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Abstract— Emergency Cognitive Ad hoc Networks (ECANs) 
require proactive, adaptive and resource efficient spectrum 
sensing. In general, work in the area of spectrum sensing for 
cognitive radio networks, has been focused on improving the 
performance and resource efficiency in static models based on 
reactive sensing. In this paper, an adaptive model based on 
proactive spectrum sensing is proposed for ECANs that have 
dynamic number of users and varying signal to noise ratios. The 
proposed model uses collaborative spectrum sensing scheme, 
where each cognitive radio senses the spectrum with certain 
probability. A Spectrum Coordinator (SC) plays the role of 
fusion center, generating a fused group decision based on the 
sensed information obtained from SUs in the network.  SC 
allocates a ‘reward’ to each SU proportional to its sensing effort 
and the targeted performance. It can be seen that fairness in 
energy consumption across SUs is achieved in the proposed 
scheme.  

Keywords- Spectrum sensing; Cognitive adhoc networks; 
Proactive sensing; Bayesian risk; Resource efficiency 

I. INTRODUCTION 
Emergency Cognitive Ad hoc Networks (ECANs) are 

infrastructure-less networks formed within a short span of time, 
having time-varying number of users experiencing varying 
Signal to Noise Ratios (SNRs). They find applications in 
disaster management, military and other emergency situations.  
Adaptive Ad hoc Freeband communications (AAF) project [1] is 
such example, where the ideas of cognitive radio are applied to 
the field of public safety and emergency control 
communications. Sensing the spectrum to identify its 
occupancy by the licensed Primary Users (PUs) is a crucial 
functionality of any cognitive radio network. Cognitive radios, 
also referred to as Secondary Users (SUs) are involved in 
identifying the unused licensed spectrum. Sensing of spectrum 
may be performed either reactively or proactively. Reactive 
sensing is done ‘on request’ when that particular frequency is 
planned to be used. Though reactive sensing gives more current 
information on the spectral occupancy, it tends to add latencies 
in the operation, especially when the sensing time is longer [2]. 
Spectrum sensing can be performed in a standalone manner by 
each SU independently or can be done in a collaborative way 
[3].  In collaborative spectrum sensing, the local sensing 
information from each SU is received by the fusion center, 
which fuses this information and generates a group decision. 
Latencies of reactive sensing become more pronounced when 
collaborative spectrum sensing is applied because of the above 
mentioned processing involved.  

ECANs require the sensing models to meet the targeted 
sensing accuracy, resource efficiency and low latency in the 
delivery of packets. They also need to be adaptive to varying 
number of SUs and SNR conditions. Since the radios are 
battery operated, fairness in energy consumption is also an 
important factor. Only few SUs sensing most of the time could 
lead to the depletion of their energies and decrease their life in 
the network. For a longer sustenance of the network, it is 
necessary that the sensing load should be distributed uniformly 
across all SUs. Data fusion technique applied to ECANs needs 
to be resilient to data falsification attacks (Byzantine attacks) 
[4]. In such attacks malicious users send false sensing data to 
the fusion center leading to increased probability of incorrect 
sensing. ‘OR’ing is a technique used commonly for data fusion 
because of its simplicity [3]. However, the technique is prone 
to data falsification attacks. Likelihood Ratio Test (LRT) based 
techniques are more resilient and are thus more suitable for the 
ECANs. The performance superiority of LRT based fusion in 
this respect is shown in [5]. 

Literature survey shows that there is no existing model to 
cater for all the above requirements of ECANs. Most of the 
earlier work done on collaborative spectrum sensing has been 
focused on the performance and resource optimization for static 
situations and reactive schemes that may not be suitable for 
ECANs. For example, [6] discusses the sensing parameter 
optimization w.r.t. the number of cooperating users. 
Optimization of sensing throughput tradeoff has been presented 
in [7]. [8] Shows that it will suffice if an optimal subset of SUs 
sense the spectrum in a given time epoch resulting in resource 
efficiency without loss of spectral information.  

