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Abstract—Cooperation among several secondary users for suc- process for scheduling of cooperative spectrum sensing [4]
cessful spectrum sensing defines an upper bound on the numberThey employ the myopic policy, which may not always be
of channels that can be sensed. Consequently, the maX|mum0ptima|_ Moreover, they analyze the properties of the ogtim

utilization is bounded by the number of sensing nodes rathethan licy f imol Zh t al. also look at th
the availability of the channels. Hence, a subset of the chaels poficy Tor some simple cases. ang et al. also look at the

should be selected based on the traffic requirements, and the cooperative sensing scheduling problem from an energyt poin
secondary users should be assigned to those channels for theof view [5]. They maximize the useful energy consumption,

sensing task. In addition, secondary users experience diffent and use bisection search to find the optimal solution. Peh
channel conditions due to interference, noise, and geogragal et al. optimize throughput by employing cooperative segsin

location. Therefore, a secondary user should be assigned ® . : . .
channel for which its sensing metrics are satisfactory. In his [6]. They consider a single channel, and obtain the ideal

paper, we consider the problem of channel and user selectidor ~ Values of sensing time and type of logic to be used for hard
cooperative sensing task. We model the mentioned channellse- decision combining. They decompose the main problem into

tion and user assignment problem as a non-linear optimizatin  two subproblems and obtain a local optimum solution. Song
problem and solve it using two alternative objectives to acieve ot 51 als0 study the single channel case and find the ideal
increased throughput and number of satisfied users. . . .
number of seconday users for sensing, and also ideal dogatio
|. INTRODUCTION for transmission and sensing [7].

Sensing is the most critical operation that enables theThese approaches do not differentiate between sensing
utilization of cognitive radio (CR). Sensing quality is adly  quality of different SUs [1-7]. However, thanks to intedace,
measured by detection probability and false alarm protipbil noise and geographical location, an SU has different sgnsin
Cooperative sensing is shown to be more robust than indiVidguality for different channels. Moreover, they assume all
sensing since it involves more sensors that are geogramtiannels can be sensed, which is not energy nor time efficient
cally apart and have different signal characteristics. @& tconsidering the spectrum and operating range of a typical
other hand, the spectrum is large and sensing all availaltegnitive radio network.

channels with limited number of secondary users (SUs) is|n this paper, we propose a system model together with
impossible. Hence, a clever mechanism to select chanrels s optimization model for channel selection for transraiss

can be sensed more accurately is needed together with #a@ cooperative sensing that maximizes expected throtighpu
assignments of secondary users to those particular clanigl the system. Subsequently, we solve the problem using

for sensing. genetic algorithm along with CPLEX software, and evaluate

In addition, the transmission requirementS of the SUs alﬁ@ performance for different Operational parameterS.
affects the channel selection, and should be taken intadtco  The rest of the paper is organized as follows: In section

If the channel capacities do not satisfy the user requirésen; \ye present the system model, define the decision vasable
the utilization and throughput will be low, significantlyfeft- - 504 construct the optimization model. Section 11l discesse

ing the performance. how non-linearity in the optimization problem is handletheT

Sh_en _et al. st_u_dy the_ optimization of cooperatl\_/e_spectrqrgsuns of the performance analysis are given in Section IV.
sensing in cognitive radio [1]. They also try to maximize tha Finally, we conclude the paper and explore future research
nel throughput by making use of cooperative sensing syat€$ o ctions in section V

[2]. They use energy detection for local sensing, and cagnti

rule for cooperative decision. Their goal is to find the sefsi

for sensing such that the channel throughput is maximized. 1l. JOINT OPTIMIZATION OF CHANNEL AND USER

Fan and Jiang try to find the ideal sensing setting for a SELECTION

multi-channel multi-user secondary network with coopeeat

sensing [3]. The sensing setting includes the time dedicate In this section, we formulate and solve the cooperative-sens
for the sensing task, and allocating that time to multiplarech ing scheduling problem simultaneously with the transroissi
nels. Zhang et al. use partially observable Markov decisi@eheduling for infrastructure based CR networks.
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A. System Model Moreover, we also have to keep the cooperative detectiah, an

