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Abstract—Recently, it has been shown that in comparison to
the well-known energy detection scheme, the sequential shifted
chi-square test (SSCT) is capable of delivering considerable re-
duction on the average sample number (ASN) while maintaining
a comparable detection error performance for spectrum sensing.
Nonetheless, SSCT needs to perform threshold comparisons
on every received sample, which may be difficult or even
infeasible in practice particularly when the sampling rate is
high and/or the signal-to-noise ratio is low. This paper proposes
an extension of SSCT, called block-wise SSCT (B-SSCT), to
overcome this shortcoming. Numerical algorithms are applied
to evaluate the false-alarm and miss-detection probabilities and
the ASN of B-SSCT, in a recursive fashion. Simulation and
numerical results show that compared to the original SSCT, B-
SSCT is capable of achieving almost the same detection error
performance with a significantly reduced number of threshold
comparisons and a slightly increased ASN. An implementation
example demonstrates potential practical feasibility of B-SSCT
in a real environment.

I. INTRODUCTION

In a cognitive radio (CR) network, spectrum sensing plays

an important role in optimizing throughput of secondary

transmissions while protecting the quality of service (QoS) of

primary users (PUs). In recent years, there has been increasing

research attention to spectrum sensing. Several spectrum sens-

ing schemes such as match-filter detection, energy detection

[1], [2], cyclostationary detection, and sequential probability

ratio test (SPRT) [3], [4] have been proposed. Among these

sensing schemes, energy detection is particularly appealing

since it does not require any deterministic knowledge on

primary signals, a so-called non-coherent detector, and has

fairly low implementation complexity. However, energy de-

tection entails a large amount of sensing time especially at

low detection signal-to-noise ratio (SNR) levels.

As an alternative to energy detection, the sequential shifted

chi-square test (SSCT) was recently proposed in [5]. Like

energy detection, SSCT is also a form of non-coherent de-

tector. SSCT is able to achieve comparable detection error

performance to energy detection with a much reduced average

sample number (ASN). Nevertheless, in SSCT, the test statistic

is compared with two predetermined thresholds on every

received sample, thus requiring a large number of threshold

comparisons particularly at a low SNR level, e.g., the average

comparison number (ACN) is the same as ASN. Additionally,

in many scenarios of practical interest, it can be difficult or

even infeasible to perform threshold comparison operations

based on each received signal sample, particularly when the

sampling rate is high and/or SNR is low. To overcome this

shortcoming, we propose block-wise SSCT (B-SSCT), in

which the received signal samples are parsed into blocks

and threshold comparisons are performed at the end of each

block. Thus, the number of threshold comparisons can be

substantially reduced even with a moderate block length. In

particular, B-SSCT subsumes, as special cases, energy detec-

tion and SSCT. Like the original SSCT and energy detection,

B-SSCT is a form of non-coherent detector, e.g., it does

not require any deterministic knowledge on primary signals.

Numerical algorithms are applied to evaluate false-alarm and

miss-detection probabilities and the ASN of B-SSCT, in a

recursive fashion. Simulation and numerical results show that

compared with the original SSCT, B-SSCT is capable of

achieving almost the same detection error performance with

a significantly reduced ACN and a slightly increased ASN.

An implementation example demonstrates potential practical

feasibility of B-SSCT in a real environment.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we start by introducing statistical formulation

of the spectrum sensing problem in a narrow-band CR system

with a single secondary user (SU), and then give a brief

overview on energy detection and SSCT.

A. System Model

Consider a narrow-band CR communication system with a

single SU. The SU shares the same spectrum with a single

PU and needs to detect the presence/absence of the PU. The

detection of the primary signals is formulated as a binary

hypothesis testing problem as

H0 : ri = wi, i = 1, 2, . . . , (1)

H1 : ri = hsi + wi, i = 1, 2, . . . , (2)

where ri is the signal received by the SU at time instant i, wi

is additive white Gaussian noise, si is the transmitted signal

of the PU, and H0 and H1 denote the null and alternative

hypotheses, respectively. We further assume that A1) wis are

modelled as independent and identically distributed (i.i.d.)

complex Gaussian random variables (RVs) with means zero

and variances σ2
w, i.e., wi ∼ CN (0, σ2

w), A2) the primary

signal samples si are i.i.d. with E(|si|2) = σ2
s , A3) wi and

si are statistically independent, A4) the perfect knowledge on

CROWNCOM 2011, June 01-03, Osaka, Japan
Copyright © 2012 ICST
DOI 10.4108/icst.crowncom.2011.245942



the noise variance σ2
w is available at the SU, and A5) the

channel gain h between the primary transmitter (Tx) and the

secondary receiver (Rx) is perfectly known at the secondary

Rx and remains unchange during the sensing period.

