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Abstract—Based on the use of compressed sensing applied
to recover the sparse cyclic autocorrelation (CA) in the cyclic
frequencies domain on the one hand, and by exploiting the
symmetry property of the cyclic autocorrelation on the other
hand, this paper proposes a new totally blind narrow band
spectrum sensing algorithm with relatively low complexity in
order to detect free bands in the radio spectrum. This new sensing
method uses only few iterations of the Orthogonal Matching
Pursuit algorithm and have the particularity to perform robust
detection with only few samples (short observation time). This
new method outperforms the totally blind method proposed in
[1] that only exploited the sparse property of the CA without
requiring any additional calculation complexity for the same SNR
and data samples number.

Index Terms—Cognitive Radio, Spectrum Sensing, Com-
pressed Sensing, Sparsity, Detection Features, Orthogonal Match-
ing Pursuit.

I. INTRODUCTION

Due to the rapid growth of wireless communications, spec-
trum resources are more and more needed. This indispensable
necessity, in our days, has led to a scarcity in the spectrum
resources. The objective of cognitive radio terminals is to
get frequency bands in order to access the network in an
autonomous and dynamic way. Most parts of the spectrum are
allocated to licensed radio users (referred to as Primary Users
(PUs)) that have exclusive access rights. However, Secondary
Users (SUs) can still access opportunistically to the spectrum
held by the PUs using spectrum sensing. There are many
spectrum sensing techniques that enhance the SUs detection
opportunities in to licensed bands, allowing the access to
unused portions of the licensed spectrum [2], such as energy
detection (ED) [3], [4], matched filtering (MF) detection [3],
and cyclostationary detection (CSD) [5], [6]. Cyclostationary
detection, requires high computation time and sufficient signal
information and, it is not robust when the sample size is small
[7]. One of the advantages of detecting using cyclostation-
arity is the possibility to discriminate users using the same
modulation parameters. One solution is to integrate a specific
signature in the physical layer. For example: in cognitive
OFDM systems it is possible to embed signatures onto pilot
tones, these signatures are easily intercepted implying short

detection latency. This kind of technique avoids adding any
side information dedicated for detection that would reduce the
system capacity. In [8] two complementary signature/detection
schemes are proposed based on second and third order statis-
tics, the first scheme relies on redundancy between pilot
symbols and the second is based on the use of maximum-
length sequences.

As for the others well known detection methods cited
above, we have the MF, which is an optimal detection method
but needs an exact knowledge of the transmitted signal and
requires synchronization which is difficult to achieve. Further-
more, in most cases, SUs can’t know many information about
the PUs signal structure. In the end, the ED is the simplest
detection method but needs a perfect knowledge of the noise
level. In fact, a small error in the estimation of the noise level
is known to seriously impact the detection performance [4].

Recently, in our previous work [1] we proposed a totally
blind detection method that is insensitive to noise uncertainty
and performs robust detection using only few data samples,
allowing short sensing time and relatively small complexity.
Using the fact that the CA of the received signal is sparse
(takes non zero values only at the cyclic frequencies), we
exploited its property by applying a sparse approximation
approach to this problem and use it for detection. This sparse
approximation approach of the CA applied to spectrum sensing
was firstly introduced in [9]. This approach, can be observed as
an application of the sparse representation techniques, a topic
that has been detailed through many fields in signal processing
[10]-[12], and whose theoretical aspects focus more recently
on the so-called compressed-sensing [13], [14]. In [15], we
showed that the sparse CA function can be found using
sparse representation technique that requires fewer samples
than the classical estimator used in [6], while maintaining
the same Mean Square Error (MSE) when compared to the
theoretical curve of the CA. The idea of the proposed test
in [1] is to take two small consecutive slots, and to compare
their CA after applying the sparse representation technique.
This algorithm detects the presence of signal when the two
obtained CA are very close. We also showed in [1] that for
short observation time under the same SNR the blind detector
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proposed in [1], outperformed the non blind detector proposed
in [6], we also concluded that in order to achieve the same
detection performance less samples (about 10 times less) were
needed than the detector used in [6] but with relatively more
complexity.