In our system model, we assume that all channels operf@is€ alarm probabilities in compliance with their respet
according to the frame structure given in Figure 1. A frami@resholds for the channels that are used for transmission.

starts with the revision of the transmission schedule fer tfitence we would like to successfully sense the channels that
current frame. After the transmission schedule is revisied,2r¢ more likely to be used for transmission by the SUs, and
is announced to SUs by the secondary base station (B&fhere are still SUs unassigned for sensing, then sens&r oth
Secondary BS gathers the requests for the next frame sugd@annels for updating our information about those channels
quently. Then, data transmission begins. We assume a TDMAThe parameters for the system are given in Table I. In
scheme withI slots for all channels. During data transmissiofhis table, the parameter,, deserves some explanation. It
period, secondary BS works on the sensing and transmissgsitimates the probability that channel is not occupied by
schedule for the next frame. When transmission period en@sPU. The value of.,,, is calculated based on past data. To
the sensing schedule is announced, which is followed Bgcommodate for trends such as peak hours of the day, an
a quiet sensing period where the SUs sense the chan@gonential smoothing procedure or a window based approach
assigned to them. The secondary BS retrieves the sensidg be used. The former takes all of the past data into account
results from the SUs, and based on those results it revigdaereas the latter takes only the last measurements witgin t
the transmission schedule at the beginning of the next franéndow.

alculate new schedul TABLE |
Revision Cn;lte%m Tx | Tx Tx Tx Tx | Announcement Collection MODEL PARAMETERS
of Tx | Anouncement Jocuess | ot | Sh | St | SOt | o ot | o Sensig Seneing of sensng
Schedule for the ne» chedule results
frame M Number of channels|
N Number of SUs
Fig. 1. Frame Structure T ‘ N Number of Fransmission slots in a frgme
am Estimated probability that channet is available for transmissio
. . Ry Number of bits for user. that need to be sent at next frame
At request collection phase, each SU that requires a trans, Number of bits that can be sent in a slot using channel
mission opportunity for the next frame, informs the seconda P7§n Detection probability of usen for channelm
BS about the number of bits it needs to send during the nexir» False alarm probability of user for channelm
. . " Cooperative detection probability for channel
frame. Thatis to §ay,_the secondary BS knows all reqwressnenba Cooperative false alarm probability for channel
of the SUs and it tries to allocate channels based on th¢sg@? Threshold value for cooperative detection probabiljty
requirements. However, in order to select the channels fon@" Threshold value for cooperative false alarm probability

allocation, a subset of all the candidate channels must be

sensed. In this work, we are mainly focused on the joint After discussing the parameters, we give the decision vari-

scheduling of cooperaﬂye sensing and tran§m|53|pn. ables for the optimization model. Let
We employ cooperative sensing mechanism with hard de-
cision combining using majority logic since it is less error . .
prone compared to individual sensing. Furthermore, a @up,,,., = L,if channelm is used for tx bySU,, at slott ,
of criteria should be met in order to use a channel for 0,0/w

transmission. Firstly, the result of the sensing procedboeild +,, ., = number of bits that will be sent b§U,, using
indicate that the channel is not occupied by a PU. Secondly. channelm at slott in the next frame
the channel should be sensed accurately. @&t and Q%

denote the cooperative detection and false alarm probabili _ ) L,if channelm is sensed bysU,, in this frame
for channeln, respectively. If channeh is to be employed for =" 0,0/w ’
transmission, we require th&> > ,, QP and QL < ,,QF . . :

where,, Q" and,, Q" are threshold values for probability of 4, — {1’ if SUy transmits during next frame ’
detection and probability of false alarm, respectively.olr 0,0/w

Ry 8 1, if channelm is to be sensed in this frame
0 SUs are needed. Moreover, we let individual detection andtm =

)

model, we assume that in order to successfully sense a dhanne {

false alarm probabilities be different not only among SUs bu 0, 0fw

also for different channels for each SU. {1, if channelm is used for tx in the next frame
Zm = .

