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Abstract—In future wireless networks there is a need for
distributed power allocation algorithms which are simple, but at
the same time yields sufficient spectral efficiency. In this paper we
investigate binary power control schemes in a wireless multiuser,
multiband interference system, where each user is restricted to
use only one frequency band. We explore different binary power
control schemes, and show how knowledge of the other users
can be used to construct a utility function which embodies the
well being of others. Simulation results show that binary power
control yields significant increase in sum rate compared to water
filling with number of users ≥ 2, and in some scenarios yield sum-
rates above those achieved with much more complex algorithms.

I. INTRODUCTION

Over the years more and more services have been offered
by wireless communications, and with these wireless services
comes the demand for even more wireless services. It is
now apparent that spectrum resources are scarce and that
static spectrum allocation leads to significant under usage
of the spectrum. Cognitive radio and more recently dynamic
spectrum access has been posed as solutions, where the idea
in dynamic spectrum access is that radio devices in need of
spectrum obtains it on a dynamic basis.

Such radio devices must be able to adapt their transmission
parameters and be able to exploit different parts of the spec-
trum. One of the key problems in terms of dynamic spectrum
access and increased spectrum efficiency, is the problem of
power allocation among different radio devices. In a dynamic
spectrum access system, with multiple radio devices in the
same area, it is likely that their spectral resources are the
same. The power allocation problem is now that of a multiuser,
multiband interference system.

The achievable rate region for all users in such a system is
not generally known. In addition maximizing the joint system
capacity is a non-convex optimization problem with regard
to transmit power and is known to be NP hard [1]. But
for same cases the optimal power allocation is known. For
very low crosstalk and low power, equal power across all
frequency bands is the optimal power allocation because log
is a concave function. In [2] it was found that independent of
transmit power, FDMA is optimal for high crosstalk gains.
In general, the point where FDMA is optimal depends on
both crosstalk gains and transmit power [2]. In addition to
these fundamental limits, it was found that with imperfect
knowledge of interference levels at the receiver, the power
allocation converges to FDMA [3].

It can be argued that FDMA should also be used in scenarios
where FDMA is not optimal. This is due to the low complexity

and the fact that if all users are restricted to FDMA there is no
incentive for users to change power allocations and therefore
the algorithm does not need to converge to Nash equilibrium
[1]. But in a practical system, there might not be as many
available channels as users, making our definition of FDMA
allocation impossible.

However, instead of selecting a channel which is not used
by any other user, we can require a user to only allocate power
to one channel, according to some criteria. By this restriction,
the resulting power allocation scheme can be as simple as
FDMA, in the case of best signal-to-interference-plus-noise
ratio (SINR), or more complex depending on the algorithm.
In terms of sum-rate, a radio link can be introduced in the
network if the sum-rate over all links increases when this
link is established. Even in the case of single channel power
allocation this is not a trivial problem, and in this paper we
simplify by only considering binary power control.

Due to the simplicity of binary power control, the subject
has been extensively studied in both uplink and downlink [4]
as well as the Gaussian interference channel [5] [6]. However,
all these works has only considered systems where only one
frequency band is available. Thus the comparison is made
against adaptive power control. In cognitive radio systems,
there might be more frequency bands available and therefore
binary power control should be compared against algorithms
which exploit the multiplexing gain of using more bands. This
is done in this paper, and we investigate optimal binary power
control, as well as simpler forms of binary power control and
compare them in terms of sum-rate against other well known
algorithms which utilize the multiplexing gain.

II. SYSTEM MODEL AND FUNDAMENTAL LIMITS

A. System Model

We consider a wireless communication system in which
N radio links share a common bandwidth of K orthogonal
frequency bands, or channels. Each radio link is thought of
as a user, where each user consists of transmitter and desired
receiver, i.e. user i consists of transmitter i and receiver i. The
set of users 1, ..., N is denoted ΩN = {1, ..., N}. Similarly,
the set of channels is denoted ΩK = {1, ...,K}. Two or
more users transmitting on the same channel are subject to
interference from each other, and this interference is treated
as white Gaussian noise.

