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Abstract—In this paper we consider a cognitive radio (CR)
communication system based on spectrum sharing schemes,
where we have a secondary user (SU) link with multiple trans-
mitting antennas and a single receiving antenna, coexisting with
a primary user (PU) link with a single receiving antenna. At
the SU transmitter (SU-Tx), the channel state information (CSI)
of the SU link is assumed to be perfectly known; while the
interference channel from the SU-Tx to the PU receiver (PU-
Rx) is not perfectly known due to less cooperation between the
SU and the PU. Considering a SU transmit power constraint, our
design objective is to determine the transmit covariance matrix
that maximizes the SU rate, while we protect the PU by enforcing
both a PU average interference constraint and a PU outage
probability constraint. This problem is formulated as a non-
convex optimization problem with a non-explicit probabilistic
constraint, which is then approximated as a mixed binary integer
programming (MBIP) problem and solved with the Branch and
Bound (BB) algorithm. The complexity of the BB algorithm
is analyzed and numerical results are presented to show the
performance of the CR system under consideration with our
optimal solution.

I. INTRODUCTION

The evolution from static spectrum allocation policies to dy-
namic ones can significantly increase the utilization efficiency
of the radio spectrum. One promising platform to support such
transitions is the cognitive radio (CR) system that was invented
for spectrum sharing with existing primary links, where CRs
dynamically adapt their transmission patterns to access under-
utilized frequency segments while regulating the interference
to PUs [1], [2]. As such, the key design challenge is how to
maximize the SU rate while maintaining an acceptable level
of interference to PUs.

Recently, there has been much research devoted to this
interesting problem. The authors in [3] studied the channel
capacity of a single secondary transmission when the interfer-
ence power received at the PU-Rx is limited below a given
threshold, which is the so-called interference temperature
constraint. Along a similar line, the authors in [4] studied
the problem of maximizing the sum utility over multiple SUs
under the interference temperature constraints. In more recent
research, the role of multi-antennas has been investigated
under CR network settings. The authors in [5] studied the
channel capacity of secondary multiple-input multiple-output
(MIMO) and multiple-input single-output (MISO) channels

when the CSI between the SU-Tx and PU is perfectly known at
the SU-Tx. In the MISO case, under both an average secondary
transmit power constraint and an interference temperature
constraint at each PU-Rx, beamforming was proved to be
the optimal strategy. In the MISO case where only one PU
is present with one receiving antenna, a closed-form solution
was derived. In [6] and [7], the authors considered a similar
MISO scenario where, instead of complete CSI between the
SU-Tx and PU, only partial CSI is known. In [6], channel
capacity was studied with only the mean of the channel
between the SU-Tx and PU-Rx is known at the SU-Tx,
where beamforming was proved to be optimal. Such work
was extended in [7] to consider both the mean and covariance
feedbacks at the SU-Tx, where two algorithms are presented
to solve for the optimal solution: one based on a second-
order cone programming approach; and the other based on
a geometric interpretation.

In this paper, we model a practical scenario where we know
the distribution of the SU-Tx to PU-Rx channel and formulate
the problem under an PU outage probability constraint in
addition to the transmit power constraint and the average in-
terference power constraint. In our work, we define the outage
probability to be the probability of interference power at the
PU-Rx exceeding a given threshold. The main motivation for
this formulation is to allow some interference from the SU-
Tx to the PU-Rx as long as the resulting outage probability
is kept small. Our aim in this paper is to investigate the SU
system performance with this more practical regulation over
the SU interference to the PU-Rx. The main contribution of
this paper is summarized as follows. We formulate the transmit
covariance matrix design problem for a single secondary link
under both an average interference constraint and an outage
probability constraint to protect a given PU-Rx. Due to the
introduction of the outage probability constraint, this resulting
design problem is non-convex with non-explicit constraints. To
solve this problem, we reformulate it into an MBIP problem
with a deterministic constraint on the outage upper bound.
Then we use a BB algorithm to compute the numerical
results, which is highly efficient in solving the MBIP problem
compared with exhaustive searching for the original non-
convex problem.

The rest of the paper is organized as follows. In Section II,

2011 6th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)

978-1-936968-19-0 © 2011 ICST
DOI 10.4108/icst.crowncom.2011.24588666



we discuss the system and signal models. In Section III, the
MBIP transformation is discussed along with the BB algorithm
and the complexity analysis. In Section IV, the numerical
results are presented. Section V draws the conclusions.