In this paper we propose a new totally blind algorithm, this
new blind detection algorithm not only exploits the sparse
property of the CA, but also exploits the property of its
”symmetry” in order to enhance the detection performance
using the same total number of samples and only one slot
rather than two to detect.

The remaining part of this paper is organized as follows. In
Section II, we present the system model adopted throughout
this work. We introduce the background of the CA and
how it could be estimated in Section III. A sparse model
validation of the CA will be achieved in section IV. The new
detection algorithm will be detailed in Section V. Section VI
presents simulation results and discussions. Finally, Section
VII presents the conclusions of this study and makes some
suggestions for future work.

II. SYSTEM MODEL

The spectrum sensing detection problem consists of collect-
ing a total number N of samples y(0), y(1), ..., y(N —1) from
a given frequency band B. Denote y by the vector formed by
N samples, y = [y(0),..,y(N —1)]*. H; and Hy denote the
binary hypotheses that a primary user is present and absent,
respectively.

The binary hypotheses (Hy, Hy) are defined in a way such
that, under hypothesis H;, and k € [0,..,N — 1], the th
collected sample, y(k), is composed of a primary user signal
sample (k) plus an additive Gaussian noise sample n(k) ~
N(0,02), where N(m,0?) denotes the normal distribution
with mean m and variance o2. Under hypothesis Hy, the k"
sample, y(k), consists of the additive Gaussian noise sample
n(k). Hence, we can write:

{ Ho : y(k) = n(k)
Hy: y(k) = x(k) + n(k)

Hence, the performance of any spectrum sensing method is
indicated by two probabilities: the detection probability, P,
and the probability of false alarm, Py,,.

III. BACKGROUND

In this section we will see how we can estimate the CA:
RZ(E’)(a) = Ry, (a,7)|T = 79 of size (N, 1) of the received
signal in a classical method and then we will introduce a
new way that allows us to estimate Ré;”)(a) by using only
n samples with n < N by exploiting the sparse property of
R,S,!;D)(oz).

A. A Classical Approach of Estimating the Cyclic Autocorre-
lation

In practice, telecommunication signals have special statis-
tical characteristics. For example, digital modulated signals
have non-random components, (such as bilateral spectrum due

to sinusoidal carrier, the period symbol and the guard interval
between orthogonal frequency division multiplexing (OFDM)
symbols- - - ). This particular property is called cyclostationar-
ity which means that the statistical parameters of the signal
vary periodically in time.

1) Cyclic Autocorrelation: A discrete time zero-mean (al-
most) cyclostationary process, y(t), is characterized by the
property that its time-varying autocorrelation ry,(t,7) =
E{y(t)y(t+ 7)} is periodic in time with a period called the
cyclic period Ty, it has then a Fourier Series (FS) with respect
to time ¢, given as [6]:

ryy(t,7) = Z Ryy(aaT)ej%at (D
acA,

where the sum is performed over multiple integer of the
fundamental cyclic frequency oy = T%) of the received signal.
Ao ={a= T%’ k € Z} is the set of cyclic frequencies and the
Fourier coefficient R, (c, 7), called the cyclic autocorrelation

function, is given by

Ryy (o, 7) = Tlgnoo

=

T D ryy(t,m)eI?m 2)
t=0

this function is continuous over the variable 7 and takes non

zero values for few a # 0. We note that when the values

of y(t) are real (our case), R(«,7) presents the following

symmetry properties [16]:

Ryy(a,T) = R},

s (—a,T) 3)

Ryy(a,7) = Ryy (v, —7) 4)
With Ry (—a,7) denotes the complex conjugate of
R, (—a,T). Finally for « = 0, Ryy(c,7) becomes the
classical autocorrelation function.