Channel gains from transmitter i to receiver j over channel
k is denoted hij(k). We assume each receiver suffers from
the same thermal noise, denoted N0. This thermal noise is
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modeled as additive white Gaussian noise. The joint capacity
of this system is given as

C =
∑
i∈ΩN

∑
k∈ΩK

log2

(
1+

|hii(k)|2pi(k)

N0 +
∑
j∈ΩN ,j 6=i |hji(k)|2pj(k)

)
(1)

Since each user can only transmit on one channel, the transmit
power constraint for each user is given as

0 ≤ pi(k∗) ≤ Pi,max. (2)

where k∗ is the channel user i has chosen to transmit on.
We assume the transmitter is able to obtain knowledge of

the noise plus interference levels from the receiver through
some medium, e.g. a feedback channel. Through this medium
we also assume the transmitter is able to estimate the channel
gain between itself and the desired receiver. With this infor-
mation the transmitter can estimate the effective noise plus
interference level in each channel as

NI(k) =
1

|hii(k)|2
(N0 +

∑
j∈ΩN ,j 6=i

|hji(k)|2pj(k)) (3)

B. Fundamental Limits

In the previous section we introduced some fundamental
limits of the system model considered, based on results found
in [2]. In addition to the limits found in [2] we can state some
fundamental limits and properties for the case where the power
constraint of each user approaches infinity. Note that these
limits only hold when interference is treated as noise and there
is no structure in the interference (interference alignment).

Theorem 1. In a system with N users, K ≥ N channels
and non-zero interfering channel gains, FDMA is the optimal
power allocation when Pi,max →∞ ∀i ∈ ΩN .

Proof: With out loss of generality (WLOG) we can
assume a system with 2 users and 2 channels. Each user has
power P . Next assume that each user has allocated a portion
tl 6= 0, 1, l = 1, 2 of its power to channel 1 and (1 − tl) to
channel 2. WLOG we can ignore all channel gains. The total
rate of the system then becomes:

R = log(1 +
Pt1

N0 + Pt2
) + log(1 +

P (1− t1)

N0 + P (1− t2)
)

+ log(1 +
Pt2

N0 + Pt1
) + log(1 +

P (1− t2)

N0 + P (1− t1)
)

(4)

with P →∞, R reduces to

lim
P→∞

R = log(1 +
t1
t2

) + log(1 +
(1− t1)

(1− t2)
)

+ log(1 +
t2
t1

) + log(1 +
(1− t2)

(1− t1)
) <∞. (5)

Assuming FDMA

lim
P→∞

R = lim
P→∞

1

2
log(1+

P

N0
)+

1

2
log(1+

P

N0
) =∞. (6)

From this theorem we have the following corollaries

Corollary 2. In a system with N users, K ≥ N channels
and non-zero interfering channel gains, FDMA is the optimal
power allocation when N →∞.

Corollary 3. In a system with N users, K = 1 channels and
non-zero interfering channel gains, if all N users transmit at
the same time the sum-rate R → 0 as N → ∞, due to the
interference.

From the second corollary we can conclude that with a high
number of users in the same area, maximum sum-rate can not
be achieved when all users transmit at the same time. I.e some
user have to have pi(k) = 0 ∀k ∈ ΩK to achieve maximum
sum-rate.

III. BINARY POWER CONTROL

To find the optimal power allocation that maximizes sum-
rate is still a hard problem even though we restrict a given user
to only use one channel. To simplify the problem, we only
consider binary power control in this paper. In general, binary
power control means that a transmitter can either transmit with
power level Pmax or Pmin. But from Corollary 3 we know
that in a dense network some users must be silent to achieve
maximum sum-rate and thus for a given user i we have

pi(k
∗) =

{
Pimax if some criteria

0 otherwise (7)

thus Pmin = 0.
Considering only one available channel, [6] found that when

the sum-rate can be approximated by the arithmetic geometric
mean or in the low SINR regime (log(1+SINR) ≈ SINR)
binary power control is optimal. This motivates us to consider
binary power control in our system model.

A. Optimal Binary Power Control

In terms of maximizing sum-rate, optimal binary power
control means that a user is allowed to transmit on channel k
if the sum-rate over channel k is increased by establishing the
new link. If we number the users transmitting over channel k
as 1, ..., Ñ , and the new user as Ñ + 1, the the condition for
transmission over channel k for user Ñ + 1 is

Ñ∑
i=1

log2(1 +
Pi,max

NIi(k)
) <

Ñ+1∑
i=1

log2(1 +
Pi,max

NIi(k)
). (8)

Deriving easy-to-evaluate expressions from this condition is
hard. By assuming that the network is dense (i.e. number of
users in a given area is large) and assuming that the SINR
is either in the high regime (log(1 + SINR) ≈ log(SIR),
where SIR means neglecting the thermal noise) or in the low
SINR regime (log(1 + SINR) ≈ SINR) the conditions for
transmission simplifies to [4]:

SIR > e high SINR regime (9)
SIR > 1 low SINR regime (10)



The drawback is that these criteria for transmission are only
optimal in these SINR regimes, and as we will show in the
simulations, they are on average very suboptimal. Next, we
will see how a binary power control scheme can be constructed
with varying degrees of information.

