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Abstract—In cognitive radio (CR) systems, cooperative sensing
is advantageous when compared to single user detection. Coop-
erative sensing means that multiple CRs detect the spectrum
holes collaboratively. The presence of malicious users (MU) can
severely degrade the performance of cooperative CR system. In
this paper, we are adopting a signal detection method called the
forward consecutive mean excision (FCME) algorithm for ’always
one/zero’ MU detection in cooperative sensing. Simulation results
show that the FCME method is able to work even though 80%
of the secondary users are ’always one’ MUs.

Index Terms—outlier detection, diagnostic methods, malicious
users.

I. INTRODUCTION

Cognitive radio (CR) enables efficient spectrum usage via
releasing temporarily unused frequencies so that secondary
users (SU) may transmit unless they do not cause harm
to licenced/primary users (PU) [1]. Spectrum sensing that
uses signal detection methods to decide if the investigated
frequency band is occupied or not can be seen to be a key
function of cognitive radio [2]. Cooperative sensing where
multiple CRs detect the free spectrum collaboratively mitigates
sensing problems like multipath fading, receiver uncertainty
and shadowing [3], [4], [5]. Cooperative sensing is very
effective technique and improves detection performance at the
expense of cooperative cost.

As long as there has been a human activity has also been
frauds. Usually, fraud is defined to be criminal deception.
Traditional fraudulent behavior include, for example, money
laundering, computer intrusion, credit card fraud and telecom-
munications fraud [6], [7]. Also cognitive radios suffer frauds
called malicious users (MU). In cognitive radios, malicious
behavior may be unintentional (device malfunctioning) or in-
tentional (selfish and malicious users). Malicious user sending
’always yes (=one)’ is probably due to device malfunctioning
which leads to wrong sensing reports or there is a simple
MU having no intelligence. Selfish SU may sense that there
is no signal present but tells to other ones that there is a
signal so it can use the free space itself. The SU can send
false sensing information always (’always yes’ or ’always no
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(=zero)’) or only sometimes. Primary user emulation (PUE)
attack [8] means that MUs mimic PU in order to prevent
other SUs coming to the band. The goal in PUE attacks is
to prevent spectrum resource usage. In selfish PUE situation,
the goal is to maximize own spectrum usage, as in malicious
PUE situation the goal is to cause denial of service. According
to [9], devices can be taught things by malicious elements
of their environment thus leading to sensory manipulation at-
tacks, belief manipulation attacks and cognitive radio viruses.
Malicious user sending false sensing data to the fusion center
in order to increase the probability of incorrect sensing results
is known as Byzantine attack or spectrum sensing data falsifi-
cation (SSDF) attack [10]. ’Denial of service’ attacks include,
for example, common control channel attacks and location/
sensing/ transmitter/ receiver failures [11].

Malicious users cause severe problems. For example, in
cooperative systems many sensor selection methods are vul-
nerable to MUs because false sensing data may degrade the
performance of cooperative sensing [12]. Pure prevention is
not enough as the MUs may be adaptive and unpredictable.
Thus, MU detection methods are required. Various approaches
have been developed for MU detection problem. Pre-filtering
of sensing data based on outlier detection is proposed in [12],
[13]. Outliers aka nonstandard observations are data samples
which differ from the rest of the data. In [14], robust outlier
detection techniques are studied and a heuristic algorithm
is proposed in [15]. In [16], a posteriori probabilities are
computed using Bayesian rule and in [17], the method is
generalized to handle more than one malicious user. Bayesian
detection can be applied only when the strategy of the
malicious user is known. In [8], a transmitter verification
scheme localization based defence (LocDef) is proposed to
handle PUE attacks. Abnormality-detection approach has been
proposed in [18]. In [19], method that detects malicious users
without any a priori knowledge is proposed. In [10], simplified
symmetric attack strategy based on the usage of reputation
metric is used to count mismatches between the decisions.

However, computationally simple and efficient MU detec-
tion methods are still required because MU detection is a
demanding and critical task. In this paper, we are focused
on simple but nasty SSDF attacks called ’always yes/no’
MU attacks. ’Always yes’ decision means that the channel is
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always said to be occupied, i.e., ’always one’, as ’always no’
means that the channel is always said to be free, i.e., ’always
zero’. These are usually caused by device malfunctioning or
selfish user. Because the pattern of ’always one/zero’ attack
is simple and MUs do not have to know any spectrum
status information, these kind of attacks are easy to realize.
Prevention of these attacks is an important task because
many sensor selection methods are vulnerable to MUs always
sending ones, see, for example, [20] and references therein. In
cooperative sensing, the fusion center makes the final decision
is PU present or not, and wrong sensing information may
affect that decision. Malicious users also manipulate other SUs
adaptation. ’Always one’ MUs have been studied, for example,
in [21] and in [22].