B. Energy Detection

In energy detection, the energy of the received signal sam-

ples is first computed and then is compared to a predetermined

threshold. The test procedure of energy detection is given as

T (r) =

N
∑

i=1

|ri|
2

H1

T
H0

T ,

where r := [r1, r2, . . . , rN ], T (r) denotes the test statistic,

and T denotes the threshold for energy detection.

It follows directly from the central limit theorem (CLT) that

as N approaches infinity, the distribution of T (r) converges

to a normal distribution given as follows [6] T (r)|H0 ∼
N (Nσ2

w , Nσ4
w) and T (r)|H1 ∼ N

(

N(1 + γm)σ2
w, N(1 +

2γm)σ4
w)

)

, where γm denotes the minimum detection SNR

and is a design parameter. We assume that the operating SNR

is at least equal to γm. To distinguish these two different SNRs,

we denote by γo the operating SNR.

Let P̄ ed
FA and P̄ ed

MD be target false-alarm and miss-detection

probabilities respectively. Typically, the required sample size

N is determined by the target P̄ ed
FA and P̄ ed

MD. Let Nmin
ed be the

minimum sample number required to achieve the target P̄ ed
FA

and P̄ ed
MD at SNR level γm. As shown in [1], we have

Ned
min=

⌈

γ−2
m

[

Q−1(P̄ ed
FA )−Q−1(1− P̄ ed

MD)
√

2γm + 1
]2⌉

(3)

where ⌈x⌉ denotes the smallest integer not less than x, Q(·)
is the complementary cumulative distribution function of the

standard normal RV, i.e., Q(x) := (2π)−1/2
∫

∞

x
e−t2/2dt,

and Q−1(·) denotes its inverse function. It is evident from

(3) that for energy detection, the number of required sensing

samples is inversely proportional to γ2
m, and thus becomes

considerably large when γm is small. As clear from the above

description, one major drawback of energy detection is that

at a low detection SNR level, it requires a large amount of

sensing time to achieve low detection error probabilities [7].

C. The Original SSCT

Aiming to achieve reduced sensing time, a non-coherent

sequential spectrum sensing scheme, called SSCT, was pro-

posed in [5]. In SSCT, the test statistic is given by Λm =
∑m

i=1

(

|ri|2 −∆o

)

, where ∆o is a predetermined constant.

Assume that the detector needs to make a decision within M
received signal samples. The following testing procedure was

proposed in [5]

Reject H0 :

if Λm ≥ bo and m ≤ M − 1, or if ΛM ≥ co; (4)

Accept H0 :

if Λm ≤ ao and m ≤ M − 1, or if ΛM < co; (5)

Continue Sensing :

if Λm ∈ (ao, bo) and m ≤ M − 1 (6)

where ao, bo, and co are three predetermined thresholds with

ao < 0, bo > 0, and co ∈ (ao, bo).
As can be seen from the procedure (4)-(6), the test statistic

is compared with two predetermined thresholds ao and bo on

every receive signal sample, thus requiring a large number

of threshold comparison operations. To overcome this short-

coming, we propose an extension of SSCT, called B-SSCT, as

described in the following section.

