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Universitat Politècnica de Catalunya(UPC), Barcelona, Spain
Email: {faouzi.bouali, sallent, jorperez, ramon}@tsc.upc.edu

Abstract—In order to increase spectrum utilization efficiency,
CRs (Cognitive Radios) have been introduced to reuse white
spaces left unused by legacy services under the strict constraint
of not interfering them. In order to fulfill this constraint
while optimising spectrum utilisation, it is important to get
knowledge about primary-user activity in order to devise proper
strategies for secondary-user operation. In this context, this
paper proposes to strengthen Radio Environment Maps (REM)
with statistical patterns of primary systems that capture among
others temporal dependence structures between activity (ON)
and inactivity (OFF) periods. Convergence times for the different
statistics are analysed. Then, a set of novel spectrum selection
criteria exploiting these statistics are proposed and assessed to
benchmark the usefulness of primary statistical patterns retained
in the REM. Results show that significant performance gains can
be achieved in terms of a reduction in the number of required
spectrum hand-overs.

I. CONTEXT/MOTIVATION

The CR (Cognitive Radio) paradigm has emerged as the
solution to the problem of spectrum scarcity for wireless
applications [1, 2]. It is the key technology that enables
flexible, efficient and reliable spectrum use by adapting the
radio operating characteristics to the real-time conditions of
the environment.

In this context, there has been a recent trend towards
improving the awareness level of CR systems by strengthening
their observation sub-systems. Specifically, there has been
an interest in recording, storing and accessing new relevant
information about the external environment. For instance,
Radio Environment Maps (REMs) have been proposed as new
information sources that can assist cognitive operation by con-
sidering multi-domain environmental information [3–5]. REM
is envisioned as an integrated space-time-frequency database
consisting of multi-domain information, such as geographical
features, available services, spectral regulations, locations and
activities of radios, relevant policies, and experiences.

In a recent measurement campaign [6], it has been observed
that primary channel vacancy durations are not independently
distributed over time, and that significant spectral and spatial
correlations can been found between channels of the same
service. Focusing on the time perspective, other empirical
measurements [7] have shown that, in addition to the expected
daily/weekly periodicity of activity (ON) and inactivity (OFF)
processes of the Primary Users (PUs), some correlation is
observed between consecutive ON/OFF periods depending on
the band of interest and the considered traffic conditions.
Therefore, an increase in the cognitive awareness level retained
in the REM, particularly with respect to the temporal behavior
of PUs, can lead to a more efficient CR operation and
corresponding spectrum utilization. In this respect, spectrum

management tasks such as spectrum decision and spectrum
mobility [8] can substantially benefit from the knowledge
stored in the REM.

Exploiting statistics about the temporal activity of PUs for
the sake of optimising CR operation has been the subject of
many recent proposals. To cite a few, a proactive spectrum
access approach has been proposed in [9] where predictive sta-
tistical models of primary channel availability are built based
on sensing reports. In [10], renewal theory has been applied on
past channel observations in order to predict primary channel
activity. In order to account for primary randomness, authors
in [11] have first applied a simple classification method to
qualify primary traffic as periodic or stochastic. Based on the
detected randomness levels, remaining idle times of primary
channels are differently estimated.

While all the above-mentioned proposals are based on a
rough characterisation of PUs’ activity, this paper aims at
a more focused/accurate statistical characterisation that can
be acquired offline and stored in a REM with a given level
of accuracy. In particular, this paper tries to exploit hidden
structures that may link primary ON/OFF periods. This would
considerably improve the estimation reliability of idle times.

In this context, the main objective of this paper is to
embed a REM with primary-user statistical patterns capturing
intra-channel dependence structures potentially exhibited by
primary ON/OFF periods for optimising the specific task of
spectrum selection. This knowledge would make it possible
to perform a pro-active spectrum selection strategy, trying to
avoid as much as possible the need for executing Spectrum
Handovers (SpHOs) to vacate a channel when a primary
appears. Therefore, the main contributions and advances with
respect to the state-of-the art associated to this paper are three-
fold: (1) To propose the usage of advanced statistics that
capture among others temporal dependence between ON/OFF
periods and to retain such characterisation in the REM, (2) To
make an analysis of convergence levels that can be achieved in
the retained statistics in the REM for different primary activity
profiles, and (3) To benchmark the utility of the retained
knowledge exploiting it in the specific task of spectrum
selection while quantifying performances’ sensitivity to the
level of convergence achieved in the acquired statistics.