This paper considers ’always one’ and ’always zero’ ma-
licious user detection using the forward consecutive mean
excision (FCME) [23], [24] signal detection method whose
applications have been proposed to be used in spectrum sens-
ing [25]. Here, the FCME algorithm is run to combined binary
sensing decisions. The FCME algorithm is a computationally
simple but effective diagnostic outlier detection method that
is able to find large amount of outliers. It operates blindly so
no a priori information is required. It is also possible that the
FCME method or its application [25] is used first sensing and
then MU detection. This reduces the overall complexity.

II. ’ALWAYS ONE’ AND ’ALWAYS ZERO’ MALICIOUS
USERS

In cooperative sensing, MUs like ’always yes’ and ’always
no’ can be identified by comparing energy distributions. En-
ergy value of a MU differs in distribution from the energy
value distribution of non-malicious users [12]. Fig. 1 presents
some examples about distributions for decisions (probability
mass functions). Usually, the distribution is binomial and it
depends on the probability. Note, that usually the probability
p is not known. ’Always yes’ and ’always no’ lead to uni-
form distribution. ’Always yes’ users increase the false alarm
probability Pfa as ’always no’ users decrease the detection
probability Pd of a fusion center. Malicious users sending
’always one’ are more harmful than malicious users sending
’always zero’ [20].

III. SYSTEM DESCRIPTION

We have a CR network that consists of one fusion center
called central user (CU) and N SUs, which are denoted by
SUi, i = 1, . . . , N . There is one PU occupying the observed
band with a certain probability. Each SU finds PU signal with
probabilities Pd and Pfa. Channels between PU and SUs are
assumed to be i.i.d. In the system there are M ≤ N malicious
users. Without loss of generality we can assume that SUi,
i = 1, . . . ,M are assumed to be malicious and continuously
providing false information. Average SNR values for SUs
are equal. Each SU sends hard (binary) sensing decision
information to CU, that is, 0 or 1, and CU makes the decision
based on individual SUs sensing information. Malicious user
detection is performed before the decision making. The MU

Fig. 1. Examples about distributions for decisions, n = 100. Binomial
distribution for p = 0.45 and p = 0.8, uniform distribution for ’always
zero’ (p = 0) and ’always one’ (p = 1). Here, n denotes the sequence of
experiments and p denotes the probability.

detection method does not know the number or type of MUs,
the number of PUs or the probabilities.

IV. THE FCME METHOD

The FCME algorithm is an iterative forward-type method
that uses a detection threshold in order to separate the samples
into two sets: outliers above the threshold and majority of
the data below the threshold [23], [24], [25]. Usually, time
or frequency domain samples are considered. First, the used
threshold parameter Tcme1 > 1 is selected. Proper threshold
setting is considered, for example, in [25]. Second, squared
samples are rearranged in an ascending order according to the
sample energy to form vector V, and m, usually m = 10%,
smallest samples are selected to form the initial set Q. The
threshold is

Th1 = Tcme1 ∗Q, (1)

where ∗ denotes multiplication and Q = 1
Q

∑Q
i=1 |xi|2 is the

sample mean. Samples below the threshold Th1 are added to
the set Q. This is repeated until there are no new samples
below the threshold to be added to the set Q. Thus, there are
Q samples below the threshold and N −Q samples above the
threshold. The computational complexity of the FCME method
is N log2 N . The most complex parts are sorting and possible
Fourier transformation.

V. THE MODIFIED FCME METHOD

Let us consider K consecutive sensing period results from
one SU and define the following vector

xi =
(

xi(1) xi(2) · · · xi(K)
)T

where samples xi, xi ∈ {0, 1}, i = 1, . . . , K, denote received
sensing result by the ith SU. Accordingly, the received sensing



period result matrix x for N SUs can be defined as following
K ×N matrix

x =
(

x1 x2 · · · xN

)
=




x1(1) x2(1) · · · xN (1)
x1(2) x2(2) · · · xN (2)

...
...

