
On Combined Beamforming and OSTBC over the
Cognitive Radio S-Channel with Partial CSI

Efthymios Stathakis, Mikael Skoglund, and Lars K. Rasmussen
School of Electrical Engineering and ACCESS Linnaeus Center

KTH - Royal Institute of Technology, Stockholm, Sweden
emails:{eftsta,skoglund,lkra}@kth.se

Abstract—A pair of secondary (cognitive, unlicensed) users
is communicating in the presence of multiple primary (li-
censed) user pairs. The cognitive transceiver is implementing
beamforming and orthogonal space-time block coding in the
presence of external interference, induced by the primary system
transmission, that has to be properly handled. Moreover, the
cognitive link nodes, both the transmitter and the receiver, are
supplied with different levels of network side information (NSI),
i.e. primary messages and partial channel side information (CSI).
We investigate how this side information can be taken into
account in the cognitive system design and how interference
affects the behaviour of the beamforming solution. Through
numerical simulations, we illustrate the impact of partial CSI on
system performance and discuss its implications on the feasibility
of cognitive systems.

I. INTRODUCTION

The demand for higher data rates and ubiquitous coverage
has been following an increasing trend over the last decade.
Provision of high Quality-of-Service (QoS) for emerging ap-
plications requires, among others, bandwidth efficient wireless
technology. However, rigid regulation of spectrum allocation
policies has hindered efforts in this direction. A shift came
with the introduction of cognitive radios (CRs) [1]; systems
which sense their surrounding environment and dynamically
adapt to changes in the wireless channel, promising to bridge
this gap in spectrum underutilization.

Since the introduction of the CR paradigm, signal process-
ing frameworks for cognitive operation have been defined,
see [2], and fundamental information-theoretic limits have
been explored [3]. A more elaborate definition of possible
architectures for CR networks (CRNs), namely the interweave,
the underlay and the overlay CRNs, was provided in [4].
Interweave CRNs support cognitive operation exclusively over
spectrum holes (idle frequency bands) whereas underlay and
overlay CRNs realize the spectrum sharing (SS) principle,
by allowing simultaneous transmission of both licensed and
unlicensed systems. The latter two architectures are more
spectrally efficient and, in terms of CR feasibility, overlay
systems are even more favorable since the underlying set
of assumptions allows for advanced signal processing on the
cognitive link side. Therefore, studying overlay CRNs provides
an indication of the best achievable performance in a cognitive
network setup.

This work has been partially funded through the EU FP7 project INFSO-
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A promising technology, in the aforementioned direction,
are multiple-input multiple-output (MIMO) systems [5], a
paradigm which led to the introduction of new research
directions; beamforming [6], for transmission calibration, and
orthogonal space-time block coding (OSTBC), for diversity
gain [7]. The advantages stemming from the combination
of beamforming and OSTBC, termed as BOSTBC, were
demonstrated in the pioneering work of [8]. There it was
shown that BOSTBC achieves very good performance in the
presence of partial channel state information (CSI) and always
outperforms each individual strategy.

In the context of overlay CRNs, the investigation of
BOSTBC requires the integration of external incoming inter-
ference in the design. Important work extending the design of
[8] in other directions appears in [9]-[11]. However, in all those
considered cases, the system was not subject to interference
and the only source of disturbance has been white noise. A
different treatise, similar to our objective from a mathematical
viewpoint, is found in [12], where space-time block coding
design was considered in the case of correlated noise, yet the
system was not implementing beamforming.

In this work, we investigate the BOSTBC design when
the operating primary systems are causing interference on the
receiver side of the cognitive link. The target is to characterize
and evaluate how the system behaves in the presense of the
interfering cross-links, for which only partial CSI is available.
Under a statistical channel uncertainty model, we describe
how primary interference affects the behavior of the optimal
beamforming solutions. Moreover, we numerically evaluate the
induced performance back-off, from single-user transmission,
due to imperfect side information and draw conclusions re-
garding the feasibility of BOSTBC in an overlay CRN.

This paper is organized as follows. In Section II we intro-
duce the system model under consideration whereas the design
criterion and the associate mathematical analysis of our system
are provided in Section III. Numerical evaluation of our system
is provided in Section IV and finally Section V summarizes
and highlights the most important parts of this work.