The remainder of this paper is organized as follows: in
Sec. II the system model is presented including the statistical
metrics stored in the REM. As an applicability example,
Sec. III proposes to exploit REM’s primary-user statistical
patterns through a set of criteria for optimising spectrum
selection. Sec. IV firstly focuses on assessing the proposed
statistical characterisation, from the perspective of conver-
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Fig. 1: Architecture for strengthening REMs with
Primary-User Statistical Patterns for Enhancing Cognitive

Operation
gence times needed for the different statistics. Afterwards,
the resulting performances of the proposed spectrum selection
criteria are evaluated. Conclusions and future directions are
addressed in Sec. V.

II. SYSTEM MODEL

Let consider a radio environment where PUs are operating
on a spectrum modeled as C channels of equal bandwidth
BP . For each channel i∈{1..C}, the two discrete random
sequences ONi and OFFi are introduced to respectively
denote the sequences of activity and inactivity period lengths.
At a given discrete time index j, ONi(j) and OFFi(j)
correspond to the length of the j-th activity and inactivity
period, respectively. The time series representing the primary
activity are independent across channels.

The functional architecture of the proposed framework is
depicted in Fig. 1. Based on the observation of the environ-
ment, a statistical characterisation of the ON/OFF periods of
the different channels is obtained and stored in the REM.
This stored information will be used as input for the spectrum
management decision-making process. In particular, whenever
a new secondary service request arrives, the spectrum selection
functionality at the SU will pick up a suitable channel for
such communication. Similarly, whenever the SU detects the
appearance of a PU, it must vacate the channel and perform a
SpHO to another channel, if available. This is carried out by
the spectrum mobility functionality.

Generally speaking, PUs’ statistics that are stored in the
REM can be classified into first-order metrics such as means
or conditional probabilities or higher-order metrics such as
variances or correlation functions. In order to offer a high
scalability, it is proposed to make most of statistics charac-
terising primary activity/inactivity period lengths structured
in buckets. A bucket includes the ON (alternatively OFF)
period durations falling in a given interval. Buckets for the
ON periods are numbered as a∈{1..|BONi |} so that Bai ∈BONi
denotes the a−th bucket, BONi the set of buckets and |.|
denotes the cardinality. The same applies to OFF periods
numbered as b∈{1..|BOFFi |}, Bbi∈BOFFi denoting the b−th
bucket and BOFFi the set of buckets. Bucket length is assumed
to be a fraction α of the average value of the corresponding
distribution. This means that, considering for instance OFFi
distributions, ∀b∈{1..|BOFFi |−1}, bucket Bbi is defined as
Bbi=[(b−1)αE(OFFi), bαE(OFFi)[, where E(OFFi) de-
notes the average value of OFF period. The last bucket is as-
sumed to be infinite of the form [(|BOFFi |−1)αE(OFFi),∞[.

A wide range of possible statistics of interest could be
envisaged in the REM. For example, ∀i∈{1..C} the following
metrics can be extracted during acqtime (acquisition time):

• Average value of ON and OFF periods, E(ONi),
E(OFFi). The corresponding DC (Duty Cycle) can be
therefore estimated as:

DCi=
E(ONi)

E(ONi)+E(OFFi)
(1)

• Variances of ON and OFF periods, V AR(ONi),
V AR(OFFi).

• The empirical pdf (probability density function) of ONi:

pdf iON (Bai ) = Pr [ONi(j)∈Bai ] ,∀a∈{1..|BONi |} (2)

• The empirical pdf (probability density function) of
OFFi:

pdf iOFF (B
b
i ) = Pr

[
OFFi(j)∈Bbi

]
,∀b∈{1..|BOFFi |}

(3)
• The conditional probability of observing a certain du-

ration of the OFF period given that a certain dura-
tion of the last ON period was observed. Specifically,
CP iOFF,ON (Bbi , B

a
i ) is defined as the conditional prob-

ability of observing OFFi in Bbi∈BOFFi given that the
last outcome of ONi was observed in Bai ∈BONi :

CP iOFF,ON (Bbi , B
a
i )=Pr

[
OFFi(j)∈Bbi /ONi(j)∈Bai

]
(4)

• The conditional mean of OFFi given the last outcome
of ONi was observed in bucket Bai ∈BONi defined as
follows:

E(OFFi/ONi∈Bai )=∑
Bb

i
∈BOFF

i

B̂bi×CP iOFF,ON (Bbi , B
a
i ) (5)

where B̂bi is the center value of bucket Bbi which is given
by B̂bi=(b−0.5)αE(OFFi).