. . .
...

x1(K) x2(K) · · · xN (K)




Means for every vector xi are calculated and included to vector

V =
(

v1 v2 · · · vN

)
=

(
x1 x2 · · · xN

)
,

where xi = 1
K

∑K
j=1 xi(j). Thus, the first sample in vector

V is the mean of sensing period results (1 or 0) of SU1. The
FCME is run to vector V as illustrated in Section IV. Samples
that have too high mean, i.e., samples above the threshold Th1

are classified to be from ’always one’ MUs. Thus, sensing
information from MUs are not taken into account, i.e., these
columns are rejected from the matrix x before sensing results
are handled by CU. It is also possible to modify the FCME
algorithm so that also ’always zero’ -malicious users are
detected. Thus, samples that have too low mean are classified
to be from MUs. This is possible using threshold parameter
Tcme2 < 1 and classifying decisions below the threshold Th2

to be from MUs (Fig. 2). It should be taken into account that
if there is lot of ’always zero’ MUs, the initial set consists
of zeros, and the FCME algorithm does not operate at all.
However, it is assumed here that the number of ’always zero’
MUs is small.

Malicious user detection is a basic binary hypothesis testing
problem so that H0: MU is not present and H1: MU is
present. For Th1, detection probability Pd is defined to be
P (X̃ > Th1|H1) and missed detection probability Pm can be
defined to be P (X̃ < Th1|H1). False alarm probability Pfa

is P (X̃ > Th1|H0), where X̃ means detection information
that is transmitted to central user. Consequently, for Th2,
corresponding probabilities are Pd = P (X̃ < Th2|H1),
Pm = P (X̃ > Th2|H1) and Pfa = P (X̃ < Th2|H0).

Next, two examples are presented to illustrate the MU
detection method. Let us consider the situation when there
are N = 5 cognitive SUs that send their sensing decisions to
the fusion center so that ’1’ means that the channel is occupied
and ’0’ means that channel is unoccupied. PU signal is present
randomly 50% of the time and each SU locally finds PU signal
with probabilities Pd = 0.8 and Pfa = 0.1. One decision
matrix for these 5 SUs for K = 10 sensing periods is presented
at Fig. 3. Therein, SU4 is a MU sending always one, i.e.,
M = 1. That is, column n:o 4 consists of ones. The modified
FCME algorithm computes mean of each column. In this case,
the received vector of means is V = [0.5, 0.5, 0.2, 1.0, 0.5].
Having threshold parameter Tcme1 = 1.7, the threshold is
Th1 = 0.7225. Values in vector V which exceed the threshold
Th1 are considered to be from MU. Now, V (4) = 1 > 0.7725
so SU4 is decided to be a MU.

Consider N = 8 cognitive SUs with parameters as in
the previous case. Now, there is also two MUs (M =
2) so that SU1 sends always ones and SU4 sends al-
ways zero (Fig. 4). The received vector of means is V =

Fig. 2. The threshold setting. The threshold 1 separates ’always one’ MUs
as the threshold 2 separates ’always zero’ users. The original FCME method
uses only the threshold 1 thus detecting only outliers with too high values.

Fig. 3. One example. N = 5 cognitive SUs and sensing results from 10
consecutive sensing periods are presented. PU signal is present randomly 50%
of the time and each SU locally finds PU signal with probabilities Pd = 0.8
and Pfa = 0.1. SU4 is ’always one’ malicious user.

Fig. 4. One example. N = 8 cognitive SUs and sensing results from 10
consecutive sensing periods are presented. PU signal is present randomly 50%
of the time and each SU locally finds PU signal with probabilities Pd = 0.8
and Pfa = 0.1. SU1 is ’always one’ and SU2 is ’always zero’ malicious
user.

[1.0, 0.5, 0.3, 0, 0.6, 0.6, 0.5, 0.5000]. Having threshold param-
eters Tcme1 = 1.9 and Tcme2 = 0.7, the thresholds are
Th1 = 0.8143 and Th2 = 0.1867. Values in vector V which
are above the threshold Th1 and below the threshold Th2 are
from MUs. Now, V (1) > 0.8143 and V (4) < 0.1867 so SU1

and SU4 are correctly decided to be MUs.