It is shown in [16] that the expression of the CA R(«, 7) of
a linearly modulated signal, with T the symbol period, and 7
a given delay, is null except when « takes an integer multiple
of 7

Tisefj%rae j‘i’ooo g(t _ %)g*(t + %)67j27ratdt

Ryy(a,7) { 0 for o # Ti, keZ*

with € a random or unknown delay, g(¢) the temporal impulse
response of the emission filter. From the previous equation one
can derive the theoretical expression of the norm of the CA
when using a rectangular window ¢(¢) defined in the temporal

domain as:
o)~ {

then, the obtained result is:

1<%
0 elsewhere

(TS_T) .
_ T sinc(a(Ts — 7))
||Ryy(a77)”2 { 0 for « # T£57 ke7r (5)




2) Cyclic Autocorrelation Estimation: In order to estimate
the CA over («,7) where « is the cyclic frequency and 7 is
a constant delay, we use the unbiased estimator used in [6]:

. 1 N .
R = 5 vyt + et ©
we define
fr@) =y@®)yt+7)

then (6) can be written as:

N-—
R(N ) ) —
(07) % & ;0
we define the vector f. by:

£, = [fr(o)vfr(l)v

and the vector li;;o)

—j27rat (7)

7f‘f'(N - 1)]t
(o) of N elements by:

. (10) A «
R () =[BN) (— g, 7o), RY

Yy )(_O['mag;"'(sa,'ro),...

) RQ(J];) (a7nam7 TO)]t

where da = represents the resolution step. After
observing at the expression (7), one can observe that the

CA vector IA{S;)(O[) of the received signal in the domain
[—Qmaz; @maz] 1S nothing but a scaled version of the Discreet
Fourier Transform (DFT) of £, :

- (70)

R, (o) =
this last observation will be used in the next subsection to
justify the choice of the dictionary, that is going to be used in
the sparse representation, as it is going to be explained.

20max
N

1
S DFT(E,,)

B. Exploiting Sparsity
In this paper we propose to exploit the sparse property of
the CA, RZ%O) (). We can then reconstruct the vector ﬁ;@

0)

()
over & € [—Qumaz; ¥maz] Of length N and resolution step
oo = 2“%“; by using only n data samples (or observations)
instead of using NV samples with n < N.

We propose then to apply a sparse representation approach
based on representing the n first elements of f;; over a redun-
dant complex basis of N cisoids at equispaced frequencies of
spacing step d,, or equivalently on the columns vectors (also
known as atoms) of the (n, N)-dimensional matrix denoted A
(the dictionary) which is the sub-matrix, formed by the n first
rows of I, the conjugate of the N-dimensional square Fourier

matrix F' (since R( )( ) is nothing but a scaled version of
the DFT of f,,, A i 1s constructed using the rows of ).

We recall that the Fourier matrix F' of order N has the
element (p, q) equal to e~27(P=1(@=1/N This matrix satis-
fies many properties such as the symmetry. We note also that
FF = NIy, with Iy the identity matrix. Then the DFT of a
N-dimensional signal y is given by Y = F'y and the Inverse
Discrete Fourier Transform (IDFT) of Y is y = (1/N)FY.

We define b(™) as an (n,1) column vector composed of the
first n elements of f.,. The problem consists of solving the
system:

Ar(70) = p(70) ®)

Then the solution £(™ which is an (N, 1) column vector will
represent the estimated CA, RZL () over [—maz, @maz]. This
is a linear inverse problem with sparseness constraint, which
is NP-hard, because for N > n there are infinite solutions
r(7) that satisfy Ar(™) = b(") The sparse problem is given

#) = min Hr(m) s.t.  Ar(™) = p(m) )

Where |||, is the lp-norm, simply defined by the number of
non-zero entries 1 a vector.

An easier and intuitive approach, is to transforme the sparse-
ness constraint over r(™) into a convex optimization problem
that gives a good and near optimal solutions [17]. Many
efficient algorithms exist to find approximative solution for
this kind of problems, from these algorithms we mention the
Basis Pursuit (BP), the iterative algorithm called the Matching
Pursuit (MP), the Orthogonal Matching Pursuit (OMP) [18]
which is based on a variation of the earlier algorithm MP,
LASSO etc. However, In our proposed algorithm, we used the
OMP, which is going to be detailed in the next section, due
to its simplicity and moderate complexity.

IV. SPARSE MODEL VALIDATION

In this section we will recall the OMP algorithm that we
are going to use in the new blind detection algorithm, then
a model validation of the sparse reconstruction applied to
a telecommunication signal will be done. Finally, we will
recall the result presented in [15] that shows that the MSE of
the obtained CA is lower when applying compressed sensing
technique rather than classical method, using the same number
of samples.