In what follows, the practical exploitation of these statistics
will be discussed for the specific task of spectrum selection.

III. CASE STUDY: EXPLOITING REM’S PRIMARY-USER
STATISTICAL PATTERNS FOR OPTIMISING SPECTRUM

SELECTION

The basic idea of optimising spectrum selection is to pick
up the best channel for secondary operation. This section
considers optimising not only the first spectrum assignment (at
spectrum selection events), but also all subsequent assignments
(at spectrum mobility events). In order to achieve that, a pro-
active approach defining the best channel as the one that results
in the least-likelihood for the appearance of a PU will be
followed. In particular, for each idle channel i∈{1..C}, it is
assumed to track the duration of the last observed ON period
assumed to fall in bucket Bai as well as the so-far observed
duration of the current OFF period (denoted as Idle Ci)
and we let i∗ be the selected channel. First, a criterion that
maximises the estimated remaining idle time ignoring all
dependence effects is proposed as follows (Crit1):

i∗Crit1=argmax
i

(
E(OFFi)−Idle Ci

)
(6)

Next, a dependence-based spectrum selection criterion that
selects the channel whose estimated remaining idle time is
maximized given the last observed ON period is proposed as
follows (Crit2):

i∗Crit2=argmax
i

(
E(OFFi/ONi∈Bai )−Idle Ci

)
(7)



For both criteria, in the very specific case of multiple
channels fulfilling the maximisation, the channel with lowest
DCi is selected. Finally, a reference criterion Ref.Crit is
defined as a random selection among the idle channels.

IV. SIMULATION RESULTS

In order to validate the proposed methodology, the key as-
sumptions and the set of primary activity time series to be used
will be firstly introduced. This will allow the analysis of the
different convergence times needed for the statistics retained in
the REM. Enlightened by this analysis, the performance of the
proposed spectrum selection criteria will be evaluated, initially,
under fully-converged statistics. Finally, the sensitivity of the
obtained performances to the level of convergence achieved in
the considered statistics will be assessed.

A. Assumptions
A secondary access to the C primary channels is considered.

λi and µi respectively denote the primary arrival and departure
rates of the i-th channel ∀i∈{1..C}. As for secondary opera-
tion, inter-arrival and service duration processes are assumed
to follow exponential distributions with arrival rate λS and
mean holding time MHT. Considering a periodic sensing
every 4T , a perfect sensing (free of miss-detections and false
alarms) is assumed for the sake of simplicity. In the case a PU
shows up in any of the opportunistically-accessed channels, the
involved SU will be handed-over to another channel if there
is any, or will be dropped if there is no channel available.

B. Primary Activity Time Series
In order to assess the behavior of the proposed statistical

metrics and evaluate the performance of the proposed spectrum
selection criteria, different sets of primary activity time series
will be considered as benchmark for comparisons. Specifi-
cally, a set of fully-random activity time series free of any
dependence between ON/OFF period durations will be first
introduced. Then, another set of activity time series exhibiting
strong dependence will be derived. For each set of time series,
uniform and exponential distributions will be considered in
order to introduce different levels of randomness variability.

1) Fully-Random Primary Activity Time Series:
{ONi}∀i∈{1..C} and {OFFi}∀i∈{1..C} are randomly
distributed, following either a uniform distribution
(respectively in the intervals [ 1

2µi
, 3
2µi

] and [ 1
2λi

, 3
2λi

])
or an exponential distribution (respectively with means 1

µi

and 1
λi

)
2) Fully-Dependent Primary Activity Time Series: This

class of primary activity time series is generated by forcing
a full dependence between consecutive ON and OFF periods.
In this case, ONi is randomly distributed in accordance with
the exponential or uniform distribution of the previous case,
while OFFi is obtained from every ONi outcome based on
the following mappings:

OFFi =

{
OFFmini +

(ONi−ONmin
i )×(OFFmax

i −OFFmin
i )

ONmax
i

−ONmin
i

(uniform)

OFFmeani × ONi
ONmean

i
(exponential)

(8)
Where ONmin

i and ONmax
i (respectively OFFmini and

OFFmaxi ) are the smallest and largest values of the uniformly-
distributed ONi (respectively OFFi), while ONmean

i and
OFFmeani respectively denote means of the exponentially-
distributed ONi and OFFi period lengths. Even though the
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Fig. 2: Convergence of E(OFFi)

proposed mappings introduce strong dependence between suc-
cessive ON/OFF periods, it is easy to prove that the resulting
OFFi are equally distributed to the fully-random case.