B. Only NI knowledge

We will first explore the binary power control scheme with
minimal knowledge, i.e. only knowledge of the effective noise
plus interference (NI) levels at the receiver at the transmitter.
In Section II, k∗ was defined as the channel chosen for
transmission. With only knowledge of the NI levels, the
candidate channel for transmission is given as

k∗ = min(NI) (11)

where min(NI) returns the index of the channel with lowest
noise plus interference level. Due to Corollary 3, we know
that to achieve maximum sum-rate, not all users can transmit
at the same time in a dense network. Therefore, the power will
be allocated in channel k∗ according to

pi(k
∗) =

{
Pimax SINR(k∗) ≥ η

0 otherwise (12)

where η is some threshold that should be chosen to maximize
sum-rate. As noted above, according to [4] the threshold η
should be 1 in the low SINR regime and e in the high SINR
regime, to achieve maximum sum rate.

C. With Location and Power Level Knowledge

If a transmitter also has information about the location of
the other receivers and power vector of the other transmitters,
it can construct its power control scheme to take into account
the performance of other users.

Consider the scenario depicted in Fig. 1. Two cognitive
radio links has established communication between their re-
spective transmitters and desired receivers. Each link transmits
on a different frequency band than the other. Next, there is a
third cognitive radio that wants to establish communication
between its transmitter and desired receiver. The receiver
measures noise and interference. Since transmitter 1 is closer
to receiver 3 than transmitter 2, it is likely that there is more
interference in frequency band 1 than in frequency band 2.

Without location information and without regard for the per-
formance of the other links, transmitter 3 would use frequency
band 2. But with location information, it knows that receiver 1
is farther away than receiver 2 and in light of this information
transmitter 3 should allocate power to frequency band 1 with
regard to the other users.

To encourage such behavior we must construct a power
allocation scheme which rewards the well being of other users.
To do this, we construct a pay-off function, U , that embodies
this property.

If we denote the rate achieved with Pi,max in channel k as
Ri(k), the pay-off function is given as

Ui(k) = Ri(k)−
∑

j∈ΩN ,j 6=i

w|hij(k)|2Pi,max (13)
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Fig. 1. Two cognitive radio links exists before radio link 3 tries to
establish a radio link. The two established links transmit on two different
channels, unfortunately there is only 2 available frequency bands. (a) The
new transmitter observes the interference and must decide which channel to
use. (b) Based on additional information, transmitter 3 knows that it will
create the least interference if it uses frequency band 1.

where |hij(k)|2Pi,max is the interference created by user i to
user j in channel k. If user j does not transmit over channel
k, the interference created is zero. w is a scaling variable that
must be chosen so that limiting interference to other users
has the desired weight in the pay-off function. We do not
consider individual user weights since the channel gain has
this effect. As in the case of only NI information, we first
find the candidate channel to transmit on, i.e.

k∗ = max(Ui(k)) (14)

and user i will allocate power in channel k∗ according to

pi(k
∗) =

{
Pimax Ui(k

∗) ≥ η
0 otherwise (15)

From the definition of our pay-off function it is clear that
we must know the channel gains between transmitter i and all
other receivers. To obtain accurate channel estimates would
require substantial overhead, but with slow moving or static
users, location information can be used to estimate the channel
gains.

The drawback is that there will be fading from shadowing
in the system, even with static users, which might affect the
performance of our power allocation scheme.

IV. STABILITY CRITERIA

Since this system is an interference system, there might be
an incentive for a user to adjust its power allocation after
another user has allocated power. This is why all power
allocations in such a system is of an iterative nature. The goal
of an iterative power allocation algorithm is to converge to
a stable point where no user has the incentive to change its
allocation. In terms of game theory, such a point is called a
Nash equilibrium (NE).

Even though we have simple binary power control algo-
rithms, it is still necessary for the power control to be stable
and thus requires to reach a NE. We will briefly describe the
conditions necessary for convergence to a NE.