A. The Orthogonal Matching Pursuit Algorithm

Orthogonal Matching Pursuit (OMP) deliver an approxi-
mative solution to (8) by solving the problem (10) using an
iterative process.

" st |JAE™) — b, < p (10)

) = min Hr(“’)
0

with p is the maximal tolerated reconstruction error. At each
iteration [ the locally optimum solution rl( ") s calculated.
This is done by finding at each iteration, the atom a in A
which is most correlated with the residual vector res;. The
residual vector is initialized at the beginning to the vector
that is required to be approximated i.e. resy = b(70) then it
is adjusted after each iteration taking into account the new
approximation obtained using the new updated set of selected
atoms. OMP uses a least-square minimization step at each
iteration in order to improve the new obtained approximation
and to update the residual vector as well. We note that in
the OMP a new atom a is chosen after each iteration, this
is to avoid a slow convergence to the solution. The detailed
algorithm can be found in [18].



B. Model Validation
In order to validate our proposed method and to verify that

the CA, li(yz)) (o) with N elements can be reconstructed using
only n < N samples, for a given delay 7y (in our example we
choose 79 = 3 - T, with T, the sampling period) by applying
compressed sensing technique, a BPSK modulation was used
in order to simulate the transmitted signal, with oy = T% =
10000 the fundamental cyclic frequency where T’ refers to the
symbol period of the BPSK. Figure 1 illustrates, the CA of the
BPSK modulation without filtering at the emission obtained
using:
 the sparse approximation technique applying the OMP
algorithm with a fixed number of iterations, employing
a dictionary matrix A of size (n,N) as an input, with
n = 1000 and N = 4000 , in order to solve (8)
« the estimator (6) using 1000 samples
« the curve that represents the theoretical expression of the
CA given in (5).
One can observe that when using the same number of samples
(1000) to estimates the CA using the OMP, we obtain closer
results compared to the theoretical curve than the curve
obtained using (6). As a matter of fact, we can check on Figure
2 (a scaled version of Figure 1) the estimation noise on the
curve that is obtained using (6), while no noise is observed
for the curve that represents the compressed sensing technique
result. Furthermore, one can observe a perfect estimation
on the positions of the spikes, at integer multiple of the
fundamental cyclic frequency when using both methods. This
result validates our proposed sparse model of the CA for
telecommunication signals.

! ——Theoretical Curve obtained with (5)
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Fig. 1.  The norm of the CA vector Rgfgj’)(a), of a BPSK signal of
fundamental cyclic frequency ay = T%, with 79 = 3.7T%, obtained using
(6), also compared to the theoretical curve (5) and to the norm of the CA
obtained by solving (8) in order to find #(70) using the OMP. For both methods
(the OMP and the estimator(6)), 1000 samples where used.

C. Mean Square Error Comparison

In Figure 3 we recall the result obtained in [15] that shows
the M SE between the theoretical curve and both: the curve
obtained, using the classical method (formula (6)), and the
one using compressed sensing via the OMP algorithm for
different number of samples. One can conclude that using
the compressed sensing offers better MSE values than the
classical method since it exploits the sparse property of the
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Fig. 2. Part of Figure 1 in scaled version in order to show clearly the
estimation noise when using the classical estimator (6).

CA, especially when working with few samples we have the
larger M SE differences.

——SEWhen ppyingcompressesensing by usingte OHP to sobve (6)
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Fig. 3. The MSE (in linear representation) between the theoretical curve and
respectively the CA obtained using the estimator (6), and the CA obtained
by applying the compressed sensing technique to solve (8) using the OMP
algorithm.

V. THE NEW PROPOSED BLIND DETECTOR

In order to decide between Hy and H;, we propose in this
paper a new blind method to detect, based on compressed
sensing and on the symmetry property of the CA given in (3).