This paper presents a new proactive adaptive model, where the 
spectral band is periodically sensed by the SUs in the 
synchronized quiet period. Discussion about the quiet periods 
can be found in [9]. The frequency as well as duration of these 
quiet periods is adapted according to the PU behavior as 
discussed in [10]. The proposed model is adaptive to the 
changes in the network size and SNR conditions. The 
analytical model and simulation results confirm that the 
targeted sensing performance can be met with minimal number 
of SUs sensing in each epoch and with fairness in energy 
consumption. The proposed adaptive model meets all the requi- 
rements using collaborative spectrum sensing scheme, where 
each SU senses with certain probability of sensing (Ps) and a 
spectrum coordinator receives sensing information from the 
different SUs in the network and generates a ‘fused decision’ 
based on LRT (Refer Figure 1).  
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Figure 1.  Cognitive Adhoc Network Scenario 

The rest of the paper is organized as follows: Section II 
describes the system model; Section III gives the analytical 
model; and Section IV discusses the proposed adaptive system 
model and its ability to adapt to the varying network size and 
SNR conditions. Section V presents the simulation results. 
Section VI contains the discussions on the proposal. Finally the 
conclusions and future work are presented in section VII. 

II. SYSTEM MODEL 
Consider an ECAN with a collaborative spectrum sensing 

mechanism and a chosen SC as shown in figure 1. The network 
size could be varying from a small values to medium sized one 
(i.e. less than 100). The Primary Users (PUs) are the licensed 
users operating in a subset of these frequencies [f1,f2,….fr]. It is 
assumed that the distance between the secondary users or 
sensors is much smaller compared to their distance from the 
PU. As a result, the measurements from the SUs are essentially 
correlated. The SUs however, experience independent and 
identically distributed fading channels [11]. Each SU makes 
independent measurement of the spectral information and the 
individual local decisions about spectral occupancy are sent to 
SC for data fusion.  

Common Control Channel: A common error-free control 
channel is used to communicate the local decisions from each 
SU across the network to the SC [12].  

Mobility Model: Mobility can be classified as a “nomadic 
community” model. In this model, a group of mobile nodes 
move from one position to another. Such models are beneficial 
in real life emergency applications such as disaster 
management and military. Restricted movement among the 
nodes is required when group travels from one location to 
another. In this model, reference point of each node is 
determined based on the general movement of the group. The 
SNRs of the SUs are assumed to be exponentially distributed 
with an average , referred to as the group SNR. This network 
is associated with an average probability of detect Pd and 
probability of false alarm Pf corresponding to the group SNR γ 
[13]. 

Spectrum Sensing details: Each Secondary User (SU) senses 
a set of r spectral bands centered at frequencies [f1, f2,….fr] 
using energy detection. The threshold is set for a desired 
probability of false alarm and the estimated noise power. The 
SUs sense a given set of frequencies proactively in the quiet 
period of the network. The quiet periods are synchronized 
across the network. Though difficult, time synchronization is 
indispensable is CAN due to the requirements of coordinated 
and simultaneous quiet periods for spectrum sensing, as well as 
the common understanding of time frame/slot in many CR 
MAC designs. CR-Sync protocol has been proposed in [14], 
that achieves network-wide time synchronization in a fully 
distributed manner. The local spectrum sensing could be based 
on simple energy detection, matched filter, cyclostationarity or 
any other proven method [3]. 

PU usage pattern: The usage pattern could be of any 
distribution which is known prior and can be modeled using a 2 
stage Markov model [10]. 

Data Fusion: LRT based fusion rule is considered in the 
model. The probability of detect and probability of false alarm 
of each SU required for LRT may be estimated by the spectrum 
coordinator using the counting rule [15 & 23]. Any other fusion 
technique like ‘AND’, ‘OR’ or Majority Logic may also be 
used instead [3]. The objective of the SC is to provide 
communication within the network while ensuring minimal 
interference to the primary users. In order to achieve this 
objective, the spectrum coordinator performs the following 
functions. a) Data Fusion b) Monitoring and estimating the 
sensing probability, probability of detect and probability of 
false alarm of each SU c) Allocate reward to each SU based on 
the sensing probability estimated and the targeted sensing 
performance. This is discussed further in section IV.  

III. ANALYTICAL MODEL 
For the system model described in Section II, the analytical 

model is derived in this section.  

