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Abstract—In this paper, we propose a power control algorithm
incorporating distributed beam-forming via multi-relay structure
with underlay cognitive radio architecture. This problem is
modeled as a non-cooperative game and a novel distributed
algorithm is designed to achieve Nash equilibrium (NE). At
each iteration, power and beam forming weights are determined
while quality of service (QoS) of primary and secondary users
are guaranteed in terms of interference threshold and signal
to interference and noise (SINR) threshold levels, respectively.
Convergence of the proposed algorithm to a unique and sub-
optimal fixed point for any given initial resource allocation
has been proved. Numerical simulations demonstrate significant
improvement in average rate of secondary users in comparison
with single-relay algorithms.

I. INTRODUCTION

The growth in demand for wireless services coupled with
underutilization of radio spectrum is the main motivation be-
hind deployment of cognitive radios and improving spectrum
efficiency. In traditional “overlay” cognitive radio networks,
the secondary users transmit their signals when primary users
have no activity [1], [2]. However, in the more general
“underlay” approach, primary and secondary users could
simultaneously transmit information and achieve improved
spectrum efficiency at the expense of more control messages
and thereby more signaling overhead. On the other hand, the
most important issue in this approach is that quality of service
(QoS) of primary users should be guaranteed by ensuring
that interference level at primary receiver is below a certain
threshold level [3], [4].

Spectrum efficiency improvement as a result of vertical
spectrum sharing between primary and secondary users may
be damaged due to multi-user interference and fading. Spatial
diversity schemes are among the main approaches proposed
to resist against fading effects and improve spectrum ef-
ficiency. Moreover, such approach provides the possibility
of using beam-forming to control multi-user interference. In
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[5] and [6], the problem of beam-forming design in multi-
antenna underlay cognitive radio networks has been inves-
tigated. For example, authors in [6] consider an underlay
multi-input single-output (MISO) cognitive radio network, in
which zero interference from secondary users is achieved
by imposing null-shaping constraints. Also, optimality and
convergence is modeled through game theory. Nevertheless,
using multi-antenna structure at each node is not practical due
to complexity, size, and power consumption constraints. In this
regard, cooperative communication is another area that has
attracted a lot of attention for improving system performance
in recent years [7], [8]. In this paper, our goal is to propose a
cooperative relay-based structure that uses distributed beam-
forming to improve the performance of an underlay cognitive
radio network.

Earlier research on resource allocation in wireless networks
can be divided into three general categories. Centralized ap-
proach is the first option in which a base station calculates
transmission parameters and transmits such information to
secondary users. As an example of a centralized approach,
authors in [9] proposed an algorithm which is not suitable for
cognitive radio networks due to the fact that a base station with
complete information about the entire network is required.
The second option alleviates the need for a central station but
relies on full cooperation between secondary users. However,
such approach is also not desired due to large amount of
signaling and control messages passed between nodes. As an
example, resource allocation algorithm in [10] is based on
the network utility maximization (NUM), which results in
an optimal solution but suffers from high volume of control
messages and inefficient use of the available bandwidth. The
third category is based on distributed schemes which rely on
self or at most local information. Such schemes are, therefore,
more suited to cognitive radio network scenarios and generally
adopt non-cooperative game theory architectures. In [11], an
overlay relay-based cognitive radio network is considered
and the NE of power control game for interference relay
channel is computed. One approach to achieve an optimum
resource allocation in a distributed manner is to use pricing
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mechanisms. For example, in [12] the pricing function based
on SINR level of each user is computed at each step. The
power control problem in a multi-relay cellular network is
also investigated in [13] where the selfish behavior of relays
is modeled by non-cooperative game theory and the corre-
sponding convergence criteria are calculated. The disadvantage
of the scheme proposed in [13] is that for any destination, a
separate relay is considered and consequently, large number
of relays may be required in general.

In this work, a network of peer-to-peer secondary users
with multi intermediary relays is assumed. Secondary users
are selfish and maximize their utility functions. Subsequently,
a novel power allocation problem is solved in which QoS of
primary and secondary users are guaranteed simultaneously in
a distributed manner.