Lets denote a combination of users in the system as ΩC . A
combination is a possible state in the system with a subset of
users in each channel. If we denote user 1 as u1, user 2 as
u2 and so on, the following are possible combinations, with
2 channels:

C1 =

[
u1

∅

]
, C2 =

[
∅
u1 u2

]
, C3 =

[
u1

u2

]
. . . (16)

where each row is a channel and ∅ means the channel is empty.
Since a user can either allocate power to one channel or

stay silent, the number of possible combinations of users
is (K + 1)N . Thus we have ΩC = [C1, C2, ..., C|ΩC |] and
|ΩC | = (K + 1)N . Clearly if no users in the combination
has an incentive to change channels, the combination is table.
However, if in C2 in (16), u1 wants to change channel after
u2 starts signaling on the same channel, C2 is not stable.

We now denote the coexistence between a pair of users
as u1(k) ← u2(k) if u2 can transmit in channel k at the
same time as u1 and not have an incentive to change power
allocation. If both can coexist with the other, we denote this
as u1(k) ↔ u2(k). We can now state the condition for the
existence of a NE.

Theorem 4. A NE exists if ∃C ∈ ΩC , such that

ui(k)↔ uj(k),∀i, j, k ∈ ΩN ∩ ΩC (17)

In plain text this says that a NE exists if there exists a
combination such that all users transmitting on channel k can
coexist with the other users transmitting on channel k, for all
k ∈ ΩK .

Unfortunately, the existence of a NE does not automatically
mean the NE is reached. In fact, if we assume C1 is the
combination that first occurs in time, C2 the next, and so on,
then if a combination equal to C1 occurs later in time, then a
NE can not be reached.

Theorem 5. A NE can not be reached if

Cj = Ci, j > i+ 1 (18)

Thus, although simple in theory, single band binary power
control is not as trivial as seemed at first. The problem of
stability is implemented as follows in this paper. We let each
user have memory of its past power allocations, and the first
user to suspect that it is in a loop, i.e. suspects that a NE
can not be reached, shuts down transmission and waits one
iteration. By doing this it hopes that once it starts transmitting
again, the combination has changed sufficiently so that a NE
can be reached. If the same user notices its in a loop again,
it shuts down for 2 iterations, then 4, 8 and so on. To be able
to start transmitting again, the user also has to satisfy (12) or
(15).

The upside is that once a NE is reached, this is the Pareto
optimal solution [7] due to our definition of stability and
criteria for transmission. In general a NE is not Pareto optimal
[7].
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Fig. 2. Environment used for simulations in this paper. Users transmitters
and desired receivers are uniformly distributed in an area of 100×100 meters.

V. SIMULATION RESULTS

In order to investigate the performance of the proposed
binary power control schemes in terms of sum rate and number
of active users, we consider the wireless multiuser, multi-
band system given in Fig. 2. A user’s transmitter and desired
receiver is randomly placed in an area of 100 × 100 meters,
with 5 available channels. In this paper we assume channel
gains are only dependent on distance, i.e.

|hij(k)|2 = d−γij ,∀k ∈ ΩK (19)

where γ, which is the path loss exponent, is set to 3.6
according to measurements given in [8] for an urban area.
We assume each user has a transmit power constraint of 1 W,
and N0 is set to −70 dBm, so that a transmitter can reach a
receiver on the opposite side of the area.

We compare the proposed power allocation schemes pre-
sented in this paper against the well known iterative water
filling algorithm (IWFA)[1] and an algorithm known as PI-
WFA [9]. IWFA is a greedy algorithm where each user tries
to maximize rate selfishly subject to the power constraint.
PIWFA, on the other hand, is an algorithm which performs
close to optimal in terms of sum rate, but as a consequence
has added complexity [9].

The sum rate of the system with different amount of
information is plotted in Fig. 3. For simplicity we have used
the same η with only NI knowledge and with additional
information. In the plots we have chosen 3 different values
for η which yields 3 interesting cases. With η = 0 (plotted
with cyan color), only NI knowledge and low weighting (low
w) yields the same sum-rate, but by increasing the weight
sufficiently the sum-rate can be increased by as much as 10
b/s/Hz. With η = 3e (plotted with green color), the weighting
in the utility function (13), has less impact on performance,
and it suffices to have w ≥ 1. This is due to the fact that with
high η, less users will satisfy the condition for transmission,
even with low w. But as is seen, with 20 users there is a
18 b/s/Hz gain in performance by using the utility function,
i.e. more knowledge. It is worth noticing that with only NI
knowledge, sum-rate achieved with η = 3e is significantly
larger than the sum-rate achieved by the utility function and
η = 0.



