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Abstract—We consider the additive white Gaussian noise
(AWGN) cognitive fading interference channel consisting of
one primary and multiple secondary transmitter-receiver pairs.
The secondary transmitters have non-causal knowledge of the
primary message. We find a tuple of achievable rates by utilizing
the discrete superposition model (DSM), which is a simplified,
deterministic channel model. The coding scheme devised for the
DSM can be translated into a coding scheme for the AWGN
model, where the rate achieved in the AWGN model is at most
a constant gap below the rate achieved in the DSM. We then
calculate the average throughput of the secondary pairs under
the assumption of Rayleigh fading channels. The main result is
that our scheme performs well in the weak interference regime.
The sum-throughput increases with the number of secondary
pairs.

I. INTRODUCTION

The paradigm of cognitive radio [1] promises increased

bandwidth efficiency by improved utilization of sparsely used

spectrum. One important model for cognitive radio is the

cognitive interference channel (CIFC), which consists of a

primary and a secondary transmitter-receiver pair. Each trans-

mitter sends a message to its desired receiver, which causes

interference at the other receiver. Cognition is modeled by the

fact that the secondary transmitter knows the primary message

and, hence, the primary transmit signal non-causally. The first

study of the CIFC from an information-theoretic point-of-view

was [2], however, the capacity region is known only for special

cases. These are weak interference [3], very strong interference

[4] and “primary decodes cognitive” [5]. Several achievable

rate regions have been found, see [2], [6] and references

therein.

In many practical applications there exist multiple cognitive

systems that wish to share the spectrum. It is an interesting

question, if the simultaneous operation of the secondary sys-

tems is possible and beneficial compared to serving only one

secondary system at a time. A suitable model for simulta-

neous operation is the K-user cognitive interference channel

(K-CIFC) consisting of one primary and K − 1 secondary

transmitter-receiver pairs. All secondary transmitters are as-

sumed to know the primary message. Limited results are

known about the capacity region of the K-CIFC. In [7] the
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Fig. 1. Cognitive K-user interference channel consisting of one primary and
K − 1 secondary transmitter-receiver pairs.

capacity region for a symmetric K-CIFC with reduced number

of cross-links is found. In [8] the authors consider a three-user

scenario. References to additional results with less relation to

our work can be found in [9].

In this paper we explore a novel way of finding achievable

rates for the K-CIFC. We consider the simplified deterministic

discrete superposition model (DSM) [10]. It has been shown

that a code in the DSM of a K-user interference channel can be

translated into a code in the corresponding AWGN model. The

achievable rates in the AWGN model are at most a constant

gap below the rates in the DSM. This correspondence holds

for the K-CIFC as well.

We devise a specific code in the DSM based on interference

avoidance and dirty paper coding (DPC) [11], and we find

lower bounds on the achievable rates. Due to the above

mentioned properties of the DSM, this yields lower bounds

on the rates achievable in the AWGN model. Based on these

results we calculate the average throughput for the case of

Rayleigh fading channel gains. We compare our analytical

expressions to numerical simulations, and we explore the

dependency of the throughput on the number K of transmitter-

receiver pairs, the signal-to-noise ratio (SNR) and the strength

of interference. Our results shows that average sum throughput

of the secondary users increase linearly as the number of users

increases which shows that this network is not interference

limited in general.

CROWNCOM 2012, June 18-20, Stockholm, Sweden
Copyright © 2012 ICST
DOI 10.4108/icst.crowncom.2012.248335



The remainder of the paper is organized as follows. In

Sec. II we define the AWGN model and the DSM of the K-

CIFC, and we discuss the connection between the two models.

In Sec. III and Sec. IV we state our results, the achievable

rate tuple and the average secondary throughput, respectively.

Sec. V contains numerical evaluations, and Sec. VI concludes

the paper.

II. SYSTEM MODEL

We consider a single-antenna K-CIFC represented in Fig. 1.

Each transmitter TXk has independent messages for its dedi-

cated receiver RXk. Since all transmitters share the transmis-

sion medium, each of the receivers gets the desired message

from the corresponding transmitter over the desired channel

and also receives interference from all other transmitters over

interference channels. The channel is cognitive in the sense

that the secondary transmitters TXk, k ∈ {2, . . . ,K} know

the message of the primary transmitter TX1.