VI. SIMULATION RESULTS

Monte Carlo simulations were performed in the case of
considering the performance of the FCME algorithm. In the
simulations there were 10000 rounds. PU signal was present
randomly 50% of the time and each SU finds PU signal with
probabilities Pd = 0.8 and Pfa = 0.1. The FCME algorithm
does not know these probabilities. It is assumed that average
SNR values for SUs are equal, i.e., PU is far away from SUs.
Size of the initial set was m = 4, threshold parameters were
Tcme1 = 1.9 and Tcme2 = 0.7 [25], there were N = 12
SUs and K = 20 consecutive decisions were taken into
account. When there was one ’always one’ malicious user, it
was detected in 96% of the cases. No ’always one’ malicious
users were falsely found. When there was one ’always zero”
malicious user, it was found in 99.7% of the cases. ’Always
one’ malicious users were falsely found in 0.3% of the cases.
When there was one ’always one’ malicious user and one
’always zero’ malicious user present at the same time, the
FCME algorithm found ’always one’ malicious user in 80%
of the cases and ’always zero’ malicious user in 99.7% of the
cases. When there were no malicious users at all, the FCME
algorithm falsely found ’always one’ malicious user in 0.1%
of the cases and ’always zero’ malicious user in 0.5% of the
cases.

In the presence of ’always zero’ MUs, the initial set affects
to the detection performance of the FCME algorithm, because
it takes the smallest samples to the initial set. The performance
of the FCME algorithm can be enhanced by leaving some of
the smallest samples outside the initial set. In that case, the
FCME algorithm found ’always one’ malicious user in 93%
of the cases and ’always zero’ malicious user in 93% of the
cases. This type of initial set selection has slight effect to the
detection performance of ’always one’ malicious users.

Next, N = K = 20, Tcme1 = 1.7 and Tcme2 = 0.7, and
the number of MUs varies. The detection is performed only
if all the MUs are detected. In Fig. 5, the number of ’always
one’ MUs varies and there are no ’always zero’ MUs. It can
be seen that the ’always one’ MUs are detected in about 95%
of the cases until the ’always one’ MUs cover more than 80%
of the SUs, i.e., until the initial set (20% of SUs) consists
MUs. No ’always zero’ MUs were found, as expected, because
there are no ’always zero’ MUs present. The larger K the
better Pd. For example, when K = 30, Pd = 98%, and when
K = 10, Pd = 70%. In Fig. 6, there is also one ’always
zero’ MU. The detection performance of ’always one’ MUs is
about in the same level as in the previous case. The ’always
zero’ MU is found over 95% of the cases until the ’always
one’ MUs cover more than 80% of the SUs. When there were
no malicious users at all, the FCME algorithm falsely found
’always one’ malicious user in 0.2% of the cases and ’always
zero’ malicious user in 0.3% of the cases.

The FCME method is a threshold setting method so the used
threshold parameter Tcme affects to its performance [25]. The
larger Tcme1 is, the larger the mean must be before SU is
classified as MU (Fig. 7). It depends on the situation which

Fig. 5. Detection probability of MUs with varying number of ’always one’
MUs. There are no ’always zero’ MUs.

Fig. 6. Detection probability of MUs with varying number of ’always one’
MUs. There is one ’always zero’ MU.

one is better, to classify too many or too less SUs as MUs
and, thus, reject their decisions.

The benefit of using the blind and simple FCME algorithm
is that about 80% of the SUs can be MUs and the FCME
method still operates. In addition, the FCME algorithm and its
applications can be used in sensing [25], so it is possible that
individual SUs make their sensing using the FCME method
or its application, send their decision (1 or 0) to CU, and
’always one/zero’ MUs are detected using that same method.
This reduces the overall computational complexity when the
same method can be used to both sensing and MU detection.

Assuming equal SNRs is commonly used assumption in the
literature. However, the problem is that the received SNRs
may vary between SUs. Sending ’always ones’ can be due
to good SNR and a SU with a poor received SNR does not



Fig. 7. Detection probability of MUs with varying number of ’always one’
MUs and different values of threshold parameter Tcme1. There are no ’always
zero’ MUs.

detect the signal and, thus, sends zero even though there is a
signal present. In some situations it can be assumed that PU
is far away from all SUs so that SNRs are equal but this is
not always the case. This SNR problem can be avoided, for
example, using so called trust metrics that define how fairly
the SUs are behaving [9], [26]. Thus, SUs that have high trust
metric are known not to be MUs and their decisions are not
rejected even though they transmit continuously ones/zeros.

In future work, comparison between other methods could
be done, and deciding proper parameters like initial set and
threshold parameters in different network environments could
be investigated.

VII. CONCLUSIONS

The computationally simple and effective forward consecu-
tive mean excision (FCME) algorithm is proposed for ’always
one/zero’ MU detection in cooperative sensing. Simulation
results show that the FCME method is able to operate even
when 80% of the secondary users are ’always one’ MUs.
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