Notation: We use bold lower case and bold capital case
letters for vectors and matrices. The operators (·)?, (·)T and
(·)H denote conjugate, transpose and conjugate-transpose,
respectively. The N -length all-zero, all-one vectors and the
N × N zero, identity matrices are denoted by 0N ,1N and
0N , IN . Finally, the operators vec(·), tr(·), ‖·‖2 denote vec-
torized form, trace and Frobenius norm of a matrix.
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Fig. 1. a) The basic CSC, and b) the general network setup.

II. SYSTEM MODEL

In this section we describe the system under consideration,
along with the operational assumptions. In particular, we
provide in what follows, the network model, its associate
channel model and the model that captures CSI quality.

A. Network Model
The cognitive S-channel (CSC), depicted in Figure 1a, is

a subset of the general cognitive interference channel (CIC),
with a cognitive and a primary transmit-receive pair denoted as
SUTx−SURx and PUTx−PURx, respectively. In the CSC setup
the fundamental assumption is that the cognitive transmission
is not disturbing the licensed system. This could be attributed
to a number of factors, e.g. low secondary transmit power,
large SUTx − PURx distance, obstacles, etc. Therefore, the
goal, in this context, is to robustify the SUTx − SURx trans-
mission strategy against external interference or simply render
communication over the cognitive link feasible and reliable.

In order to properly design our system against primary inter-
ference we need some level of side information. Detection at
the receiver and transmit precoding require the availability of
non-causal primary message knowledge and partial CSI of the
primary interfering cross-links, at both nodes of the cognitive
link. The SUTx node has partial CSI of the SUTx − SURx

link whereas the receiver SURx is performing ML-detection
assuming perfect knowledge of the cognitive link channel.

B. Channel Model
Assume K primary user pairs and a single secondary

link, as in Figure 1b. The secondary transmitter and the j-th
primary transmitter are supplied with M,Mj antennas whereas
their associated receivers are supplied with N,Nj antennas,
respectively. We use, for consistency with [8], H ∈ CM×N to
denote the secondary link channel, so that the element (·)Hij
represents the channel between transmit antenna i and receive
antenna j. The statistics of H are captured by h = vec(HH)
which is distributed as h ∼ CN (m,K). In the same spirit we
define the PUTx,j −SURx cross-channel as Fj ∈ CMj×N and
fj = vec(FHj ), with fj ∼ CN (mj ,Kjj). The covariance ma-
trices K,Kjj have a Kronecker product structure [13], where
transmit-receive covariance is separable, i.e. K = KT ⊗KR,
Kjj = KT,jj⊗KR,jj , with KT ∈ CM×M , KT,jj ∈ CMj×Mj

and KR,KR,jj ∈ CN×N . Moreover, we assume that all
covariance matrices are non-singular.

Our study focuses on the design of the cognitive link
transmission strategy, which takes place in blocks of L time-
slots. During each block the SUTx terminal is transmitting

a matrix C ∈ CM×L, of the form C = WC̄, over the
channel. The matrix C̄ ∈ CM×L is a mapping D of the actual
information vector c onto an OSTBC which is weighted, prior
to transmission, by some beamforming matrix W ∈ CM×M ,
whose choice relies on some criterion. Under these premises
the signal at the cognitive receiver can be written as

Y = HHC +
K∑
j=1

FHj C̃j + N, (1)

where N denotes complex i.i.d Gaussian noise with variance
σ2
n and whose statistics are described by n = vec(N) as n ∼
CN (0, σ2

nINL). The summation term, in (1), corresponds to
the interference, generated by the primary transmitters. Note
here that, for consistency with the rest of our setup, the primary
messages C̃j are also assumed to be OSTBCs.

C. Statistical Uncertainty CSI Model

We employ a statistical model in order to characterize the
uncertainty around the actual channel. We assume that the
actual channel H is jointly Gaussian distributed with the avail-
able channel estimate Ĥ, the latter statistically described by its
vectorized counterpart ĥ = vec(ĤH) as ĥ ∼ CN (m̂, K̂). The
joint distribution of h, ĥ can be completetely characterized
by the statistics of the vector hc = [hT ĥT ]T , with hc ∼
CN (mc,Kc). The quantity which captures the uncertainty is
h̃ = h|ĥ, i.e. the conditional distribution of h given ĥ, which
is Gaussian with mean m̃ and covariance K̃, that can be easily
calculated from mc,Kc and the realization of ĥ [14].