Throughout this paper, matrices and vectors are denoted by
upper-case boldface letters and lower-case boldface letters,
respectively. The operators (.)T and (.)H denote transpose
and conjugate transpose, respectively. Also, the vector contains
diagonal elements of matrix X is represented by diag(X).

This paper is organized as follows. In Section II, the system
model and game problem formulation are introduced. The
distributed algorithm to reach NE is proposed in Section III.
Numerical results are presented in Section IV. Finally, Sec-
tion V concludes the paper.

II. SYSTEM MODEL AND GAME PROBLEM FORMULATION

A. System Model

Our network model, as shown in Fig. 1, consists of N
secondary transmitter-receiver pairs. Moreover, one primary
link operating at the same channel is assumed. Naturally,
the model can be extended to more than one primary links,
nevertheless for the sake of simplicity of presentation, the case
of one primary link is considered in this paper. The direct link
between secondary transmitters and receivers are assumed to
be weak and is further neglected. In this way, R relays is as-
sumed to facilitate communication between secondary sources
and destinations and also to provide distributed beam-forming.
As secondary users are used in an underlay scenario, the

Fig. 1. Network model for N = 3 and R = 2

quality of service (QoS) of primary users must be guaranteed
by ensuring that the interference inflicted from secondary users
is less than a certain threshold level. The intermediary relays
forward the sources’ information in half duplex mode, in other
words sources send their information at the first time slot and
at the second time slot the relays retransmit an amplified and

phase adjusted version of received power in the Amplify-and-
Forward (AF) mode, simultaneously. The channels between
transmitters and receivers are assumed to be frequency flat
fading.

Let fi,1, g1,i be channel coefficients from the i-th secondary
source to the first relay and from the first relay to the i-th
secondary receiver, respectively. The received signal at the first
relay is given by

x1
r =

N∑
i=1

fi,1xi + n1
r (1)

where xi is the transmitted signal from the i-th secondary
source and n1

r is the additive white Gaussian noise at the first
relay. Therefore, the received signal at all the relays will be

xr = v
N∑
i=1

fi,rxi + nr (2)

where xr = [x1
r, x

2
r, ..., x

R
r ]

T , fi,r = [fi,1, fi,2, ..., fi,R]
T , and

nr = [n1
r, n

2
r, ..., n

R
r ]

T .
Each relay multiplies the received signal by a complex

weight parameter w(i) (for the i-th relay) and transmits it to
destination nodes. The output signal of the first relay is

y(1) = w(1)(
N∑
i=1

fi,1xi + n1
r) (3)

and the received signal at the i-th secondary receiver will be

zi = gT
i (y) + ni

d = gTi WH(fi,rxi) + gTi WH(

N∑
j=1,j ̸=i

fj,rxj)

+ gTi WHnr + ni
d (4)

where gi = [g1,i, g2,i, ..., gR,i]
T , y = [y(1), y(2), ..., y(R)]T ,

W is a diagonal matrix with elements {w(i)}Ri=1 and ni
d

denotes the additive white Gaussian noise at the i-th secondary
receiver.

The first term in the right-hand side of (4) denotes the
desired signal, the second term is the multi-user interference,
and remaining terms constitute the noise. In the following
calculations, we assume that all channel coefficients, source
signals, receiver noises, and the relay noise are jointly inde-
pendent.

We denote the power of the desired signal, the interference
power, and power of noise terms by pdes, pint, and pnoise,
respectively; then pides = E{gTi WH fi,rxifHi,rWg∗

i x
∗
i } =

E{xix
∗
i }wHE{hih

∗
i }W = piwHRi

Dw, where w = diag(W),
Ri

D = E{hihH
i }, and hi = [fi,1g1,i, fi,2g2,i, ..., fi,RgR,i]

T

is the effective channel coefficient between the
i-th secondary transmitter and its correspondent
destination via R relays. Also, Pi , E{xix

∗
i } is

transmitted power of i-th secondary transmitter. The
interference power level is consequently given by
piint = E{gTi WH(

∑N
j=1,j ̸=i fi,jxj)(

∑N
k=1,k ̸=i f∗i,kx∗

k
)Wg∗i } =

wHRi
intw, where hi

j = [fj,1g1,i, fj,2g2,i, ..., fj,RgR,i]
T ,

and Ri
int = E{

∑
j ̸=i pjhi

j(h
i
j)