C. Convergence of REM’s Statistics
In the following, the impact of the acquisition time

(acqtime) on the retained statistics in the REM is analysed.
The analysis considers the statistical metrics E(OFFi) and
E(OFFi/ONi∈Bai ) defined in Sec. II since they are not
equally sensitive to acqtime. Since E(OFFi/ONi∈Bai ) is as
well dependent on bucket setting, the bucket configuration has
been first studied and an operating configuration that looks
for a balance between statistics’ accuracy and computational
complexity has been determined. It corresponds to Nopr

B =
|BONi |=|BOFFi |=31 and αopr=0.1.

Thanks to this bucket configuration, convergence times of
the different statistics can be analysed. Fig. 2 plots the time
evolution of E(OFFi) for different values of the primary
traffic arrival rate λi. It is first observed that E(OFFi) is
much more stable for shorter 1

λi
. This is basically due to the

fact that for a given acqtime as 1
λi

gets longer, there are less
samples of OFFi and the range of OFFi outcomes gets wider.
With respect to convergence speed, E(OFFi) is relatively

stable after acqtime=2h for all the considered 1
λi

of uniform
distributions. However, it fluctuates much more for exponential
distributions especially when long 1

λi
are considered. This

is due to the higher variability of exponential distributions
making random outcomes deviate much from their means.

Next, the more challenging convergence of the conditional
mean E(OFFi/ONi∈Bai ) is considered. As a matter of fact,
the estimation accuracy in this case does not only depend
on acqtime, but also on the number of possible combinations
of successively observed ON/OFF buckets. In order to better
illustrate this, fully-dependent time series whose ON/OFF
mapping results in only Nopr

B out of the Nopr
B

2 possible com-
binations are considered. As a matter of fact, ∀a∈{1..|BONi |}
and ∀b∈{1..|BOFFi |}, the theoretical CP iOFF,ON (Bbi , B

a
i ) is

given in the particular case of the mapping defined in (8) by:

CP iOFF,ON (Bbi , B
a
i ) =

{
1 if a = b,
0 otherwise.

(9)

Introducing CP iOFF,ON (Bbi , B
a
i ) into (5), the obtained the-

oretical expected value E(OFFi/ONi∈Bai )=B̂ai will be used
as a reference for convergence in the different cases. Fig. 3
illustrates the convergence of some E(OFFi/ONi∈Bai ) to-
wards these theoretical values for an increasing acqtime where
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Fig. 3: Convergence of E(OFFi/ONi∈Bai ) for some selected values of Bai

a∈{6, 14} for uniform distributions and a∈{15, 30} for ex-
ponential distributions. It turns out that E(OFFi/ONi∈Bai )
converges more slowly than E(OFFi) for both the consid-
ered distributions. Considering for instance acqtime=4h, all
observed E(OFFi/ONi∈Bai ) get to 95% of their theoretical
values for the uniform case. As far as exponential distributions
are considered, E(OFFi/ONi∈Bai ) values are in some cases
below 90% of their theoretical values even after long values
of acqtime. This is basically due to the higher variability
of exponential distributions making slower the exploration of
successive ON/OFF bucket combinations.

D. Performance Evaluation of Spectrum Selection Criteria
under Fully-Converged REM’s Statistics

This section analyses the impact of the considered statistics
over the proposed spectrum selection criteria. Since both
Crit1 and Crit2 are pro-active in terms of SpHO events,
it is proposed to evaluate their performances in terms of
number of SpHO per secondary call. Furthermore, Crit1 and
Crit2 performance gains are defined as the percentages of
reduction in the number of SpHO with respect to Ref.Crit.
Initially, performances are analysed for acqtime=15h, where
convergence has been achieved in most of the cases.