The conditional mean m̃ is a function of the current channel
estimate ĥ whereas the conditional covariance matrix K̃ is
a statistical measure of the distance between the estimate
and the actual channel. Therefore if we relate the statistics
of h and ĥ through a single scalar parameter δ then we
can model the two asymptotic CSI cases as: a) No CSI:
δ → 0, m̃ → 0MN , K̃ → K and b) Full CSI: δ → 1, m̃ →
h, K̃ → 0MN . Similarly, as above, we define δj , m̃j , K̃jj

in order to describe the statistics of f̃j = fj |f̂j , which is
modelling the uncertainty of the j-th cross-channel estimate
f̂j ∼ CN (m̂j , K̂jj), around fj . Note here that, our no CSI
definition is implicitly assuming knowledge of the primary
system geometry, which is a prerequisite in a CRN.

III. BOSTC FOR THE COGNITIVE S-CHANNEL

In this section, we describe the extension of [8] to the
system model described in Section II. We briefly go through
the performance criterion that dictates the design and further
analyze the system behavior under some special cases of the
CSI quality and covariance matrix model.

A. Performance Criterion

In order to analyze our system it will be convenient to start
by rewriting (1) in its equivalent vectorized form as

y =
(
CT ⊗ IN

)
h +

K∑
j=1

(
C̃T
j ⊗ IN

)
fj + n. (2)

For ease of exposition we define the interference-plus-noise
vector e =

∑K
j=1

(
C̃T
j ⊗ IN

)
fj + n but we are, in fact,



interested in finding the mean m̃e and the covariance K̃ee of
the conditional distribution ẽ = e|{(f̂j , C̃j)}Kj=1. By Lemma 1
(Appendix A) it follows that its pdf pẽ can be expanded as

pe|{(f̂j ,C̃j)}K
j=1

= pn

K∏
j=1

pC′
jfj |f̂j

= pn

K∏
j=1

pC′
j f̃j
,

where C′j = C̃T
j ⊗ IN , rendering the calculation of the

desired quantities straightforward. Given the statistics of ẽ we
can calculate the pairwise error probability Pkl = P(Ck →
Cl, |Ck,h,Φ), i.e. the probability of erroneously deciding in
favor of Cl, given that Ck was transmitted and side informa-
tion, described by the set Φ = {ĥ, (f̂1, C̃1), . . . , (f̂K , C̃K)},
is available at the transmitter. It is then easy to show that [15]

Pk,l = Q
{[

1
2hH

(
(∆C?

kl ⊗ IN )K−1
ee

(∆CT
kl ⊗ IN )

)
h
] 1

2
}

≤ e−hHA(Q,W)h

(3)

In order to simplify the expressions in (3), we have defined
the quantities ∆Ckl = W(C̄k − C̄l) = W∆C̄kl and Q =
(∆C̄kl ⊗ IN )K̃−?ee (∆C̄H

kl ⊗ IN ). The last inequality follows
from the well-known upper bound on the Q-function and upon
defining A(Q,W) = 1

4 [(W ⊗ IN )Q(WH ⊗ IN )]? in order
to express the exponential term in a compact form.

The next step is to average the pairwise error probability Pkl
over all channel realizations. Therefore, we need to integrate
both sides of (3), using the conditional marginal distribution
ph|ĥ (·|·), as

P(Ck → Cl, |Ck,Φ) ≤
∫
e−hHA(Q,W)hph|ĥdh. (4)

Following the lines of [8] it turns out that minimizing the
right hand side (RHS) of (4) is equivalent to maximizing the
following function l(W,∆C̄kl) = lkl(W)

lkl(W) = −m̃HK̃−1(A(Q,W) + K̃−1)−1K̃−1m̃

+ log det(A(Q,W) + K̃−1).
(5)

If we compare (5) with the cost function derived in [8], we
can see that it generalizes the beamforming design, studied
in [8], to the case where the noise is correlated. The optimal
beamformer that minimizes the RHS of (4) is found as the
maximizer of lkl(W) under the constraint that W does not
boost or weaken the signal, i.e. ‖W‖22 = 1.