A. Symmetry Property

By taking the norm of both side of (3) one can obtain:

1Ry (o, T)l2 = [|Ryy (=, 7|2 (11)
We can also verify the property given in (11) by looking at
Figure 1, we can see that the CA have a symmetry across
the axe o = 0. The main idea of the proposed detector is to
reconstruct partially the CA using few samples by applying
compressed sensing and then to verify the symmetry of the
obtained CA. If the obtained CA approximatively verifies (11)
then H; is chosen otherwise Hy is chosen. It is important
to note that under H, the CA verify the property (11) as
well, since y(t) is real in both cases, but the probability to
obtain a symmetrical CA under H,, when using few number
of iterations of the OMP algorithm to reconstruct partially the
CA is very small as it is going to be explained in this section.



B. The New Proposed Algorithm

Let b{™) the vector as defined previously, we fix [ (odd) the
number of iterations of the OMP algorithm in order to solve
b(™) = Ar(™). Then the obtaining vector f'l(TO) will be almost
composed of zero elements, except for [ non zero elements
(equal to the number of iterations of the OMP). We define b;f
IND) the symmetry index of £{™. To calculate TN DS,
we ignore the element of f'l(TO) with the maximum amplitude
that corresponds to o = 0, and then IN Dgﬁ% is obtained
by calculating the mean value of the abscissa of the [ — 1
remaining elements. The more /N Dé@% is close to zero the
more ideal the symmetry is. An ideal symmetry is obtained
when there is no noise and it is manifested by I N Dg;ﬁ,)l =0.

IN Dgg’% is obtained using the following equation:

l
1
To) — _ =
INDG), = ==y (12)
j=2

Figure 4 illustrates a calculation example of IN Dgﬁ% for
a given 7y and for a fixed | = 3. We have in this ideal case
INDSR), = Loz + ag) = 0
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Fig. 4. Calculation example of I N Dg;‘}% for a given 7o and for a fixed

I = 3. We have in this ideal case IND{% = L (a2 + as) = 0

Before taking the final decision we note that r A(T) should
be estimated for different values of 7, 7 € {70,7'1, ey TM }s
because it is not necessary that the second order statistic
R(a,T) takes non zero values for any value of 7, even if
« is a cyclic frequency of the received signal (cf. [6]). This
means that the algorithm will calculate M 41 different values
of IN Dé ym (using M + 1 times the OMP algorithm) and the
final decision will be made using the equivalent index obtained
by combining all the obtained indexes making a soft decision:

M
equ 1
INDE) = T Z [IND() (13)
=0

finally 7N DS will be compared to a posmve threshold 13
in order to decide between Hy, and H; (IN Dngfff < £). We
note that the larger £ is, the higher the false alarm and the
detection probabilities are, and vice versa.

C. The Choice of the Number of Iterations

The purpose of the detection algorithm is not to make a
full reconstruction of the CA, but to detect the existence of
a signal. For this reason it is judicious to choose ! in order

to maximize the detection performance and to minimize the
complexity of the detection algorithm as well.

1) An Odd Number of Iterations: The number of iterations
l should be an odd number in order to evaluate properly
|[INDZ,,|, because as mentioned before the algorithm needs
to check the symmetry over the axe o = 0. The element in
f'l(TO) with the highest amplitude corresponds to o = 0 and is
obtained after the first iteration of the OMP (since it has the
highest amplitude), the remaining ! — 1 nonzero element that
represents the cyclic frequencies values should be pair by pair
symmetric over o« = 0 (for each spike with cyclic frequency
a corresponds another spike at —« having the same norm).
This is the reason that [ should be an odd number.

2) A Minimal Number of Iterations: Two major reasons
make it judicious to choose the minimal possible value of [, i.e
I = 3. The first reason is related to the complexity of the OMP
algorithm which depends on the number of iterations [, then
choosing [ as small as possible will minimize the complexity
as much as possible. We note that the complexity of this new
algorithm is the same as the blind proposed algorithm of [1],
given by O((M + 1) - nyor - N’ - 1) which is nothing but the
complexity of the OMP that can be found in [19], multiplied
by M + 1, where ny,; is the total number of samples used to
detect, and N’ the number of columns of the used dictionary.