Notations: x† denotes the conjugate transpose, tr(·) de-
notes the trace operator, rank(·) denotes the rank of a matrix,
E[·] denotes the statistical expectation, and CM×N denotes
the space of M ×N matrices with complex entries. Boldface
upper and lower case letters are used to denote matrices and
vectors, respectively, with “∼” standing for “distributed as”.
Re(·) and Im(·) represent the real and imaginary parts of the
operand, respectively. The log(·) functions are over base 2.

II. SYSTEM AND SIGNAL MODEL

We consider a simple CR system, where one SU link and
one PU link share the same spectrum simultaneously. Here the
SU-Tx is equipped with Mt transmitting antennas, and both
the secondary and primary receivers are each equipped with
a single antenna, as illustrated in Fig. 1. We assume that the
SU-Tx knows the MISO channel h ∈ CMt×1 from the SU-
Tx to the SU-Rx, which is randomly distributed according to
h ∼ CN (0, I). The MISO interference channel from the SU-
Tx to the PU-Tx, denoted as g ∈ CMt×1, is not perfectly
known to the SU-Tx due to less cooperation between the SU
and the PU. Specifically, we assume that the SU-Tx knows
that the interference channel g can take values from a finite set
G = {g1,g2, · · · ,gN} with a corresponding probability set
{p1, p2, · · · , pN}. Under these assumptions, the SU-Tx adapts
the transmission rate, power, and spatial spectrum to maximize
its own transmission rate, while maintaining the interference
to the PU-Rx below a certain level. Such an interference
regulation is achieved by enforcing a set of constraints over the
SU transmit covariance matrix, which will be discussed later
in details. The signal model for the system under consideration

Fig. 1. System model of the SU coexisting with the PU

is given as
y = h†x+ w, (1)

where y and x ∈ CMt×1 are the received and transmitted
signals at the SU-Rx and SU-Tx, respectively, and w is the
additive Gaussian noise with w ∼ CN (0, 1). The transmit
covariance matrix is denoted by Kx = E[xx†] � 0.

Our goal in this paper is to balance the maximum transmit
rate of the SU and the interference from the SU-Tx to the PU-
Rx by adjusting the spatial spectrum of the SU signal. As such,

we need to design the optimal transmit covariance matrix, Kx,
to maximize the SU rate with some tolerable interference to
the PU-Rx. In particular, we cast this problem as follows:

(P1) : maximize:
Kx

h†Kxh (2)

subject to: tr(Kx) 6 Ptr1 (3)
E[g†Kxg] 6 Ptr2 (4)
Pr{g†Kxg > r} 6 pth (5)
Kx � 0. (6)

where the objective is equivalent to maximizing the achiev-
able rate log(1 + h†Kxh), Ptr1 is the SU transmit power
limit, Ptr2 is the average interference power limit, r is the
instantaneous interference power tolerance at the PU-Rx, and
pth is the PU outage probability limit. The objective function
is the SU transmission rate, and the four constraints are the
average transmit power, the average interference power, the PU
outage probability constraints, and the positive semi-definite
constraint, respectively.

Due to the probabilistic constraint in (5), problem (P1) is
generally hard to solve directly. For a probabilistic constraint
where the random vector has a continuous distribution, check-
ing the feasibility of each feasible point requires a complex
multi-dimensional integration. Even when the random vector
has a discrete distribution, the feasible set defined by the
probabilistic constraint is generally non-convex and it cannot
be described by explicit functions [8]. Fortunately, as shown
in [9], [10], the above probabilistically constrained problems
can be solved as integer programming (IP) problems with
deterministic constraints.

For our problem, under the assumption that the SU-Tx
knows that the interference channel g is of a finite discrete
distribution, we take the approach in [9], [10] to first approxi-
mate (P1) as an MBIP problem with deterministic constraints,
and then deploy a BB algorithm [11], [12], [13] to seek the
solution. The details will be discussed in the next sections,
together with complexity analysis and simulation results.

III. OPTIMIZATION ALGORITHM

A. MBIP Transformation

In this section, we first discuss a deterministic trans-
formation of the probabilistic constraint in (P1). As as-
sumed, the random variable g takes values from a finite set
G = {g1,g2, · · · ,gN} with a corresponding probability set
{p1, p2, · · · , pN}. We refer to each probable value gn as one
scenario. The probabilistic constraint can then be interpreted
as that the sum probability over all possible interference-
violating scenarios must be bounded by pth. Therefore, we
can reformulate the probabilistic constraint in (P1) as shown
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in the following problem:

(P2) : maximize:
Kx, bn

h†Kxh (7)

subject to: tr(Kx) 6 Ptr1 (8)
E[g†Kxg] 6 Ptr2 (9)
g†nKxgn −Mbn 6 r, n = 1, · · · , N.(10)
N∑

n=1

bnpn 6 pth, bn ∈ {0, 1} (11)