The analytical form of (5) is rather complicated rendering
the analysis of the beamforming design a very challenging
problem. An interesting case, however, arises when the co-
variance matrix K̃ee can be expressed as a Kronecker product,
i.e. K̃ee = K̃T,ee ⊗ K̃R,ee. This assumption can be satisfied
in many practical cases where our system model, described in
Section II, holds. In this case we can simplify the expression
of A(W,Q) as follows

A(W,Q) = 1
4 (W∆C̄klK̃−?T,ee∆C̄H

klW
H)? ⊗ K̃−1

R,ee

= 1
4 (WΩWH)? ⊗ K̃−1

R,ee,
(6)

where Ω = ∆C̄klK−?T,ee∆C̄H
kl. Plugging (6) into l(W,∆C̄kl)

will lead to a significant simplification of the cost function (5).

The resulting problem is still difficult but the most important
outcome is that it admits asymptotic analysis with respect to
the CSI quality of the SUTx−SURx link. Under this premise,
the problem to be solved onwards is the following

maximize l(W,∆C̄kl)

subject to tr(WWH) = 1.
(P0)

In the next two subsections we provide some analytical results
characterizing the extreme cases of no and full CSI, assuming
that A(W,Q) is given by (6).

B. Limiting Case-No CSI for Secondary Link

When the transmitter SUTx is completely oblivious of the
cognitive link channel, i.e. when δ → 0, m̃ → 0MN and
K̃ → K, then the initial cost function lkl(W), tends to
lkl,1(W) = log det

[
1
4

(
WΩWH

)? ⊗ K̃−1
R,ee + K−1

]
and the

problem becomes

maximize log det
[

1
4

(
WΩWH

)? ⊗ K̃−1
R,ee + K−1

]
subject to tr(WWH) = 1.

(P1)

Analysis of (P1) can be carried out by decomposing W,Ω as
W = UWΣWVH

W and Ω = UΩΛΩUH
Ω . Further, recalling

that K = KT ⊗KR we set P = K
1/2
R K−1

R,eeK
1/2
R and define

P = UPΛPUH
P ,KT = UKT

ΛKT
UH
KT

. Characterization of
the optimal beamformer follows from the next proposition.

Proposition 1. When no CSI is available for the direct-link,
then the optimal beamformer is given as Wo

1 = U?
KT

ΣWUH
Ω ,

where ΣW is a properly chosen power loading matrix.

Proof: Invoking the above definitions it is possible to
manipulate the objective lkl,1(W) as follows

lkl,1(W) = log det
[

1
4

(
WΩWH

)? ⊗P + K−1
T ⊗ IN

]
≤ log det

[
1
4

(
ΣWΛΩΣH

W

)
⊗ΛP + Λ−1

KT
⊗ IN

]
,

where the inequality is basically the Hadamard inequality,
satisfied with equality when UW ,VW are chosen as in
Proposition 1. The new objective is separable in the diagonal
elements of the matrix ΣW and thus it can be maximized
very efficiently, using Newton-based or gradient methods, with
complexity O(M) operations per iteration.

Since our design should address the worst case scenario,
problem (P1) has to be solved over all possible codeword

pairs (Ck,Cl), i.e. a total of
(
|U|M

2

)
combinations, where

| · | denotes the cardinality of the constellation set U , a task
which is rather demanding. However this complexity can be
affordable in practice, if the constellation cardinality |U| and
the antenna array size M are small and we exploit potential
symmetries that might arise for different pairs (k, l) of indices.

C. Limiting Case-Full CSI for Secondary Link

When the cognitive transmitter SUTx has perfect knowledge
of the cognitive link channel, i.e. δ → 1, m̃→ h, K̃→ 0MN ,
then extrapolating the relevant analysis, performed in [8], for



the same asymptotic scenario, it turns out that lkl(W) tends
to the following limiting function

lkl,2(W) = hH
[(

WΩWH
)? ⊗ K̃−1

R,ee

]
h

= tr
(
WΩWHHK̃−1

R,eeH
H
)

= tr(WΩWHΨ),

(7)

where we have defined the matrix Ψ = HK̃−1
R,eeH

H with
decomposition Ψ = UΨΛΨUH

Ψ and Ω is previously defined.
The problem that has to be solved onwards is

maximize tr(WΩWHΨ)

subject to tr(WWH) = 1.
(P2)

The optimal beamformer for problem (P2) has a very simple
form, described in the following Proposition.