H}; and the power of



noise is pinoise = E{ni
dn

i∗

d } + E{gTi WHnrn∗
rWg∗i } =

WHRi
noiseW + δ2nd

, where Ri
noise is diagonal matrix contains

the diagonal elements of δ2Nr
E{gigH

i }. It should be noted
that in general, it is possible to use interference cancelation
techniques to reduce interference levels. However, such
solutions rely on some level of coordination between
secondary users and may result in high amount of control
messaging between nodes [14]. Therefore, in this paper, we
assume no interference cancelation is applied. Consequently,
the multiuser interference acts as additive noise and the SINR
level at the i-th secondary receiver will be

γi =
piwHRi

Dw
wHRi

intw + wHRi
noisew + δ2Nd

+ Iprimary
i

(5)

where Iprimary
i is the inflicted interference at secondary re-

ceivers by primary transmitter. Finally, the received interfer-
ence over the primary receiver will be xint = lT y, where
l = [l1, l2, ..., lR] denotes the channel coefficients vector from
the relays to the primary receiver. Therefore,

xint = lT (WHxr) = lT WH(

N∑
i=1

fi,rxi + nr) (6)

and the interference power will be I = wHRprimary
i w +

wHRprimary
n w, where Rprimary

i = E{
∑

i pih
p
i (h

p
i )

H}, hp
i =

[fi,1l1, fi,2l2, ..., fi,RlR]
T and Rprimary

n is diagonal matrix con-
tains the diagonal elements of δ2Nr

E{l lH}.

B. Game Problem Formulation

In our studied network, no central node or coordination
between secondary users is assumed. Coordination-based algo-
rithms generally require large amount of control message ex-
change. As a result, in addition to high power consumption and
increased complexity, inefficient bandwidth usage is required
for signaling which is not proper for cognitive radio networks.
Another approach is to assume selfish secondary users that
compete to improve their utilities and use resources offered by
relays in a competitive fashion. Selfish behavior of secondary
users is modeled through non-cooperative game theory. We
consider a game in which each secondary user adjusts its
power iteratively under QoS constraint of the primary user. The
proposed game is represented by G = ⟨N, {Ai}i∈N , {ui}i∈N ⟩,
where N = {1, 2, ..., N} is the set of players (secondary users),
A = A1×A2×...×AN is the action space of players reflecting
their transmitted power, and ui is the utility function defined
as the Shannon rate minus pricing function defined in our
model. Distributed beam-forming leads to improved resource
allocation due to control of interference. In addition, we use
a linear pricing scheme which is a simple, low complexity
approach. The game formulation will then be given by

max
pi

ui(pi, p−i) = K1

√
γi − γth

i −K2(I − Ith)−K3pi (7)

Ai = {pi ∈ RN : 0 ≤ pi ≤ pmax}, (8)

where Ith is the interference threshold level at the primary
receiver reflecting its target QoS level and subsequently, the

second term is added to control the amount of inflicted
interference on primary receiver. The aforementioned three
terms are weighted using the non-negative weighting factors
K1 to K3. The value of Ith is computed based on the minimum
required rate (Rmin) and the outage probability at this rate
(Poutage), as follows.

Pr{log2(1 +
Pprimaryhp,p

I +N0W
) ≤ Rmin} ≤ Poutage (9)

E{1− 2
1−eRmin
P primary

(I+N0)} ≤ Poutage,

where Pprimary is transmitted power of primary user and
assumed fixed during the game convergence interval. hp,p is
channel coefficient between primary transmitter and receiver
and assuming to have a Rayleigh distribution. Since E{I} ≤
Ith, the interference threshold level will be equal to

Ith = Pprimary
log2(1− Poutage)

(1− 2Rmin)
−N0W. (10)

As a result, as Poutage is reduced, Ith decreases rapidly.
As we conclude this section, we note that according to the
utilization defined in (14), the required information for each
player of our game (G) are the second order statistic of channel
coefficients between the i-th secondary transmitter and the
relays, the relays and the i-th secondary receiver, between the
relays and the primary receiver, and finally the beamforming
weights which are calculated by the relays and are sent over a
common control channel. The second order statistic could be
obtained by assuming a certain channel model as we assumed
in this paper.