B. Optimization Model 0, 0w

During the operation of the Cognitive Radio Network, we
would like to sense as many channels as possible in orde
to obtain the maximum information about the status of the M N T
channels. Since there are many channels and the number of max w — Z Z Zamrmm (1)
SUs is limited, sensing all channels is usually not an option P B

;I'hen our problem becomes:

n=1
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the minimum positiveR,, value. Constraint (8) guarantees that
an SU can sense at most one channel. Constraint (9) forces
zm to be 1 if some SU transmits on that channel during the
frame. Constraint (10) expresses that if a channel is to bd us
for transmission, it has to be sensed. We ensure that a channe
is sensed by exactly users by constraint (11). Constraints
(12) and (13) are used for forcing cooperative detection and
false alarm probabilities meet the specified thresholdGait

if a channel is used for transmission.

The mathematical definitions a2 and Qf for majority
logic are given in constraints (14) and (15), respectivedy.us
focus on constraint (14). Letl be the sef1,2,..., N}, and
let Hs denote the set of all the subsetsifwith § elements.
Similarly, A, denotes the set of all the subsets dfwith &
elements. In constraint (14), we select a set B frdmwhere
k ranges from[§/2] to § for majority logic. The elements
in B are the ones that correctly sense the channel (success),
and contributeP?.. The elements inl\ B constitute the users
that sense the channel incorrectly (failure), and conteibli—
PR.). We should state that in order for the product terms
be different than zero, alt,,,; andz,,; values should be 1.
Hence, if we perform this task over all the subsetdiofvith
0 elements, we find the probability of successful detectioa of
given channel for the majority logic with the given set of SUs
(with x,,,,, = 1). The same arguments also apply for constraint
(15). Finally, constraints (16) and (17) merely define theety
of variables.

We also propose another problem with the same set of
N

constraints but with a different objectivejaz w = > v,,.

This objective tries to maximize the number of tr%ﬁlsmitting
SUs in a frame, that is to say it maximizes the number of
satisfied users. In order to achieve this task, it favors SUs
that has lowR,, values whereas our first objective favors SUs
with high R,, values to maximize throughput. For a given set
of parameters, we solve both problems in order to compare
the results.

The model given above is highly non-linear thanks to
constraints (14) and (15) and cannot be solved to optimality
by commercial solvers.

The objective in (1) maximizes the expected throughput oflll. TACKLING NON-LINEARITY IN THE OPTIMIZATION

the system for a frame by favoring channels with large

MODEL

values. Constraint (2) ensures that an SU can transmit in a

single channel at any given slot since we assume that all SUdn the given optimization model, once,,, values are
have single transceiver. Constraint (3) denotes that at omes known, the problem becomes a standard binary linear problem
SU can transmit in a channel at a given slot. Constraint (#)at can be solved by commercial solvers. Knowing,,
forceswv,, to bel if SU n transmits at least once during nexwalues also enables us to knaw, values. Furthermore, we

frame. In this constraint’,,,;,, denotes the minimum of adl’,,,

can calculate correspondirig, andQ?X values easily. Based

values. Furthermore, this constraint also forggs; values of on those calculated)? and QI values, we set,, = 1 if
usern to zero if R, is zero. Constraint (5) expresses that thihey satisfy the thresholds. Otherwisg,, = 0, since that
number of bits sent over channel at slot¢ should be less channel cannot be used for transmission. We employ a genetic
than or equal to the channel capacity. Constraint (6) makes salgorithm to find the ideat,,,, andu,, values, and then solve

that if a user transmits, its requirements are met. Comst(a)
forcesv,, to 0 if R,, = 0. In this constraintR"

min

for the other variables using CPLEX solver. We now discuss

is defined as the details of the genetic algorithm.