Proposition 2. When full CSI is available for the direct-link,
then the optimal beamformer is given as Wo

2 = uΨ,1uHΩ,1,
where uΨ,1 and uΩ,1 denote the principal eigenvectors of
matrices UΨ and UΩ, respectively.

Proof: From Kristof’s theorem [16], we have lkl,2(W) ≤
tr(ΣWΛΩΣWΛΨ), with equality achieved for VW = UΩ

and UW = UΨ. If we define µ = [σ2
W,1 . . . σ2

W,M ]T and
ν = [λΩ,1λΨ,1 . . . λΩ,MλΨ,M ]T , where (σW,k, λΩ,k, λΨ,k)
denote the k-th diagonal elements of (ΣW ,ΛΩ,ΛΨ), then we
can solve the following equivalent vector problem

maximize µTν

subject to µT1M = 1
(P2e)

Since µ,ν � 0, with their elements in descending order
of magnitude, it is easy to see that the optimal value p? of
(P2e) is p? = ν1 attained by µo = [1 0 . . . 0]. Thus, for
the original problem (P2) we get σW,1 = 1 and σW,k =
0, k 6= 1 implying that the optimal beamforming vector would
be Wo

2 = uΨ,1uHΩ,1. Note that, the optimization problem
(P2) should also be solved for all possible combinations of
codeword pairs (Ck,Cl).

D. Comments on System Design

Even thought the cases we have treated this far do not
capture the most general model, they are still applicable to
many scenarios and provide us with useful insights on the
beamforming designs.

Both results of Propositions 1 and 2 are in line with intu-
ition, regarding the beamforming behavior. It can be inferred
that the optimal design serves a dual role; on one hand it
compensates for the orthogonality loss of the OSTBC, due
to interference, and on the other hand it properly steers
transmission over the channel in order to minimize the upper
bound on the error probability.

Prior to the presentation of the numerical results, let us have
a look into a simple scenario, where we assume uncorrelated
primary transmit antennas and Mj ≥ L ∀ j, with L defined in
Section II-B as the code time span. Under these premises, it is
possible to write K̃ee as K̃ee = IM ⊗ K̃R,ee for some matrix
K̃R,ee and express A(W,∆C̄k,l) in terms of Z = WWH

as A(Z) = (µ
2
kl

4 )Z ⊗ K̃−1
R,ee, where µkl = ‖∆C̄kl‖2. Using

the high SNR approximation we can argue that the worst
case scenario, in terms of probability of error, is sufficiently
captured by solving (P0) for µmin = min{µkl ∀ k 6= l}.
Moreover the non-causal knowledge of C̃j∀j can be removed,
from the secondary transmitter SUTx. Therefore under these
moderate assumptions the problem simplifies greatly both in
overhead and complexity requirements.

IV. NUMERICAL RESULTS

In this section we investigate the performance of our system,
through numerical simulations for various system parameter
setups. Since our main interest is to investigate the impact of
cross-link CSI on system performance, we confine our study
to the cases where the SUTx−SURx link CSI quality is better
than that of the cross-links, and consider various combinations
of the cross-link CSI quality and the antenna correlation.

Our evaluation is carried out for the simple scenario, de-
scribed in Section III-D, for one primary link. We assume rate-
one (L = M) OSTBCs and uncorrelated transmit antennas
everywhere. The receiver correlation for the SUTx − SURx

channel is KR = (1−c)σ2
hIN +cσ2

h1N1
T
N , i.e. antenna corre-

lation (normalized with channel variance σ2
h) equals c ∈ [0, 1).

Similarly, we define the cross-link channel using KR,11, σ
2
f1
, c.

Assuming Rayleigh fading with σ2
h = 1, σ2

f1
= 1/M1 we

further define the received power, the interference power and
the noise power as P = E‖HHWC̄‖22, σ2

I = E‖FH1 C̃1‖22
and σ2

n = E‖N‖22, respectively. Based on these, we obtain
the ratios INR = σ2

I

σ2
n

and SINR = P
σ2

I +σ2
n

. Moreover, the
CSI qualities of the cognitive and the PUTx,1 − SURx link
are indicated by δ, δ1, which characterize the cross-covariance
matrices as Khĥ = δIM ⊗KR and Kf1 f̂1

= δ1IM1 ⊗KR,11.
The numerical results for various choices of parameters are

depicted in Figures 2-4. In Figure 2 we see the bit-error-rate
(BER) performance of the system, when the interference is
of the same magnitude as the noise. We can see that the 2×
4 secondary system performs quite well and even the 2 × 2
system has acceptable BER results. We note that performance
loss, with diminishing CSI quality which is reflected in δ1, for
both setups is insensitive to the number of receive antennas.
For both receive array sizes the induced degradation, when δ1
decreases, is of the same magnitude.