III. DISTRIBUTED ALGORITHM DESIGN

In this section, we propose an iterative algorithm to reach
NE of the optimum power control game. The NE is defined
as follows.

Definition 1: Nash equilibrium (NE) is a point that no user
has incentive to improve its utility unilaterally [15]. In other
words, a set of actions P+

i ∈ Ai will be NE, if and only if

ui(p
∗
i
, p∗

−i
) ≥ ui(p

+
i , p

∗
−i
), ∀i ∈ N, ∀p+i ∈ Ai. (11)

Each user at each iteration updates its action such that the
utility function in (7) is maximized. As shown in Table I, the
distributed algorithm is based on two update processes. First,
the action space updates which is based on our strategy of
best response to action of other players. In this stage, beam-
forming weights are set and do not change. In the second step,
beam-forming weights are updated.

TABLE I
SYNCHRONOUS POWER ALLOCATION ALGORITHM

1 : Initialize Pi = 0 , ∀i ∈ N.
2 : Set t = 0.
3 : Until the convergence criterion is satisfied, Repeat step 4 and 5.
4 : Update W
5 : P (t)

i = BRi(P
(t−1)
−i ).



The algorithm is executed in the synchronous timing mode
where all the secondary users update their action simultane-
ously. The algorithm continues until the convergence criterion
is satisfied. This criterion is met when the deviation of the
transmitted power for all secondary users is less than a little
value. Currently, we want to obtain these update processes.

The beam-forming weights are calculated by minimizing the
total transmitted power of the relays while QoS of secondary
users in terms of their SINR levels are guaranteed. The prob-
lem of finding the beam-forming weights can be summarized
as

min(PT )
γi ≥ γth

∀i ∈ N (12)

where PT is total transmitted power of the relays, given by
PT = E{yyH} = E{WHxrxHr W} = wHDw, where D is a
diagonal matrix with elements {E{(xi

r)(x
i
r)

H}}Ri=1.
It is clear that the optimization problem in (12) is non-

convex. In [16] and [17], the semi-definite relaxation scheme is
used to obtain a new semi-definite programming optimization
problem. So, the relaxed optimization problem is given by

min{tr(DX)}
tr(TiX) ≥ γth(δ

2
nd

+ Iprimary
i )

X = wHw (13)

where Ti = Ri
D − γth(Ri

int + Ri
noise). Therefore, the new

optimization problem is convex and using the Lagrangian
method, the optimum beam-forming weights for each iteration
are obtained.

The beam-forming weights change over time; hence, we
cannot prove convergence or obtain criteria for convergence
analytically. The memory-based update used is

wt+1 = ωwt + (1− ω)wt+1
opt , (14)

where ω is memory factor and wt+1
opt is optimum solution which

is obtained via solving (13) at t+1 iteration. As proved in [18],
this algorithm converges for memory factors between 0, 1 and
results in a more robust solution as well. Therefore, using such
approach will lead to a practical solution for cognitive radio
networks which are generally sensitive to channel variations
and estimation errors. It should be noted that by using larger
values of ω , more robustness is achieved at the expense of
slower convergence rate.
Before analysis of NE of our game (G), we note that up-
dating BF weights only requires second order statistic of all
communicating channels and by assuming a certain channel
model (such as Rayleigh model) the signaling load will not
be significant.

Theorem 1: For fixed p−i, the best response update of i-th
secondary use will be

BRi(pi, p−i) = [(
γth

wHRi
Dw

)(Ii) (15)

+ (
K2(wHE{hp

i (h
p
i )

H}w) +K3

2K1
)(wHRi

Dw)(
1

Ii
)]pmax

0

where Ii is total interference plus noise over the i-th secondary
receiver.

Proof: ∂Ui

∂pi
= 1

2K1(γi − γth)
− 1

2
∂γi

∂pi
−K2(

∂I
∂pi

) −K3; then
solving ∂Ui

∂pi
= 0 completes the proof. �

Theorem 2: At least one NE exits for the proposed game
G in (7).