The second major reason is to minimize the false alarms.
Although property (11) is verified under Hy the proposed
detector can still be used to distinguish between H; and
Hy; because under H; when applying the OMP, symmetrical
atoms to @ = 0 and close to an integer multiple of the
fundamental cyclic frequency will be selected consecutively
after consecutive iterations since they have the same non zero
norm value (by definition the OMP selects the most correlated
atoms with the residual vector at each iteration). In contrary
under H; the CA function is zero, since noise doesn’t have
cyclic frequencies except for a = 0 (takes the value of the
classical autocorrelation). For this reason under Hy, atoms will
not be selected in a specific order minimizing the probability
of obtaining a symmetrical reconstructed vector f'gm) for a
small value of [. We note that under H, the more [ increases
a more complete reconstructed vector f‘l(TO) is made, and
the probability of verifying the symmetry property increases
generating false alarms.

VI. SIMULATION RESULTS AND DISCUSSION
A. Detection Performance

In this part, a BPSK modulation was used to achieve the
simulations. A smaller matrix A of size (160,512) was used
in order to obtain lower computation complexity. [ the number
of iterations was fixed to 3 for the reasons mentioned above.
We compared our blind detector to the one proposed in [1].

Figure 5, shows the detection performance versus the SN R,
for a fixed observed false alarm rate of 15%, using a total
number of 160 samples for both methods, to make a fair
comparaison. Two different sets of lags 7 were used in the
simulation of both detection methods the first set is composed
only from 2 values of 7 (M = 1), while the second is



composed from 5 different values (M = 4). Fisrt we can
conclude that for any set of lags 7 the new proposed method
outperforms the method proposed in [1]. We can also check
that when the number of used lags for detection increases
(M) the detection performance gets better for both methods
as it is expected. Finally, we can see for example that for
M = 4, the new blind method reaches detection probability
of 0.9, versus only Py = 0.42 for the method proposed in [1]
at SNR = —2 dB which means that in these conditions the
detector of [1] misdetects more than 50% the presence of the
signal (misdetection probability P,,, = 1 — P; = 0.58) versus
only 0.1 for the new detector for the same: Py,, calculation
complexity, set of lags (M), and observation time.

—%— The Nlew Blid algorithm with H=4 using a total of 160 samples
—E— The llew Bind algorithm.with M=1 using a tetal of 180 samples H
60— The Bind agorithm proposed i [1]ith =4 using a total of 160 samples

¥ The Bl agorithm proposed in [1]with H=1 using a total of 160 samples:
10 -8 -6 -4 -2 0 2 4 6 8 10
SNR

Fig. 5. Detection probability as function of the SN R for a fixed false alarm
(Pfq = 0.15) and for the same number of samples (160 samples), for both:
the new proposed blind method and the one proposed in [1]. Two sets of lags
7 where used (M = 1 and M = 4) for both methods.

As mentioned in the previous section the purpose of the
blind algorithm is to detect signal and not to make a full
reconstruction for the CA function. In order to show that we
obtain the best performance when the number of iterations
{ is minimal, we simulated under SNR = 0 dB, and for
160 samples, the false alarm probability as function of the
iteration number [ taking the odd values from 1 to 21. The
simulation result is shown on Figure 6. The result validates
that the lowest false alarm probability (Pr, = 0.04) is obtained
for the minimal possible value of [ (I = 3) and increases with
it to reach Py, = 0.64 for [ = 21.

08| —— P‘z as function of the number of terations of the New Propased Detection Algorithm undrer SHR=0 dB and for P d=ﬂ.5 ‘ ! -
05 : /9————9/9/6/ il

o /e/ , ]

03} ; .

02r & 3

The Number of terations |

Fig. 6. False alarm probability as function of the iterations number ! (odd)
given for a fixed detection probability P; = 0.9 and a fixed SNR = 0 dB.

VII. CONCLUSION

In this paper, based on our previous work of detecting the
existence of primary users via compressed sensing blindly, we
introduce a new blind detector by employing the use of the

symmetry property of the CA to improve the detection per-
formance. Simulation results of the reconstruction algorithm,
detection probability and false alarm probability confirm the
effectiveness and robustness of the proposed method. We also
showed that we can achieve better detection by using minimal
number of iterations when applying the OMP algorithm.
Future work will include a theoretical study on the detection
and false alarm probabilities. In addition, the sensitivity of
the detection in the presence of interfering signals and the
performance under fading channel will be studied.
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