A. AWGN Model

The AWGN model of the K-CIFC is

yk =
K
∑

l=1

hlkxl + zk, (1)

where zk ∼ CN (0, 1) is additive white Gaussian noise. Each

transmitter has unit transmit power E|xk|2 = 1, hence the

model is completely described by the complex-valued channel

gains hlk. We assume that the channels are discrete-time

block fading channels, and that the channel gains change

independently. We assume global knowledge of the channel

states. For simplicity, consider that all interference channel

gains hlk, l 6= k between transmitter TXl and receiver RXk

are drawn independently from the same distribution hlk ∼
CN (0, σ2

I ), while the desired channel gains hkk between

transmitter TXk and receiver RXk are drawn independently

from the distribution hkk ∼ CN (0, σ2
S). Hence, the parameters

of our system are K, σ2
I and σ2

S .

B. Discrete Superposition Model

The DSM of the K-CIFC has the same channel gains hlk,

however, the relation between transmit and receive signals is

different. The value of the transmit symbols xk are chosen

from a set of discrete values as follows:

xk ∈ D + jD, (2)

where D is the set of equidistant values defined as follows:

D =

{

0,
2−n

√
2
, . . . ,

1− 2−n

√
2

}

. (3)

Hence, there are 22n possible transmit symbols at each trans-

mitter where n is equal to:

n = max
(l,k)

max
{⌊

log |hlkR|
⌋

,
⌊

log |hlkI|
⌋}

. (4)

The first maximum in (4) is over all links in the K-CIFC,

and the indices R and I denote real and imaginary part,

respectively. Note that all logarithms in this papers are to the

base 2.

The receive signal at receiver RXk is

yk =

K
∑

l=1

[

[hlk]xl

]

, (5)

where [·] is a rounding operation defined as

[a] = sign(aR)⌊|aR|⌋+ j sign(aI)⌊|aI|⌋. (6)

In general, it is easier to analyze the capacity region of the

DSM, which is mainly due to the lack of stochastic noise.

Studying the DSM capacity region is reasonable, because of

the following relation for the K-user interference channel (K-

IFC), that is, the K-CIFC without message knowledge at the

transmitters.

Theorem 1. [10, Theorem 4.2]. The capacity regions of

the K-IFC in the AWGN model and the DSM are within a

constant gap. That is, if (RD
k ) is a rate tuple in the capacity

region of the DSM K-IFC, then there exists a rate tuple (RG
k )

in the corresponding AWGN K-IFC with

RG
k ≥ RD

k − κ1, k ∈ {1, . . . ,K}. (7)

Conversely, if (RG
k ) is a rate tuple in the capacity region of

the AWGN K-IFC, then there exists a rate tuple (RD
k ) in the

capacity region of the corresponding DSM K-IFC with

RD
k ≥ RG

k − κ2, k ∈ {1, . . . ,K}. (8)

The constants κ1 and κ2 are independent of the channel gains.

Specifically, there exists a strategy to “lift” any code from

the DSM to a code in the AWGN model. The rate tuples of

the codes satisfy (7). The lifting procedure also works for the

K-CIFC, because it is irrespective of the message knowledge.

This yields the following corollary.

Corollary 1. If (RD
k ) is a rate tuple in the capacity region of

the DSM K-CIFC, then there exists a rate tuple (RG
k ) in the

capacity region of the corresponding AWGN K-CIFC with

RG
k ≥ RD

k − κ1, k ∈ {1, . . . ,K}. (9)

The constant κ1 is independent of the channel gains.

Note that the converse of Theorem 1 does not immediately

carry over to the case of K-CIFC. Since we consider achiev-

able rates in this paper, we do not require the converse.

III. ACHIEVABLE RATE TUPLE IN DISCRETE

SUPERPOSITION MODEL

In this section we state our first result, the tuple of achiev-

able rates in the DSM.

Theorem 2. On the K-CIFC in the DSM we can achieve the

rate tuple

R1 = log |h11|2 − 10, (10a)

Rk = log |hkk|2 −
(

max
l 6=k

log |hkl|2
)+

− 11, k ∈ {2, . . . ,K}.
(10b)



Note that all rates have to be positive, that is, if (10) yields

a negative value, the corresponding pair cannot operate. The

result can be obtained from extending a result for the CIFC

with a single secondary pair [12]. The transmission strategy

is based on two main ideas. Firstly, the secondary transmitters

avoid causing interference at the primary receiver and all

undesired secondary receivers, that is,

[[hkl]xk] = 0, for all l ∈ {1, . . . ,K} \ l and k ∈ {2, . . . ,K}.
(11)

Secondly, since the secondary transmitters know the primary

message, they can pre-cancel the interference caused by the

primary transmitter TX1 by using a simple version of DPC.