Proof: The proof is based on the sufficient conditions for the
existence of NE provided in [19]. For our game, the conditions
are met as (i) the action space is compact and convex, (ii)
the utility function is continuous in its action space, (iii) the
utility function is concave and also quasi-concave in its action
space. �

Also, we will use Yates result in [20] to investigate the
uniqueness of NE. In [20], it is shown that if the best response
is standard function, then the algorithm converges to a unique
fixed point. As the Nash equilibrium is also a fixed point of
the best response function (Eq. 23), uniqueness of such fixed
point will also prove that the NE is also unique.

Theorem 3: The Nash equilibrium of game G is unique.
Proof: The key aspect of Nash equilibrium’s uniqueness is

to show that the best response function is a standard function.
In order to prove that the Nash equilibrium is unique, the
best response function, BRi(.) should be a standard func-
tion and satisfy the positivity, monotonicity, and scalability
properties. (i) The positivity property holds when for all
i ∈ N , we have BRi(pi, p−i) ≥ 0. This property follows
from (15). (ii) To prove the monotonicity property we need
to show that if p1 ≥ p2, then BRi(p

1
i , p

1
−i) ≥ BRi(p

2
i , p

2
−i).

For p1 ≥ p2, BRi(p
1
i , p

1
−i)−BRi(p

2
i , p

2
−i) = ( γth

wHRi
Dw )(I

1
i −

I2i )+(
K2(wHE{hp

i (hp
i )

H}w)+K3

2K1
)(wHRi

Dw)( 1
I1
i
− 1

I2
i
). For Ii >

(
K2(wHE{hp

i (hp
i )

H}w)+K3

2K1
√
γth

)(wHRi
Dw), monotonicity property is

proved. (iii) The scalability property holds when for all α > 1,
we have αBRi(p

1
i , p

1
−i) ≥ BRi(αp

2
i , αp

2
−i), where p1 and

p2 are two different set of the secondary users powers. For
all α > 1, with the same condition for monotonicity, the
scalability property is proved. Consequently, our algorithm fits
in the standard framework and its convergence to a unique NE
is guaranteed [20]. �

IV. SIMULATION SETUP AND NUMERICAL RESULTS

In this section, we present the numerical results for the
performance analysis of the proposed distributed algorithm.
First, a network of two peer-to-peer secondary pairs and one
peer-to-peer primary pair and also three relays is considered.
The noise power at the destinations and the relay are equal.
The channel coefficients are modeled based on path loss and
Rayleigh fading. The path loss exponent is set to be four.
Also, K2

K1
= 4 and K1

K3
= 2 are set in (7). In addition, the

minimum required rate for the secondary users is assumed
to be 1.5. The convergence rate of the proposed algorithm
is presented in Fig. 2. As expected, the algorithm leads to a
monotonic increasing transmit power level. It should also be
noted that the proposed algorithm converges to a interference



value that is lower than the threshold level. This is due to
the fact that a large cost is associated for interference levels
exceeding the threshold. Fig. 3 demonstrates the improvement
in terms of average rate as the number of relays is increased
from 1 to 3. As shown in this figure, as the minimum
required rate for primary user is increased, performance of
the single relay setups decreases significantly1. However, with
the proposed beamforming approach, performance degradation
is much smaller. To summarize, as shown in Fig.2 and Fig.3,
use of proper pricing in combination with distributed beam-
forming, it is possible to meet target QoS levels of primary
and secondary users in the defined competitive game scenario.

Fig. 2. Convergence of the proposed algorithm

Fig. 3. Average rate of secondary users at NE versus minimum required rate
of primary user

V. CONCLUSION

In this paper, a multi-relay cognitive radio network con-
sisting of a number of peer-to-peer secondary users and
one primary link is considered. In this model, secondary

1The single relay setup is based on amplify-and-forward scheme and the
amplification factor is set according to the available power constraint (See,
e.g., [11]).

users compete selfishly to maximize their utility function. We
defined a proper utility function and distributed beam-forming
update process to ensure QoS level of primary and secondary
users (in terms of average supported rate) are satisfied simul-
taneously. Game theory is applied to analyze the convergence
and uniqueness of the proposed algorithm. Finally, overall
system performance in terms of QoS of primary and secondary
users is validated through simulations.
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