Let Rk be the Bayesian risk factor defined in terms of 
probability of detection of the fused decision (Qdk) and the 
probability of false alarm of the fused decision (Qfk) as given in 
[17]; where k is the number of inputs fused using LRT obtained 
from k sensing SUs. 

k F fk D dkR C Q C Q C                                                (1) 

Where 

)CC(PC 00100F   

)CC)(P1(C 11010D   

000001 PC)P1(CC   

P0 is the Probability of the PU being off; C00, C01, C10 and C11 
are the costs associated with making the right and wrong 
decisions [17]. Pd and Pf denote the average values of the 
probability of detection and probability of false alarm of the 
network as a whole, related to the combined or fused decision. 
The notation of the various terms is tabulated in Table I.  

 



TABLE I: TERMINOLOGY TABLE 

Notation Description  

k Number of sensing SUs in a given time epoch 

γ Group SNR 

Pd Average probability of detect of the group 

Pf Average probability of false alarm of the group 

N  Network size (integer) 

Qdk 
Probability of detect of fused data obtained by 
fusing k inputs 

Qfk 
Probability of false alarm of fused data obtained 
by fusing k inputs 

m Lower limit of summation of (3) and (4) as given 
in [17] 

P0 Probability of PU being in off state 

M Observation interval as an integer number of time 
epochs 

Rk Risk Factor [17] 

Rkt Risk Factor in each time epoch t 

K Minimal Number of SUs required to maximize 
the network utility Jk 

Ps_opt Desired probability of sense equal to K/N 

Ps_av Average probability of sense in M time epochs 

Jk Network utility function in terms of k 

JPs_av 
Network utility function in terms of average 
probability of sense 

ηk Resource efficiency 

Ik Certainty factor = 1- risk factor 

IPs_av 
Certainty factor in terms of average probability of 
sense 

α 
the weightage given to the accuracy and resource 
efficiency ηk.  
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Where m is the number of users that need to be in agreement to 
make a decision about presence or absence of PU, as described 
in detail in [17]. Certainty Factor (CF) defined below is used to 
define the Network utility function similar to one in [16] 

k kI 1 R                                                                                (4) 
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                                                             (5) 

Where N is the network size and N is expected to be time-
varying with new SUs joining as well as leaving the network. k 
is the number of sensing SUs, which again may vary from 
epoch to epoch. It is assumed that change in value of N is 
updated with a frequency lesser than that of 1/ M time epochs, 
where M time epochs is the observation period. The weighting 

factor α signifies the weightage given to the accuracy and 
resource efficiency ηk.  
When averaged over M time epochs, CF can be expressed as a 
function of average probability of sense av_sP , instead of the 
number of sensing SUs. With each SU sensing with average 

probability av_sP , k can be approximated as NPk av_s . 
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   Equation (5) can be rewritten as, 
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As the average probability of sensing Ps_av increases, the CF 

improves, while the network efficiency decreases and vice 
versa. Let us say, the maximum of the utility function occurs 
some Ps_opt=K/N . The average probability of sense 
corresponding to the maximum is what a network should adapt 
and converge to.  

Location of this maximum depends upon values of α, , N. 
Figure 2 depicts the relationship between optimum  Ps_av that 
will maximize the network utility and  α, N and average Pd . As 
α increases, the weightage given to resource utilization 
decreases, as a result, the required sensing probability is higher. 
With increasing N the sensing probability to achieve the 
maximum decreases as the sensing effort for the same 
information gain required to be put in by each SU reduces. 
Increasing Pd (for constant Pf) or decreasing Pf (for constant Pd) 
means improved SNR. Increase in average SNR reduces the 
sensing effort required by each SU for a targeted sensing 
performance. It should be noted that Qdk, Qfk, Rk and Ik depict 
various metrics for measuring the sensing performance. They 
are related as expressed in (2), (3), (4) & (5). 

Having derived the analytical model for the network utility 
function, the following section discusses how to achieve 
maximum utility adaptively with minimal resource 
consumption while maintaining the targeted information gain. 

