/d is less than 6 (i.e.,
distanced. For each givenl, there is a corresponding numbesmaller number of sensing nodes). The triangular grid has th
of sensors: as shown in Fig. 2. The x-axis in Fig. 3 standbest performance as the separation distashaeontinues to
for the combination ofn, d). It can be seen that the detectiordecrease. However, this performance enhancement is achiev
performance is improved a$ decreases, but at the cost ofit the cost of more sensors.
increasingn. In Fig. 5, the number of sensing nodes is fixea at 16 for

The shadowing effects on the detection performance are alBege grids. The separation distantis varied. The shadowing
examined in Fig. 3. For each run of computation, the logariance of one node is taken frof@, 13]. It can be seen
normal shadowing variance at each sensor location folloat, the false alarm probabilities of three layouts aréedsht
a uniform distribution over the rangle, b]. A great number for small d and eventually converge to the same value with
of simulations have been run with different sets [afs]. the increase ofl. The three layouts start having the same
Through observations, it is found that the optimal detectigperformance at around 6 times the decorrelation distanesmwh
performance is likely to be obtained with a small valuespf the correlation coefficienp becomes around 0.0025. This
even though the uniform distributions have the same averagservation is also reflected by the average correlatiofficoe
For example, in the figure2, 13] and [6,9] have the same cients obtained in Fig. 5(b) where the coefficients tend to ze
mean 7.5 and different variances. However, the detectigfen the separation distance meets the condition6D .,
over correlated shadowing of the former even outperforrddlich represents independent shadowing effects. Alscs it i
that over independent shadowing of the latter. Hence, Ww&served that among three distributions, the hexagonél gri
deduce that, among a group of sensors, those located at di@s the best performance. This is because the hexagonal grid
experiencing small shadowing effects contribute domiyantas a less dense distribution than the other two grids, and
to the cooperative spectrum sensing. In the figure, we algence is less affected by the shadow correlation.
have one interesting finding. Note that under independent
and identically distributed (i.i.d.) shadowingy(n,d) can be
expressed as: In this paper we formulate the cooperative spectrum sensing
over correlated log-normal shadowing as a location testing
problem, and compare the detection performance for three
P(n,d) = Z ) (13) types of regular grid distributions of collaborative sewsi

i=1 7 users. Different shadowing variances across variousitmtat

V. CONCLUSIONS
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have been taken into account in our study and the valuesmobre realistic shadowing correlation model could be part of
variances are drawn from uniform distributions. Our resulbur future work.
show that among a group of coIIaborati\(e sensing users, the ACKNOWLEDGMENT
sensors experiencing the least shadowing effects cotgribu o )

dominantly to the cooperative detection performance, Wwhic W& acknowledge a partial financial support from European
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