A. Encoding

Encoding defines how we represent a solution. To represent

a solution we store the corresponding,,, values in matrix

form andu,, values in a vector form. As an example, with 4

channels, 5 SUs, and&value of 2, a possible solution is:

00 0 0O 0
xZOllOO u:l
0 0 0 0 0 0]
1 0 0 0 1 1

Since there aré users, at mos? channels can be sensed.

Hence, only two of theu,, values arel in this case. That
would not be the case if was 3.

B. Fitness Function

We use the objective value of the optimization problem as

To = , U2 =

0
0
1

OO O
O O OO
o= O O

S O =

0 0
Then their childrencs that is defined byzs and us,

and ¢4 that is defined byz, and us may look like:

10001 1
U [ B R
0000 O 0|
00 0 0 0 0]
0 0 0 0 0] 0]
w000
001 1 0| 1]
00000 0

the fitness value of an individual. As stated above, we employVVe observe that; is a feasible child whereas is not, since

CPLEX solver to find the optimal value for givenandw.

C. Initial Population

Before the algorithm starts, we find, the number of
channels that can be sensed, which is givemiy | N/d |, M.
For each individual, we randomly selecthannels among/
channels, and construct thevector by assigning values tol

for the selected channels. Then, for each channel to bedense

that isu,, = 1, we randomly assigr users from the set of
unassigned ones for the sensing task and obigirvalues.
Then, we calculate the fitness value for each individual.

D. Crossover

Crossover operator produces offspring that will be added
to the population for the next generation. In our algorithm,
two parents are used for producing two children. We use

roulette wheel selection together with 3-tournament sgpat
In other words, for each parent three candidate individasds

inspected. The selection of candidates is done randomty, bu
candidates with better fitness values have more chance to be

U3 needs to sense two channels at the same time. Let's now
focus on how an infeasible child is transformed into a fdasib
one.

o Step 1: An SU may be assigned to 0, 1, or 2 channels for
sensing. We find the SUs that are assigned to 2 channels
and randomly reverse one of those assignments. Thus,
after this stepzy may look like:

0 0 0 0 O 0
vy = 01 1 0 0 wy = 1
0 0 0 1 0} 1(°
000 0O 0
o Step 2: Even though we solve the double assignment

problem, this time there may be channels with less than
users for sensing. To alleviate the problem, we randomly
select from unassigned SUs and assign them to those
channels until there ar& users for each channel that is
to be sensed. After this step may look like:

0000 0 0
o110 0 1
T4=10 000 1 1|P™T (1|

0000 0 0

selected. Among the three candidates, the best one isestleéifter these two steps, a child is guaranteed to be feasibéesi

as the parent.

each SU is assigned to at most one channel, and all channels

After the parents are selected, the actual crossover puogedo be sensed have users assigned to them.
begins. We first select channels to be sensed among the

channels sensed by either the first or the second parent. Tha

is to say, we first form the: vector. Then, for each,,, = 1
for the new child, we look at the,, value of the parents.
There are two cases to consider:

o Only one of the parents haveg,, = 1: We directly copy
the x,,,,, values of that parent at row to the child.

o Both parents have,,, = 1: This time, we randomly select

a parent and perform the same procedure.

For instance, lep; andps be two parents defined by, and
u1, ro andus, respectively as follows:

000 0 0
o110 0 1.
TL=10 0 0 0 o' |o|’
1000 1 1

M utation

When we generate offspring population, we perform mu-
tation operation on each new member with some probability
pm- Mutation operation is defined as randomly exchanging
two rows of the child. For instance, mutation operator apli
to ¢4 may result in:

00000 0 0
o110 0 !
=10 0 0 0 o]’"™ ™ |o|’
0001 1 1

F. Replacement

We use the elitist strategy to perform replacement. We add
all offspring to the current population and we discard theson
with worse fitness values such that the original populatine s



is maintained in order to form the next generation. However;

when adding an offspring to population, we check that if ¢her

is an individual with the same chromosome. If that is the cassccurately wher is low. For instance, for ausyr of 4dB,

we do not include that offspring in the population even if itakingd = 5 leads to zero ET since no channel is sensed with
has a good fitness value, to preserve the diversity. adequate accuracy. On the other hand, wherr = 8dB,

The algorithm runs for a predefined number of iterations.d value of 5 leads to the maximum ET. Thus, selection of
The parameters that are used for the genetic algorithm #ne idealo value heavily depends oms . Another point to
given in Table II. note is that, even though ET does not differ significantly for

the two objectives, the same argument does not apply to TC,

TABLE Il especially for low values ofisy ;.