Considering the simulation parameters specified in Table I
and a common duty cycle (DCi=DC,∀i∈{1..C}) for the sake
of simplicity, Fig. 4 illustrates performances of all introduced
criteria with different primary/secondary traffic conditions
for both fully-random and fully-dependent primary activity
time series. As far as fully-random data are concerned, it
is observed that both advanced criteria (Crit1 and Crit2)
outperform the random selection (Ref.Crit) with equal gains.
While Crit1 outperforms Ref.Crit thanks to the estimation
of the remaining OFF time, Crit2 can not further improve
the estimation accuracy since the occupancy data (ONi) do
not exhibit any useful dependence. As a matter of fact, free
of any dependence E(OFFi/ONi∈Bai )=E(OFFi) so both
Crit1 and Crit2 turn out to be the same.

Notice that the introduced gains have different orders of
magnitude depending on the considered distribution. While
they range from 50% to 100% for uniform distributions
(Fig. 4(a)), they are between 10% and 50% for exponential
distributions (Fig. 4(b)). This is justified by the lower vari-
ability of uniform distributions making both E(OFFi) and
E(OFFi/ONi∈Bai ) reliable estimators of actual OFF periods

TABLE I: Simulation Parameters

PUs’ parameters

C i 1
λi

(s) 1
µi

(s)

16

1-4 15 60,27.8,15
5-8 30 120,55.7,30

9-12 60 240,111,60
13-16 120 480,222.8,120

SUs’ parameters 4T (s) MHT(s) 1
λS

(s)

0.1 6,24 6

as their outcomes are not deviating much from their means.
Considering next fully-dependent primary activity time se-

ries, it is observed that both Ref.Crit and Crit1 are per-
forming equally to the previous case while Crit2 succeeds in
exploiting the increased dependence level to clearly outper-
form Crit1. Notice that the resulting absolute gain Crit2 is
introducing w.r.t Ref.Crit ranges from 50% to 100% and is
independent of the considered distribution. Nevertheless, it is
observed that the absolute gain of Crit2 is distributed differ-
ently for each of the considered distributions. As a matter of
fact, the gain of Crit2 w.r.t Crit1 is up to 15% of the absolute
gain of Crit2 for uniform distributions (Fig. 4(a)) while it
reaches 70% for exponential data (Fig. 4(b)). This basically
means that variability level does not change the absolute gain
of Crit2 but simply redistributes it: a low-variability level
makes the gain of Crit1 w.r.t Ref.Crit dominate the gain of
Crit2 w.r.t Crit1, while a high-variability level results in the
opposite distribution.

E. Impact of Convergence of REM’s Statistics on Spectrum
Selection Performance

In order to evaluate the impact of the level of convergence
achieved in REM’s statistics on the obtained performances,
acqtime has been gradually decreased while checking the
corresponding performances. It is worth to highlight that, as
the obtained results have shown, spectrum selection perfor-
mances converge much faster than their corresponding statis-
tics. For instance, considering the worst case of exponential
distributions and MHT=24s, Fig. 5 plots performances of
all criteria while decreasing acqtime for dependent data. The
results show that acqtime=3h results in stable results for both
criteria in spite of the previously observed fluctuations of
E(OFFi) and E(OFFi/ONi∈Bai ). It has been checked and
omitted for the sake of brevity that for lower randomness levels
(e.g. uniform distributions), performances tend to stabilize
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Fig. 4: Spectrum selection performance evaluation for acqtime=15h
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for acqtime of few tens of seconds. The observed better
stability of spectrum selection performances compared to their
corresponding statistics is justified by the fact that even though
further increasing acqtime improves the estimation accuracy
of the considered statistics, the introduced gains are usually
smaller than the differences between OFF periods of different
channels, keeping unchanged the selected channel.

V. CONCLUSIONS AND FUTURE WORK

In order to improve CR’s operation, it has been proposed
to strengthen REMs with primary-user statistical patterns
that capture among others intra-channel dependence structures
potentially exhibited by primary systems. After assessing some
general aspects of the introduced metrics, the convergence
times needed for the different types of statistics have been
analysed. Then, a novel spectrum selection criterion exploiting
dependence between consecutive primary ON/OFF periods has
been proposed as a case study benchmarking the usefulness
of the statistical patterns retained in the REM. The proposed
criterion has been proven to significantly outperform a ran-
dom scheme as well as a statistical scheme that neglects all
dependence effects. The sensitivity of the obtained results
has been finally evaluated for different convergence levels of
the statistics retained in the REM. Results show substantial
robustness to partially-converged REM’s statistics. As part of
future work, we plan to evaluate the sensitivity of the ob-
tained performances to sensing imperfection, and validate the
proposed approach with real-world spectrum measurements.
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