Let us consider the primary system. The primary receiver

does not receive any interference. Hence, the received signal

is

y1 = [[h11]x1], (12)

and the rate R1 is only limited by the direct channel gain h11.

Recall that the transmit signal x1 has discrete values according

to (2). Some of these values for x1 merge to the same value

for y1 due to the rounding operation in (12). The transmitter

compensates this by using only a subset of the possible values

for x1, which guarantees error free reception at the receiver.

The resulting rate (10a) can be obtained from a worst-case

analysis. The details can be found in [12].

The secondary systems experience two difficulties in their

operation, which are interference from the primary transmit-

ter and the requirement to avoid interference at any other

receivers. Avoiding interference is achieved by reducing the

set of values of the transmit signal xk in order to guarantee

(11). Clearly, the maximum cross-channel gain

|hk,max| = max
l 6=k

|hkl| (13)

is the limiting parameter for the set of possible transmit

values. From

[[hk,max]xk] = 0 (14)

we find the region of permissible values for xk. This causes

the second term in (10b). The interference from the primary

transmitter can be effectively compressed by using DPC

implemented by lattice coding based on a two dimensional

lattice. The received signal at receiver RXk is

yk = [[hkk]xk] + [[h1k]x1]. (15)

Assume that the receiver RXk quantizes yk with respect to a

square lattice. The result of the quantization is

ỹk = ykR mod L+ jykI mod L, (16)

where mod denotes the modulo operation, and L is the size

of the square lattice. Since the transmitter TXk knows the

interfering signal x1 and the lattice size L, it can infer the

result of the quantization ỹk. By selecting its own transmit

signal xk, it can, thus, compensate the effect of interference.

Note that this strategy works irrespective of the strength |h1k|
of the interference, which is a characteristic feature of DPC.

By analyzing the worst case scenario we can find a lower

bound on L, which results in a lower bound on the number of

possible transmit values for xk. Together with the constraints

due to interference avoidance we find the achievable rate (10b).

Details of the calculations can be found in [12].

Note that the secondary rate Rk, k ≥ 2 is positive only if

the maximum interfering cross-link hk,max is larger than the

direct link hkk. Hence, our scheme is suitable only in the

weak interference regime due to the strategy of interference

avoidance.

IV. AVERAGE THROUGHPUT

In this section we would like to calculate the average

achievable rate R̄k = E[Rk] of the secondary transmitter-

receiver pairs. We find the following result.

Theorem 3. For i.i.d. channel gains hkk ∼ CN (0, σ2
S) and

hkl ∼ CN (0, σ2
I ) we obtain

R̄′ = E

[

log |hkk|2 −max
l 6=k

log |hkl|2
]

= (K − 1)

K−2
∑

l=0

(−1)l

l + 1

(

K − 2

l

)

log

(

1 + (l + 1)
σ2
S

σ2
I

)

.

(17)

The calculation can be found in Appendix A. Note that

Theorem 3 gives the expectation of

R′
k = log |hkk|2 −max

l 6=k
log |hkl|2 (18)

without the limiting operation (·)+. The expectation of Rk

is difficult to obtain, however, for high SNR and large K,

Rk = R′
k−11 with high probability, because the maximum is

likely to be greater than zero. We confirm this by numerical

simulation.

V. PERFORMANCE EVALUATION

In this section we evaluate Theorem 3 numerically. To

facilitate interpretation, we use the parameters

SNR = σ2
S , α =

log σI

log σS

,

that is, σI = σα
S . The use of the interference exponent α is

common in the study of the generalized degree of freedom

(DOF) [13].

Fig. 2 shows the average secondary throughput R̄′ as a

function of SNR and K. Firstly, we check the influence of

the (·)+ operation. The solid lines depict our closed-form

expression (17), while the dashed lines result from simulating

(10b) through Monte Carlo simulation. We observe that for

K = 2 the approximation is justified only for high values

of SNR. However, for larger K the approximation is valid

for all values of SNR. The throughput increases with SNR,

approaching a linear behavior. It decreases with K, however,

the degradation is mild and saturates for large K. Fig. 3 shows

the dependence on the interference exponent α for K = 4. The

smaller α, that is, the smaller the interfering cross-links, the

larger is the slope of the curves.
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Fig. 2. Average secondary throughput R̄′ as a function of SNR and number
K of users (lines). The interference exponent is α = 0.5. Dashed lines denote
results from numerical simulations

Finally, we show the dependence on K in Fig. 4 and

Fig. 5. Fig. 4 shows the secondary throughput R̄′ as a

function of K for different values of SNR and α = 0.5.