5 10 15 20
0

20

40

60

80

100

η = 0 η = 3e1 η = 5e1

No. of Users

Su
m

-R
at

e
b/

s/
H

z
PIWFA IWFA
Optimal Binary Binary, only NI
Binary, w = 1 Binary, w = 1000
Binary, w = 100000

Fig. 3. Sum rate plotted against increasing number of users for binary power
control.

The sum-rate achieved with η = 3e and the utility function
is just below the sum-rate achieved with optimal binary power
control (plotted with magenta color). Optimal binary power
control is found in the simulations by comparing the left hand
side in (8) to the right hand side for each user in MATLAB.

With high number of users, sum-rate can be further in-
creased by increasing η. With number of users equal to 20,
setting η = 5e (plotted with blue color) yields a sum-rate 10
b/s/Hz larger than the one achieved with optimal binary power
control. This may seem strange, but can be explained by noting
that the optimal binary power control presented in this paper
is in fact suboptimal. The reason is that we have not taken
into account optimal user selection in this paper. As shown
in [4], binary power control can be improved by optimally
selecting those users allowed to transmit according to their
channel gain between transmitter and desired receiver. This is
called multiuser diversity gain. By making η sufficiently large,
this is actually what happens. With low number of users, i.e.
sparse network, there is less probability that any user will
satisfy a high η. However, in a dense network, there is a
high probability that some users will satisfy this high η. This
explains why the sum-rate increases more slowly while at the
same time a higher sum-rate is achieved with high number of
users for η = 5e.

All the results described above can be further explained by
Fig. 4 and Corollary 3. Fig. 4 shows the number of active
users divided by the number of available users in the system.
To perform close to optimum, it is clear that PIWFA limits
the number of active users so that roughly only 2 users are
active at the same time. The effect of both increasing η and w
is that the number of users transmitting is limited. With η = 0
and only NI knowledge, and since SINR is nonnegative, all
users are able to transmit. By increasing η, we can decrease
the number of active users, and through weighting we can
assure that only those users with high quality links are able
to transmit.
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Fig. 4. Active users divided by total number of users for binary power
control.

VI. CONCLUSION

In this paper we have investigated binary power control
schemes in a wireless multiuser, multiband interference system
where a user is restricted to single channel transmission. We
proved that in a dense network, only a subset of users can
transmit in order to achieve maximum sum-rate. Different
binary power control schemes were derived and the stability of
the algorithm was investigated. Through simulations we found
that constraining the users to only transmit on one channel
and thus not exploiting the multiplexing gain only degrades
performance in systems with more channels than users and
that in a dense network single band binary power control can
even improve the rate achieved with more complex algorithms
(PIWFA) by sufficient settings in the algorithm.

REFERENCES

[1] W. Yu, “Competition and cooperation in multi-user communication envi-
ronments,” Ph.D. dissertation, Stanford University, 2002.

[2] S. Hayashi and Z.-Q. Luo, “Spectrum management for interference-
limited multiuser communication systems,” Information Theory, IEEE
Transactions on, vol. 55, no. 3, pp. 1153 –1175, 2009.

[3] R. Gohary and T. Willink, “Robust iwfa for open-spectrum communica-
tions,” Signal Processing, IEEE Transactions on, vol. 57, pp. 4964 –4970,
dec. 2009.

[4] Z. Bassem, H. Majed, A. Hayara, and G. E. Oien, “Binary power
allocation for cognitive radio networks with centralized and distributed
user selection strategies,” Physical Communication 1 (2008) 183-193,
September 2008.

[5] A. Gjendemsjo, D. Gesbert, G. Oien, and S. Kiani, “Optimal power allo-
cation and scheduling for two-cell capacity maximization,” in Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006 4th
International Symposium on, pp. 1 – 6, 2006.

[6] A. Gjendemsjo, G. Oien, and D. Gesbert, “Binary power control for multi-
cell capacity maximization,” in SPAWC, pp. 1 –5, 2007.

[7] M. J. Osborne, An Introduction to Game Theory. Oxford, U.K.: Oxford
Univ. Press, 2004.

[8] A. Goldsmith, Wireless Communications. New York, USA: Cambridge
University Press, 2005.

[9] F. Wang, M. Krunz, and S. Cui, “Price-based spectrum management in
cognitive radio networks,” Selected Topics in Signal Processing, IEEE
Journal of, vol. 2, pp. 74 –87, feb. 2008.