III. B-SSCT: BLOCKWISE SSCT

In block-wise SSCT, the received signal samples are parsed

into a block of length L and threshold comparisons are

performed at the end of each block, as shown in Fig. 1. The

test statistic at the pth block is computed as follows:

Ξp =

p×L
∑

i=1

(

|ri|
2 −∆

)

, p = 1, 2, . . . (7)

where ∆ is a predetermined constant that satisfies σ2
w < ∆ <

σ2
w(1 + γm) and p is the block index. Assuming that the

detector needs to make a decision within P blocks, we now

propose the following test procedure:

Reject H0 :

if Ξp ≥ b and p ≤ P − 1 or if ΞP ≥ c; (8)

Accept H0 :

if Ξp ≤ a and p ≤ P − 1 or if ΞP < c; (9)

Continue Sensing :

if Ξp ∈ (a, b) and p ≤ P − 1 (10)

where a, b, and c are three predetermined thresholds with a <
0, b > 0, and a < c < b, and P is the truncated block number

of the test.

....
.... .... ....r1 r2 rL rPL

Block 1 Block P

Threshold ComparisonThreshold Comparison

Fig. 1. The B-SSCT spectrum sensing scheme.

Clearly, the test statistic and the test procedure in B-SSCT

are quite similar to those in the original SSCT. However, as can

be seen from (8)-(10), the truncated sample number in B-SSCT

is P×L, and the threshold comparison is only performed every

L samples. Hence, the ACN in B-SSCT is L times less than

that in the original SSCT. Note that when L = 1, B-SSCT

is nothing but the original SSCT, while when L = Ned
min and

P = 1, B-SSCT is simply energy detection. Thus, it is easy

for B-SSCT to meet different design requirements by simply

tuning parameters L and P .

As depicted in Fig. 2, the test region of the procedure

consists of an upper-boundary, the horizonal line b, and a

lower-boundary, the horizonal line a. It is evident from (8)–

(10) that the test statistic depends only on the amplitude

squares of the received signal samples and the constant ∆.
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Fig. 2. The test region of B-SSCT.

As will be seen in Section VI, the choice of the constant ∆
depends on γm instead of γo, which is typically difficult to

obtain in practice.

The thresholds a, b, and c, the parameter ∆, the block

length L, and the truncated block number P are selected

beforehand, based on an off-line trial and error method. That

is, if an initial guess of these parameters does not lead to

desirable detection performance, another guess will be made.

Such process continues until a desirable detection performance

is obtained. In this search process, the critical issue is how

to efficiently and accurately evaluate false-alarm and miss-

detection probabilities and ASN for given thresholds and

parameters, as will be addressed in the following two sections.

IV. FALSE-ALARM AND MISS-DETECTION PROBABILITIES

We now turn to the evaluation of the false-alarm proba-

bility, PFA, and the miss-detection probability, PMD. Defining

uq =
∑L

l=1(|r(q−1)L+l|
2 − ∆), we can rewrite Ξp in (7) as

Ξp =
∑p

q=1 uq. Based on the central limit theorem (CLT),

the distributions of uq under hypotheses H0 and H1 can

be approximated as uq|H0 ∼ N
(

L(σ2
w − ∆), Lσ4

w

)

and

uq|H1 ∼ N
(

L
(

(1 + γm)σ2
w −∆

)

, L(1 + 2γm)σ4
w

)

.

To compute PFA and PMD, we resort to a recursive com-

putational method developed in [8]. Clearly, we can write the

probability density function (PDF) of uq under H0 as

pH0
(uq) =

1
√

2πLσ4
w

exp
(

−
(uq − L(σ2

w −∆))2

2Lσ4
w

)

(11)

and the PDF of uq under H1 as

pH1
(uq) =

(1 + 2γm)−
1

2

√

2πLσ4
w

×

exp
(

−

(

uq − L((1 + γm)σ2
w −∆)

)2

2(1 + 2γm)Lσ4
w

)

. (12)

Evaluating PFA and PMD follow quite similar procedures as

follows. Without loss of generality, we will only show how

to evaluate PMD. Recall that P is the maximum number of

blocks to observe. Denote ΞP−k by tk. Let Gk(tk) denote the

miss-detection probability of B-SSCT conditioning on the fact

that the first (P − k) blocks have been observed, the present

value tk = ΞP−k , and the test statistics have not crossed either

boundary in the previous (P −k−1) blocks. If a < tk < b, an

additional sample (the (P − k + 1)th block) is needed. Let u
be the next observed value of uq. The conditional probability

Gk(tk|u) can be readily obtained as

Gk(tk|u) =











0 if u > b− tk

1 if u < a− tk

Gk−1(tk + u) if a− tk ≤ u ≤ b− tk.