IV. ADAPTIVE SYSTEM 
In order to achieve the maximum utility for a given N and 

SNR conditions, a feedback mechanism is required between the 
SC and the SUs. This feedback is provided by a ‘reward’ 
allocated to each SU by the SC, which could be in the form of 
bandwidth, priority in scheduling [18],  billing concession [19] 
or just a factor used for adaptation. Light handed methods of 
introducing such incentives without imposing too much of 
overhead have been discussed in depth in [19]. How to built 
systems that can incentivize radios to follow the spectrum rules 
has been discussed in [19]. This motivates the proposed 
adaptive system. The reward is proportional to the sensing 
effort and the targeted performance measured as Qd_target for a 
constant Qf.  This metric was chosen for its simplicity and can 
be replaced by any of the other mentioned sensing performance 
metrics. The sensing effort of the ith SU is measured as  
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Figure 2.  JPs_av versus Ps_av for constant N and different α s 
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where si  is the number of times an SU senses in M epochs of 
the observation interval which is the estimate of probability of 
sense of each SU i. The sensing effort required to achieve the 
targeted accuracy is given by Ps_opt which should be learnt and 
adapted to by each SU based on events tabulated in Table II. 
These events encompass the different situations that arise in 
ECANs with changing number of users and SNRs. 

Figure 3 shows the working of the adaptation scheme. The 
operations of data fusion, estimation of the parameters [Pdi , Pfi 
, Psi] for each SU and learning of K (optimum number of 
sensing SUs for the given situation) are performed at the SC. 
Ps_opt is computed as K/N. It is compared with the sensing 
probability estimate Psi of each SU.  The normalized reward  
Fsi is computed for each SU as Psi/Ps_opt. This reward factor Fsi 
is sent in real time to each SU. Each SU adapts its sensing 
probability according to the observed reward. If reward is less 
than 1, it implies that the sensing probability needs to be 
improved. If reward is 1 then the sensing probability can be 
reduced.  

The update equation for probability of sense when  Fsi is less 
than 1 is  as shown below. 

sisinew_s PPP                                                                   (9) 
where 

sisipsi P/)F1(μP      where 

)F1/(P)P1(μ0 sisisip                                              (10) 
This equation shows that the change in Psi is directly 
proportional to the difference (1-Fsi).  Correction will be 
higher for smaller values of Fsi and vice versa. 
The update equation for Fsi equal to 1 is shown below. In this 
case, the update only depends upon the current value of Psi. 
Higher the original Psi, higher is the update and vice versa. 

 sisinew_s PPP                                                       (11) 

sinsi PμP   
 sin P/11μ0   

The adaptation algorithm at the SC and SU is listed below: 
                   
Adaptation Algorithm at SC 
Step 1: Init k=1, Set M  
            Qd_target=0.9   // can be set to any targeted value 
            Ps_opt = 1 
 

TABLE II: EVENTS FOR TRIGGERING ADAPTATION 

Sl. No. Events Action  

1. Network Startup  Learn Ps_opt for given N and SNR 
conditions 

2. N changes Update Ps_opt Nold * Ps_opt /N 

3. SNR changes Learn Ps_opt for given N and SNR 
conditions 

 

 
Figure 3: The block diagram of the adaptive system  

 
Figure 4: Event Schedule of the adaptive system 
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Step 2: Get local decisions 
             Data Fusion 
             Update Psi, Pdi, Pfi 
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               Set iter =1 
               Compute Qd_av (Average Qd over M iters) 
          If Qd_av> Qd_target     &  If Ps_opt_Learning_flag = 0   
          set Ps_optmean(Psi) of all SUs; 
          set Ps_opt_Learning_flag =1 
Step 4: iteriter+1 
 go to Step 2 
Step 5: If event 2 set N_oldN, Ps_optPs_opt*N_old/N 
Step 6: If event 3 set Ps_opt_Learning_Flag 0 
 
Adaptation Algorithm at the ith SU  
 
Step 1:Init:  Set M; 
         Set Psi =Random value {0 to 1}; 
         Fsi= 0; μp=0.02; μn=0.2 
Step 2: Energy Detection collecting m samples[3] 
Step 3: Make local decisions and send to SC 
Step 4: if iter =M, observe Fsi 
Step 5:If Fsi < 1 and Psi < 1 set Psi=Psi+∆Psi 
           else Psi=Psi -∆Psi 
           go to Step 2 
 
Figure 4 shows the scheduling of events of the adaptive 
system. The SUs sense the spectrum in the quiet period and 
send the sensing information to the SC, which fuses the data.  