Kx � 0. (12)

The two newly added constraints (10) and (11) are deter-
ministic and only involving explicit functions, which can be
easily handled by numerical algorithms. The design variables
here are now both the matrix Kx and the binary variables
bn, n = 1, 2, · · · , N , where the binary variables are used to
indicate whether the interference outage check needs to be
performed: if bn = 0, it means no outage is possible under
the scenario gn given the constraint (10), such that pn needs
not to be included in the left-hand sum of (11); if bn = 1,
there may or may not be an outage if the slack constant M
is chosen large enough, which leads to the fact that (11) is
enforcing an outage probability upper-bound to be less than
pth since pn is now always counted in the left-hand sum of
(11). The positive slack constant, M , is chosen to be of a large
value since it is used to deactivate the outage check in (10)
when bn = 1. Given the fact that

∑N
n=1 bnpn incurs an outage

probability upper-bound, (P2) is actually a stricter version of
(P1) with tighter constraints. As a result, the optimal objective
value of (P2) will be slightly less than that of (P1). However,
as we show later that the resulting performance is still much
better than reference approaches.

we now discuss how to determine the value for M , which
needs to guarantee the satisfaction of the inequality (10) when
bn = 1. For sufficiency, we could find an M that is larger than
the maximum value of g†nKxgn over n = 1, ..., N . One way
to achieve that is as follows. Given that

g†nKxgn = tr(g†nKxgn) (13)
= tr(Kxgng

†
n) (14)

6 tr(Kx)tr(gng
†
n) (15)

6 Ptr1tr(gng
†
n), (16)

we take M = max
n

Ptr1tr(gng
†
n).

With the value of M available, we next solve the MBIP
problem (P2), for which a direct approach is through exhaus-
tive search over the binary variables bn’s, where for each
feasible choice of bn’s we solve the following convex semi-
definite programming (SDP) problem

maximize:
Kx

tr(Kxhh
†) (17)

subject to: tr(Kx) 6 Ptr1 (18)
E[tr(Kxgg

†)] 6 Ptr2 (19)
tr(Kxgng

†
n) 6 Mbn + r, n = 1, · · · , N.(20)

Kx � 0. (21)

Unfortunately, such an exhaustive search in general incurs
exponential total complexity. So instead, we discuss a BB
approach to search over the binary variables more efficiently
in the average sense.

B. Branch and Bound Algorithm

As mentioned before, one way to solve an MBIP problem
is through exhaustive search, where the feasible space grows
exponentially with the number of binary variables, which leads
to the NP-hardness of most binary optimization problems.
Fortunately, BB algorithms [11], [12], [13] can often be used
in solving discrete and combinatorial optimization problems to
reduce the average complexity, when the problem has a finite
but very large solution set with certain structures.

We first give a brief overview of the BB algorithm, followed
by specific implementations for solving the MBIP problem
(P2). Two components are usually required for an effective
implementation of a BB algorithm. The first is a branching
procedure and the second is a bounding function. Given a set
S, the branching procedure returns non-overlapping subsets
S1, S2, ..., whose union is the set S. The bounding function
then computes the upper and/or lower bounds of the optimal
value given each subset Si. The upper and lower bounds are
then used to determine one of the following two outcomes:
split the subset Si into more subsets for further bounding, or
discard the subset Si from the searching space, which is also
referred to as pruning and is the reason why the BB algorithm
is more efficient than exhaustive search.

It is clear that problem (P2) can be cast as a SDP prob-
lem over the design variable Kx when the binary variables
are relaxed to be within [0, 1]. With this property, we next
implement the BB algorithm to jointly search over Kx and
the binary variable bn. Due to the recursive nature of the
BB algorithm, it traverses a binary search tree (BST), as
shown in Fig. 2. Each node in the BST represents a particular
case when the relaxed SDP problem from (P2) is solved at
a partial or complete binary solution. In particular, the root
node corresponds to the case where all bn’s are relaxed to
be within [0, 1]; and a leaf node is a node at the bottom
of the BST, which denotes the case with a complete binary
solution, where the resulting objective value of (P2) is called
an incumbent if it is the best objective value found so far
across all the known leaf nodes. The depth of a node, D, is
defined to be the number of determined binary variables in
the partial binary solution at this node. As D increases from
D = j to D = j+1, one additional binary variable bn is being
determined. Specifically, at one particular node let us assume
that b1, b2, ..., bn−1 have been determined. We then create two
child nodes corresponding to two sub-problems in the relaxed
SDP form of (P2) with bn = 0 and bn = 1, respectively,
while keeping b1, b2, ..., bn−1 unchanged and rounding all
undetermined binary variables, bn+1, bn+2, ..., bN , to be ones.
For a given sub-problem, if the achieved optimal objective
value is lower than the current incumbent, the corresponding
child node (as well as all of its descendants) is discarded, i.e.,
pruned from the searching space. Otherwise, the corresponding
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child node is kept in the BST, and the searching continues to
bn+1 until we reach the leaf node with a complete binary
solution. Following the above procedure, the BB algorithm