(13)

Using (13), we can recursively compute Gk(tk) as

Gk(tk) =
∫ a−tk

−∞

pH1
(u)du+

∫ b−tk

a−tk

Gk−1(tk + u)pH1
(u)du (14)

for k = 1, · · · , P with the following initial condition:

G0(t0) = 0, if t0 ≥ c; G0(t0) = 1, otherwise. (15)

Employing the above recursive process, we can obtain GP (0),
which is equal to the miss-detection probability, PMD. By using

the same procedure, the false-alarm probability PFA can be

evaluated by making corresponding changes in (14) and (15).

V. AVERAGE COMPARISON NUMBER AND AVERAGE

SAMPLE NUMBER

In this section, we evaluate the ACN and the ASN for B-

SSCT. Clearly, the ASN is simply equal to L times ACN.

Hence, we will only focus on the evaluation of the ACN.

The number of threshold comparisons required to yield a

decision is a RV, which we denote by Ps. Let E(·) denote

the expectation operation. The ACN is simply equal to E(Ps)
and can be expressed as

E(Ps) = EH0
(Ps)P (H0) + EH1

(Ps)P (H1) (16)

where EHi
(Ps) denotes the ACN conditioned on Hi and

P (Hi) denotes the probability of hypothesis Hi for i = 0, 1.

Since 1 ≤ Ps ≤ P , we can express EHi
(Ps) as

EHi
(Ps) =

P
∑

N=1

NPHi
(Ps = N), i = 0, 1 (17)

where PHi
(Ps = N) is the conditional probability that the test

ends at the N th block under Hi. In other words, PHi
(Ps = N)

is the probability of the event that the test statistic first crosses

either lower- or upper-boundary at block N under Hi.

Let CN denote the event that the test statistics (Ξ1, . . . ,ΞN )
do not cross either the upper boundary b or the lower boundary

a, i.e., Ξp ∈ (a, b) for p = 1, . . . , N . For notational conve-

nience, let us define C0 as a universe set, i.e., PHi
(C0) = 1

for i = 0, 1. Clearly, we have

PHi
(Ps = N)

(a)
= PHi

(

CN−1

)

−PHi

(

CN
)

, N ∈ [1, P − 1] (18)

PHi
(Ps = P )

(b)
= PHi

(

CP−1

)

, N = P (19)

where the two terms PHi
(CN−1) and PHi

(CN ) on the right-

hand side (RHS) of the equality (a) in (18) are the probabilities



TABLE I
COMPARISONS AMONG B-SCCT, SSCT AND ENERGY DETECTION

γm (dB) −5 −10 −15 −20
L 10 38 178 550
c −9.5 −20 −50 −70
b 56 345 2500 21000
∆ 3.66 10.5 32.1 100.5

PFA (B-SSCT, Monte Carlo) 0.057 0.103 0.153 0.202
PFA (B-SSCT, Numerical) 0.053 0.102 0.152 0.199
PFA (SSCT, Monte Carlo) 0.056 0.103 0.154 0.201
PFA (ED, Monte Carlo) 0.055 0.101 0.150 0.200

PMD (B-SSCT, Monte Carlo) 0.049 0.099 0.151 0.202
PMD (B-SSCT, Numerical) 0.051 0.101 0.152 0.204
PMD (SSCT, Monte Carlo) 0.048 0.100 0.156 0.203
PMD (ED, Monte Carlo) 0.047 0.096 0.149 0.200

ASN (B-SSCT, Monte Carlo) 102 542 3381 22814
ASN (B-SSCT, Numerical) 102 542 3381 22820

ACN (B-SSCT, Monte Carlo) 10 14 19 41
ASN (ACN) (SSCT, Monte Carlo) 94 509 3154 21875

Ned
min

140 722 4450 28600
EB-SSCT 27% 25% 24% 20%
ESSCT 32% 30% 29% 24%

of the events that under Hi, the test statistic does not cross

either of two boundaries before or at the (N − 1)th block and

before or at the N th block respectively for N = 1, . . . , P − 1,

and the term on the RHS of the equality (b) in (19) denotes the

probability of the event that under Hi, the test statistic does

not cross either boundary before or at the (P − 1)th block.