The impact of correlation factor c is seen in Figure 3. As
expected, our system experiences some loss, w.r.t the BER,
when the correlation factor c increases because the MIMO
direct-link channel matrix condition number is increasing.
However, an interesting observation is that decreasing CSI
quality incurs a smaller BER penalty for higher c. Finally,
in Figure 4 we can see the connection between INR and
δ1. In line with intuition, as the INR increases, primary
interference becomes more dominant, thus partial knowledge
can significantly help the system. Conversely, having less side
information, i.e. smaller δ1, incurs higher loss for INR = 20dB
than INR = 0dB due to the higher contribution, in the case of
20dB, of interference in the system disturbance.

It is good to keep in mind that these results serve the
qualitative assessment of the impact of the cross-link CSI
quality. In practical systems, where the direct-link CSI will
likely be imperfect, we expect further degradation. However,
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these results are an indication that cognitive communication is
feasible under moderate assumptions for the CRN components.

V. CONCLUSIONS AND FUTURE WORK

In this work we investigated the design of a BOSTBC
strategy in the context of overlay CNRs. In this framework,
the system design has to take into consideration and suf-
ficiently tackle the incoming interference, which is injected
from the primary system. Assuming a statistical model for the
description of the CSI quality, we incorporated the primary
interference in our design optimization problem. Moreover we
characterized, theoretically and numerically, the behaviour of
the resulting beamforming solution in terms of the interference
and for different CSI levels.

Numerical evaluation, performed for our simple scenarios,
has shown that, albeit the incurred performance loss, the
secondary system can still sustain reliable communication.
The addition of extra primary links or the relaxation of the
perfect CSI assumption for the direct-link will naturally lead
to a larger system BER degradation. However, based on our
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numerical evalation, we can reason that the expected perfor-
mance will still lie within the limits of acceptable operational
standards for reliable communication. This is a positive indi-
cation, regarding the future realization of unlicensed systems.

APPENDIX

A. Statement of Lemma 1
Lemma 1. Assume matrices Ak ∈ CN×N , Gaussian N-length
vectors xk ∼ CN (mxk

,Kxkxk
),yk ∼ CN (myk

,Kykyk
),

with k ∈ {1 . . . ,K}, and w ∼ CN (mw,Kww). All vec-
tors, but the pair (xk,yk) with cross-covariance Kxkyk

, are
pairwise independent. If we define z =

∑K
k=1 Akxk +w then

we can write the p.d.f pz|{yk}K
k=1

as

pz|{(Ak,yk)}K
k=1

= pw

K∏
k=1

pAkxk|yk
(A1)

Proof: For simplicity we define z̃ = z|{yk}Kk=1, such
that z̃ ∼ CN (mz̃,Kz̃z̃). In order to derive the mean and
the covariance of z̃ we need to calculate the quantities
Kzy,Kyy, where y = [yT1 . . . yTK ]T . It obviously holds that
Kyy = diag(Ky1y1 , . . . ,KyKyK

) and invoking, further, the
independence of the each summation term Akxk with {yi}i 6=k
it follows that Kzy = [A1Kx1y1 . . .AKKxKyK

]. We can now
calculate mz̃ and Kz̃z̃, using known formulas [14], as

mz̃ =
K∑
k=1

[mxk
+ Ak(yk −myk

)] + mw

Kz̃z̃ =
K∑
k=1

[Ak(Kxkxk
−Kxkyk

K−1
ykyk

Kykxk
)AH

k ]

+ Kww

(A2)

It is obvious, from the above equations, that mz̃,Kz̃z̃ are
separable with respect to the statistics of each pair (xk,yk).
Since the mean and the covariance fully characterize a Gaus-
sian distribution, this separability indicates that the p.d.f of
z̃ is given as in (A1). This characterization, not surprising
in hindsight, facilitates easier calculations and allows for
insightful interpretations.
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