The throughput drops steeply for low K due to the increased

requirements on interference avoidance. However, for large K

the decrease of throughput is small. The throughput stabilizes

at a constant non-zero level. This behavior results in an almost

linear increase of the sum throughput (K − 1)R̄′ as shown

in Fig. 4 for the same set of parameters. The slope of the

curve increases with increasing SNR. This last result shows

that operating multiple secondary transmitter-receiver pairs is

beneficial under the assumptions of this work.

VI. CONCLUSION

In this paper we found a tuple of achievable rates for

the cognitive interference channel with multiple secondary

transmitter-receiver pairs. The coding scheme was obtained in

the discrete superposition model and yields a coding scheme

in the corresponding AWGN model. Furthermore, we found a

closed-form expression for the expected secondary throughput

for Rayleigh-fading channel gains. We investigated the result

numerically and discussed the dependence on the SNR, the

interference exponent α and the number of users K. Even

though the individual throughput decreases with K, the sum

throughput increases almost linearly. This shows that for our

scenario the coexistence and simultaneous operation of mul-

tiple secondary systems is beneficial from a sum throughput

point of view.

APPENDIX A

PROOF OF THEOREM 3

To calculate the average, the distribution of the random

variable R′
k should be found. The desired channel hkk and

the interference channel hkl gains have complex Gaussian

distribution with different variances hkk ∼ CN (0, σ2
S), hkl ∼
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Fig. 3. Average secondary throughput R̄
′ as a function of SNR and

interference exponent α (lines). The number of users is K = 4. Dashed
lines results from numerical simulations.

CN (0, σ2
I ). The squared magnitudes of the channel gains have

exponential distributions as follows,

Xk = |hkk|2 ∼ fX(x) =
1

σ2
S

e
− x

σ2

S , x ≥ 0, (19)

Wkl = |hkl|2 ∼ fW (w) =
1

σ2
I

e
− w

σ2

I , w ≥ 0. (20)

Now, we define a new random variable Yk as follows,

Yk = max
l=1,...,K, l 6=k

Wkl. (21)

The cumulative probability distribution of Yk can be found as

FY (y) = Pr{Yk ≤ y} =
K
∏

l=1,l 6=k

Pr{Wlk ≤ y}

=

(

1− e
− y

σ2

I

)K−1

. (22)

The resulting probability density function of Yk is

fY (y) =
d

dy
FY (y) =

1

σ2
I

(K − 1) e
− y

σ2

I

(

1− e
− y

σ2

I

)K−2

(23)

The probability density function of the fraction Zk = Xk

Yk
is

fZ(z) =

∫ ∞

−∞

|y|fX,Y (zy, y)dy

=

∫ ∞

0

yfX(zy)fY (y)dy

=
K − 1

σ2
Sσ

2
I

×
∫ ∞

0

ye
−

(

z

σ2

S

+ 1

σ2

I

)

y
(

1− e
−y

σ2

I

)K−2

dy. (24)
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To solve the integral, we observe
∫ ∞

0

xe−ax
(

1− e−bx
)K

dx

=

∫ ∞

0

xe−ax

K
∑

l=0

(

K

l

)

(−1)le−blx

=

K
∑

l=0

(

K

l

)

(−1)l
∫ ∞

0

xe−(a+bl)xdx

=

K
∑

l=0

(

K

l

)

(−1)l

(a+ bl)2
. (25)

This yields

fZ(z) =
σ2
S(K − 1)

σ2
I

×
K−2
∑

l=0

(

K − 2

l

) −1l
(

z +
σ2

S

σ2

I

(l + 1)
)2 . (26)

We calculate the expectation of the logarithm of the fraction

Zk

E [logZk]

=

∫ ∞

1

fZ(z) log z dz

= (K − 1)
σ2
S

σ2
I

×
K−2
∑

l=0

(

K − 2

l

)

(−1)l
∫ ∞

1

log z
(

z + (l + 1)
σ2

S

σ2

I

)2 dz

= (K − 1)

×
K−2
∑

l=0

(

K − 2

l

)

(−1)l

l + 1
log

(

1 +
σ2
S

σ2
I

(l + 1)

)

, (27)
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Dashed lines denote results from numerical simulations.

which yields the expected throughput R̄′.
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