PARAMETERS FOR THE GENETIC ALGORITHM

Population Size

Number of Iterations
Offspring Population Size
p’HL

100 120

100
20
0.1

100

80

Expected Throughput (Mb)

60
IV. EVALUATION OF THE METHOD

For performance evaluation of the proposed method, we “
assign a uniform random value between (0, 1)dgr values. 20
PE is also uniform random between (0.1, 0.4) for each ol ‘
channel-user pair. We assume a Rayleigh channel model with 4 5 7 8
mean SNRusyr. Then for each user and channel, we assign Msr (9B)
an exponential random SNR value. Based on that value and 60
P we calculate the corresponding detection threshaljl (
and PP . Furthermore, we assign a random channel capacity € %0
(C,n) to each channel that is uniformly distributed between 8 40 )
(0.125, 2) Mb. Each SU generates traffic for a given frame o} L
randomly based on an activity ratig, If the random number = 30 e
is smaller thans, we also assign a uniform randoR), value 220
between (0.125, 5) Mb. The san,, C,,, a,, PL, values §

are used throughout the runs for consistency. In additios, t
same SNR value is used for each channel-user pair for a given 0

usnr. The other parameters are given in Table Ill. All values u G(dB)
shown in the figures are the average of ten runs. SNR
TABLE Il Fig. 2. Expected throughput and transmitter count for TRNM £ 100,
MODEL PARAMETERS B = 0,6)
M 20 . .
N 100 The performance metrics for changigand § values are
T 10 given in Figures 4, and 5. As we can see from Figure 4(a), ET
thQ? 0.9 almost saturates aftgr= 0.6 for TPM. On the other hand, ET
th 0.1 first increases then slightly decreases for increaginglues
) {5,7,9,11,13} - . ;
38 {0.2,0.4,0.6,0.8, 1} for TXM as shown in Figure 5(a). This can be attributed to
psnr | {4dB,5dB, 6dB, 7dB, 8dB} the fact that beyond a saturation point, increasirapds more

users with smallz,, values. By favoring those users, although

The effect of usyr on expected throughput (ET) andET slightly decreases, TXM objective increases TC. This fac
transmitter count (TC) for different values &ffor throughput is also observed from Figure 5(b). It should be noted that for
maximization (TPM) and transmitter maximization (TXM) isthis casej = 9 always achieves the best performance.
shown in Figures 2, and 3, respectively. For a givefi,,
higher SNR implies higheP? . Both performance metrics
favor larged values whenugy g is low. However, asisyr In this paper a joint transmission and sensing scheduling
increases both metrics increase for differémalues, the rate problem is defined in terms of its mathematical model togethe
of increase for smalled being more significant. This is duewith two alternative objectives. Due to its non-linear matu
to the fact that with higheP? , more channels can be sensethe optimization problem is solved by using genetic aldpnit

mn?

V. CONCLUSION
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Fig. 5. Expected throughput and transmitter count for TXM & 100,
Fig. 3. Expected throughput and transmitter count for TXM & 100, #“sNRr = 6dB)
8=

together with CPLEX. For this task, building blocks of the

80- genetic algorithm such as crossover and mutation strategy a
’g rye ey defined. Then, both problems are solved for varying set of
< B parameters.
§_6O*£1”””””’77777f - *:6:5 For future work, we plan to model the same problem for
= 57 a general case by incorporatingand decision logic into the
g 407 e 3=9 model. Hence, it will be possible to select the idéahnd
'; -0-5=11 decision logic for each channel.
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