Substituting (18) and (19) in (17), we can rewrite (17) as

EHi
(Ps) = 1 +

P−1
∑

N=1

PHi
(CN ). (20)

We next need to evaluate PHi
(CN ). Since evaluating

PH1
(CN ) and evaluating PH0

((CN ) follow the same pro-

cedure, we will only describe how to evaluate PH1
(CN )

in the sequel. Instead of evaluating PH1
(CN ) directly, we

compute PH1
(Cc

N ) by performing a procedure similar to the

one in calculating the miss-detection probability. Note that Cc
N

denotes the event that the test procedure given in (8)-(10)

terminates before or at the N th block, i.e., the test statistic

crosses either the upper or lower boundary before or at the N th

block. According to (15), Gk(tk) also depends on c. With a

slight abuse of notation, we rewrite Gk(tk) as Gk(tk, c). Let

VN denote the event that the test statistic crosses the lower

boundary before or at the N th block, and UN denote the event

that the test statistic does not cross the upper-boundary before

or at the N th block. It is easy to see PH1
(VN ) = GN (0, a) and

PH1
(UN ) = GN (0, b). Obviously, PH1

(Cc
N ) can be written as

PH1

(

Cc
N

)

= GN (0, a) + 1 − GN (0, b) where GN (t, a) and

GN (t, b) can be obtained by applying (14) recursively. Hence,

we have PH1
(CN ) = GN (0, b)−GN (0, a). According to (20),

we have

EH1
(Ps) = 1 +

P−1
∑

N=1

(GN (0, b)−GN (0, a)).

Following the same procedure, EH0
(Ps) can be evaluated

by using PH0
(CN ), which can be evaluated in a similar manner

Fig. 3. Spectrum sensing testbed using B-SSCT.

as evaluating PH1
(CN ). Hence, after obtaining EH0

(Ps) and

EH1
(Ps), we can readily evaluate the ACN from (16).

VI. SIMULATION AND NUMERICAL RESULTS

This section presents simulation and numerical results to

demonstrate the effectiveness of B-SSCT. In the following

example, we select ∆ to be σ2
w(1 + γm/2), which yields

EH0
(ΞN ) = −EH1

(ΞN ). The truncated sample sizes are se-

lected to be the minimum sample numbers required by energy

detection to achieve specified false-alarm and miss-detection

probabilities. The threshold a is always chosen to be −b.
Following conventional terminology in sequential detection,

we define the efficiencies of B-SSCT and SSCT as EB-SSCT =
1−ASNB-SSCT/N

ed
min and ESSCT = 1−ASNSSCT/N

ed
min, where

Ned
min is determined from (3).

Test Example (Comparisons among B-SSCT, SSCT, and

energy detection): Table I shows comparisons among B-SSCT,

SSCT, and energy detection in terms of false-alarm and miss-

detection probabilities, the ASN and the ACN for different

γm. The truncated sizes corresponding to SNRm = −5,

−10, −15 and −20 dB, are selected to be the minimum

sample sizes required by energy detection to achieve tar-

get (P̄FA, P̄MD) = (0.05, 0.05), (0.1, 0.1), (0.15, 0.15), and

(0.2, 0.2), respectively. The parameters b, ∆ and c are given

in the table. It is shown in Table I that compared with energy

detection, B-SSCT can achieve about 20% ∼ 27% savings

on the ASN while maintaining a comparable detection error

performance. In this example, the primary signals are assumed

to be Gaussian distributed with mean zero and variance σ2
s . In

addition, B-SSCT requires a slightly more (about 5% more)

ASN than SSCT but it needs much less ACN than SSCT. It can

be also observed from the table that the false-alarm and miss-

detection probabilities, as well as the ASN obtained by the

recursive algorithm match well with those obtained by Monte

Carlo simulations.

VII. AN IMPLEMENTATION EXAMPLE

In order to demonstrate potential practical feasibility of

B-SSCT, we next present an implementation example of B-

SSCT using the spectrum sensing testbed developed in [9].