Fig. 2. Binary Search Tree (BST)

traverses through the BST by solving one relaxed SDP for
an optimal Kx at each node. The algorithm is terminated
when the entire BST has been either pruned or processed.
All computations in our algorithm are performed using the
matlab-based software package CVX [14], [15] which deploys
SeDuMi [16] as its back-end solver for SDP problems.

C. Complexity Analysis

In this section, we discuss the complexity of the proposed
algorithm. The efficiency of the algorithm depends critically
on the branching and bounding procedure, where the entire
searching space is branched into non-overlapping subsets, and
the bounding procedure then calculates bounds for each subset
with decisions made on whether to continue branching or to
discard the entire subset. The pruning process, which allows
the algorithm to only traverse a fraction of the entire BST, is
the key to decrease the overall searching complexity.

In our implementation, at the root node, there are no deter-
mined binary variables, i.e., all binary variables are relaxed. At
each child node, one additional binary variable is determined.
During each iteration, one node is chosen and the bound
is calculated after solving the relaxed SDP. If the bound is
lower than the incumbent, then it means that no child nodes
branched from this node will yield a solution better than the
incumbent; the node is therefore pruned. If the node at depth j
is pruned, we can calculate how many potential child nodes of
this branch are pruned, which indicates how much searching
complexity is reduced. For simulations, we set Mt = 2. We
assume that each element of gn is generated by quantizing a
random variable distributed as CN ∼ (0, 0.1) into four levels,
and the corresponding pn is determined by integrating the
probability density function over the associated quantization
levels. The secondary transmit power ranges from 0 dB to
10dB. Accordingly, the MBIP problem has 16 binary design
variables, such that if exhaustive search is deployed, there will
be a total of 216 = 65536 sub-problems need to be solved.
With our approach, Fig. 3 shows the update progress of the
incumbent, and Fig. 4 shows the progress of pruned nodes in

percentages at each iteration, where we only need to solve 273
sub-problems in this example.
Remark: The number of sub-problems solved in our BB

algorithm varies over different channel realizations. Typically,
we observe that less than 700 sub-problems in total are solved
with our BB algorithm across a large number of channel
realizations.

Fig. 3. Bounding progress of BB vs. the number of iterations

Fig. 4. Pruned nodes of BB vs. the number of iterations

IV. NUMERICAL RESULTS AND COMPARISON

In this section, numerical results are presented to show the
performance of the CR system under consideration with our
optimal solution. The simulation setup is the same as that for
generating Fig. 3 and Fig. 4.

Fig. 5 illustrates the maximum average achievable transmit
rate for the SU using the BB algorithm in comparison with a
reference algorithm from [6] and [7]. In this case, we assume
that the average interference power is limited to 2, and the
outage probability limits are set as 0.21 and 0.31, respectively.
The parameter values for c in the reference algorithm [6]
are set to 0.7 and 0.5, which leads to outage probabilities of
0.21 and 0.31, respectively. From this figure, we see that the
transmit rate with pth = 0.31 is always greater than or equal
to the rate with pth = 0.21, which is as expected. Moreover,
we note that the maximum average achievable transmit rate
with the BB approach is always higher than the rate of the
reference algorithm.
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Fig. 5. Comparison of the achievable transmit rates with the BB algorithm
and the reference algorithm.

V. CONCLUSIONS

In this paper, we considered a secondary communication
link sharing the same spectrum with a primary link in a
CR network. Multiple transmitting antennas are exploited at
the SU-Tx to achieve balance between the SU transmit rate
maximization and the interference regulation at the PU-Rx.
We introduced the PU outage probability constraint in our
formulation to model a more practical scenario, where the
problem was formulated as a non-convex optimization problem
with a probabilistic constraint, in addition to the SU transmit
power constraint and a PU average interference constraint.
To make the non-convex problem solvable, a deterministic
transformation is used to approximate the original problem as
an MBIP problem. An efficient BB algorithm was proposed to
solve the MBIP problem, with simulation results to illustrate
the superior performance of our algorithms over an existing
reference algorithm.
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