V. SIMULATION MODEL AND RESULTS 
The simulation model was built using Netlogo [20] to 

validate the performance of the adaptive system. The 
parameters considered for the simulation are as listed in Table 
III. Each of the SUs has identical code but for one SU which is 
allotted the role of SC.  This choice of SC can be done based 
on the sequence of entry into the network, i.e. first SU that 
starts the ad hoc network could be the SC. Choice of SC could 
also be based on hierarchy of ranks or could be dynamic 
depending on the application. It should be noted that the choice 
of SC would not affect the simulation results. 

Figure 5 shows the variance of the energy spent by each SU 
and the sensing performance Qd_av versus number of iterations 
(time epochs). The convergence is towards a fair system where 
all SUs put in equal effort towards sensing, while maintaining 
targeted Qd, i.e. Qd_target. The group SNR was set to 0dB and 
counting rule was used to estimate Pd (Pf =0.1). Figure 5 
alsoshows an SU initializing with a random probability of 
sensing converging to Ps_opt learnt by the SC (event 1 of Table 

TABLE III: LIST OF PARAMETERS FOR SIMULATION. 

Parameter/Scheme Value/Type Comments  
Local Spectrum  
Sensing 

Energy 
Detection 

Can be replaced by any other 
local sensing mechanism 

Number of Samples 
m 100 Can be varied and decides the 

accuracy of ED 
SNR Distribution 
across SUs  Exponential distributed with 

different average values 

Initial Number of 
SUs 10 

Considering medium sized 
networks with N between 3 to 

50 SUs 

μp 0.02 Adjusted Empirically 

μn 0.2 Adjusted Empirically 
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Figure 5:The convergence of the variance of energy spent across SUs while 

maintaining performance 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations

Variance of energy spent,Payoff Qd, probability of sense of an SU
 with Qd target=0.9, Group SNR 0dB, Event 2 of Table I at iterations=10000

N
or

m
al

iz
ed

 v
al

ue
 o

f v
ar

ia
nc

e 
/ p

ro
ba

bi
lit

y 

 

 

Normalized variance of energy spent across SUs
Probability of detect of fused data
Probability of sense of an SU

 
Figure 6:The convergence of the variance of energy spent across SUs,Ps at an 

SU to Ps_opt with number of users N changing at 10000 th time epoch 

II).  Figure 6 shows the variance of the energy spent by each 
SU, the sensing performance Qd_av and convergence of 
probability of sense of an SU when event 2 of Table II occurs 
at the 10000th time epoch, i.e. new SUs are added to the 
network. Then the sensing probability is reduced to the updated  
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Figure 7: The convergence of the variance of energy spent across SUs and the 

probability of sense of an SU while maintaining performance with SNR 
changing at 10000th time epoch 

Ps_opt. Similarly, occurrence of event 3, i.e. change in SNR 
values is shown in Figure 7. SNR changes do not cause any 
abrupt changes in the variance but the Psi of the SUs is adapted 
to the required new value. This interval time between changes 
in SNR depends on the channel fading conditions, which in 
turn depends on the speed of the nomadic group.  The model 
proposed is independent of this parameter. The changes in SNR 
can occur at any time period that is greater than M. 

VI. DISCUSSION 
Having observed the convergence of the system under 

various conditions, an analysis of the convergence time is 
discussed in this section. The convergence time is directly 
proportional to the observation time period M which is 
measured in epochs of time between quiet periods. This quiet 
period can be determined based on the PU usage pattern [10]. 
The convergence time also depends on the amount of 
adaptation and the size of the adaptation step size. 

VII. CONCLUSIONS  
An adaptive model for collaborative spectrum sensing in 
ECAN was developed. The analytical and simulations models 
were presented. The model supports dynamic number of SUs 
as well as dynamic SNR conditions. The sensing is done by 
SUs in the quiet periods which are synchronized. Each SU 
senses with a probability of sense which is adapted based on 
the feedback from the SC provided in the form of reward. 
Results showing the convergence of the adaptation towards a 
resource efficient condition while maintaining the sensing 
performance and fairness. The SUs of the CAN are assumed to 
be embedded systems which are not been tampered. Attacks 
against cognitive radio networks have been well addressed in 
[21, 22]. The model presented is relatively resilient to data 
falsification attacks because of the LRT based data fusion.   
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