As depicted in Fig. 3, our spectrum sensing testbed consists

of two host computers each running a GNU radio module,

and two universal software radio peripheral (USRP) devices

each with a RFX 2400 daughterboard. One USRP is used to

generate primary signals and the other one is used as a receiver.

The USRP hardware is connected to the host computer via a

USB 2.0 cable. The testbed is used to sense a frequency band



Fig. 4. Block diagram of the received signal detection pathway.

with a central frequency 2.67 GHz, which is a portion of the

worldwide interoperability for microwave access (WIMAX)

licensed band. The proposed B-SSCT method is implemented

based on GNU radio 3.3 running on a Ubuntu 9.04 Linux

operating system. Interested readers may refer to [9] for a

detailed exposition of our testbed.

Fig. 4 depicts the block diagram of the B-SSCT based

receiver. The continuous-time received signals are first sam-

pled using an analog-to-digital (A/D) converter located in the

RFX 2400 daughterboard. The resulting signal samples are

parsed into blocks of length Q, where Q is the size of fast

Fourier transform (FFT) used in GNU radio. In order to reduce

frequency leakage, we apply the Blackman-Harris window to

the received signal samples. After the serial-to-parallel (S/P)

conversion, the filtered signal samples are then fed into the

inputs of FFT. The output signal samples at a fixed FFT bin

are collected since the narrow band model is considered in this

paper. The test statistic is computed and threshold comparisons

are performed at the end of each block of length L.

Table II compares the false-alarm and miss-detection proba-

bilities and ASN obtained by the Monte-Carlo simulation and

obtained by the experiment using our testbed for B-SSCT.

We choose L = 20, γo = −8.9 dB, and P = 30. In

both simulation and experiment, we adopt Gaussian primary

signals. In our experiment, the primary Tx and the secondary

Rx are placed very close and the channel between them is a

line-of-sight channel. Thus, fading effects are negligible. The

sensing frequency band is a part of a licensed WIMAX band,

and thus suffers relatively low interferences. The experiment

results are averaged over a large number of runs. As can seen

from the table, the simulation results and experiment results

match well.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we have proposed an extension of SSCT,

namely Block-wise SSCT. Compared with the original SSCT,

B-SSCT requires a significantly reduced ACN. Besides this

enhancement, B-SSCT naturally inherits several desirable at-

tributes from the original SSCT as follows: 1) it has a low

implementation complexity; 2) it is a form of non-coherent

detection; 3) it requires much shorter sensing time to achieve

a comparable detection performance as compared with energy

detection; and 4) it offers desirable flexibility in striking a

tradeoff between the detection performance and the sensing

time when γo mismatches with γm. These traits make B-SSCT

a practical spectrum sensing scheme for cognitive radio.

TABLE II
MONTE-CARLO SIMULATION RESULTS VERSUS EXPERIMENT RESULTS

FOR B-SSCT (L = 20, P = 30 AND γo = −8.9 dB)

a −0.0050
b 0.0050
c −0.0017
∆ 2.92 × 10−4

PFA (Monte Carlo) 0.101
PFA (Experiment) 0.097
PMD (Monte Carlo) 0.098
PMD (Experiment) 0.096

ASN (Monte Carlo) 261
ASN (Experiment) 242

One major challenge in designing B-SSCT is how to deter-

mine appropriate parameters including thresholds a, b, and c,
block length L, and maximum block number P . In this paper,

we have proposed a trial-and-error procedure that determines

these parameters in an off-line basis. Yet, the procedure may

not yield parameters that lead to an optimal or even near

optimal detection performance. The issue of how to choose

these parameters to optimize detection performance appears

much more difficult as compared to one in the energy detection

case. In this paper, we have made an assumption that the

SU has perfect knowledge on the coefficient of the channel

between the primary Tx and the secondary Rx. In practice,

certain cooperation between the SU and the PU is required in

order to obtain a good estimation of the channel coefficient.

Like energy detection, B-SSCT also suffers from noise power

uncertainty. The issues of how sensitive B-SSCT is to channel

estimation errors and noise power uncertainty, are currently

under investigation.
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