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Abstract—For attracting primary users to participate in sec-
ondary spectrum market, auction was proposed as an alternative
for spectrum trade. Existing auction schemes are either to be
single-sided trade which only supports heterogeneous cognitive
radio networks without guarantee of bid truthfulness, or to be
truthful single-unit auction which only supports homogeneous
channels. Few of them comprehensively take all these factors
in practical spectrum trade into consideration such as spec-
trum allocation and reusability, channel diversity and economic
property. A Truthful Bilateral Multi-unit Auction with features
of supporting Heterogeneous networks(TBMAH) is proposed
in this paper. We do experiments with both simulation and
real networks, and the results show that TBMAH trades more
spectrum resources than TRUST by 13.01% in average.

I. INTRODUCTION

Many researchers are interested and engaged in solving how
to dynamically utilize spectrum resources efficiently in recent
years. So far many dynamic spectrum access technologies have
been proposed and auction is one of the best-known market-
driven mechanism among them. In contrast to the primary
spectrum market conducted by spectrum administration de-
partment like FCC and its counterparts in other countries, we
are mainly focused on secondary spectrum market, which is
different from the primary one mainly in validation of time
periods and regions.

Zhou[1] proposes the first truthful spectrum auction-
VERITAS which supports diverse bidding formats and mul-
tiple objects auction, but VERITAS only addresses single-
sided auction. Subramanian[2] presents a coordinated dynamic
spectrum access architecture which is composed of multiple
buyers characterized by heterogeneous channel width and one
spectrum broker. This architecture adopts physical interference
model and improves spectrum utility by multiplexing channel
among non-conflict base stations. However, it is a single-
sided auction and has no guarantee of truthfulness of bidding
function. Zhou puts forward a general framework-TRUST for
truthful bilateral spectrum auctions in[3][4]. For the purpose of
avoiding bid manipulation, TRUST adopts a bid-independent
buyer grouping method and employs a truthful auction mech-
anism like McAfee double auction. However, TRUST is a
single-unit auction and only supports homogeneous channel.
Other efforts either lead to market manipulation due to the
loss of property of truthfulness like[5][6][7][8] or have no
consideration of reusability like[9][10].

In order to build up a more practical secondary spectrum
market, we analyze the problem comprehensively and propose
a truthful bilateral multi-unit auction which supports partici-
pation of heterogeneous networks. The rest of our paper is
organized as follows: section II describes spectrum auction
problem formally and shows assumptions in the design of
spectrum auction. We make detailed description of our auction
scheme in section III and illustrate results in section IV with
both simulation and real networks, and finally conclude in
section V.

II. SPECTRUM AUCTION PROBLEM DESCRIPTION

The scenario we considered consists of multiple spectrum
providers and demanders. Spectrum providers want to earn
additional revenues by leasing spectrum at their free time.
Spectrum demanders require more spectrum resources to alle-
viate their heavy business load, and accordingly they should
pay sellers some money as compensation. For the purpose of
trading efficiently, we assume that there is a broker taking
charge of building relationship between two sides, executing
spectrum allocation, charging buyers and paying sellers in
secondary spectrum market.

A. Spectrum Auction Problem Definition

Definition 1. Spectrum auction is the process of determining
winners and calculating clearing price while maximizing the
total number of resources transacted. Each winning buyer is
charged for the resources he obtained and each winning seller
is payed for what he leased.

We assume that the auction is bid-sealed and carried out
periodically, neither sellers nor buyers collude, spectrum re-
sources collected from different sellers are not necessarily
continuous and demands of all buyers are not channel-specific.
The auctioneer will stop auction process if ends up with an
extra profit. For the purpose of simplicity, we adopt coverage-
based interference model like [3], so we assume that the
auctioneer is capable of obtaining coordinates and transmitted
power of each network.

III. DESIGN DETAILS OF TBMAH
A. Buyer Grouping problem

In order to utilize spectrum efficiently, we divide those
nodes which can use the same spectrum into groups. Ac-
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cording to the coverage-based interference model we adopt,
any two nodes within the same group are not in conflict
with each other. Buyer grouping problem can be transformed
into the problem of finding chromatic number or maximum
independent set of a graph, which is NP-hard and many
approximate algorithms have been proposed.

B. Bid Series Generation

These bidding groups are real participants of the auction.
Bid series generation algorithm is described as follows.

Algorithm 1 Bid Series Generation Algorithm
1: Input: Buyer group set 𝐺 with each element 𝐺𝑖 consists

of a certain number of non-conflict buyers.
2: Output: Bids of each group 𝐺𝑖 in buyer group set 𝐺.
3: for 𝐺𝑖 in 𝐺 do
4: 𝑙𝑖 =

∣𝐺𝑖∣
max
𝑗=1

{
𝐵𝑛

𝑗 ×𝐵𝑤
𝑗

}
5: for 𝑘 = 1 to 𝑙𝑖 do
6: for each buyer 𝐵𝑗 (1 ≤ 𝑗 ≤ ∣𝐺𝑖∣) in group 𝐺𝑖 do
7: if

⌊
(𝑘 − 1) /𝐵𝑤

𝑗

⌋
+ 1 =

⌊
𝑘/𝐵𝑤

𝑗

⌋
then

8: 𝑡𝑜𝑡𝑎𝑙 + = 𝐵𝑤
𝑗 {total:net increase channel re-

source amount}
9: 𝑙𝑖 =

∣𝐺𝑖∣
min
𝑗=1

𝐵𝑝
𝑗

10: end if
11: end for
12: 𝐵𝑖𝑑𝑖[𝑘]← 𝐵𝑖𝑑𝑖[𝑘 − 1] + 𝑡𝑜𝑡𝑎𝑙 × 𝑝𝑘𝑖
13: end for
14: for 𝑘 > 𝑙𝑖 do
15: 𝐵𝑖𝑑𝑖[𝑘]← 𝐵𝑖𝑑𝑖[𝑙𝑖]
16: end for
17: end for

As described in algorithm 1, we first check the largest
amount of resources requested by each group. For any 𝑘 < 𝑙𝑖
resource, divide the 𝑘 resource into channels of buyer 𝐵𝑗 . If
𝑘 is wide enough to accommodate one more channel of buyer
𝐵𝑗 , the money he is willing to pay should be accumulated with
𝐵𝑤

𝑗 × 𝑝𝑘𝑖 , in which 𝑝𝑘𝑖 denotes the least unit spectrum price
willing to pay by members of this group when 𝑘 resources
assigned. Assigning redundant resource is meaningless for this
group, so they are not likely to pay more if allocated more
resources than what they demanded.

C. Winners Determination

1) Winning buyer determination: With bidding series of
competitive groups and the number of resources on sale, the
auctioneer assigns spectrum with the goal of maximizing total
revenues from these bidders. Variable 𝑆𝑊𝑛

𝑚 is defined as
the maximal revenue which can be obtained when 𝑚 bidders
waiting for allocation result and 𝑛 resources left.

𝑆𝑊𝑛
𝑚 =

𝑛
max
𝑖=0

(
𝐵𝑖𝑑𝑖𝑚 + 𝑆𝑊𝑛−𝑖

𝑚−1

)
(1)

From descriptions in algorithm 2, it is obvious that we solve
this problem with dynamic programming algorithm and record

Algorithm 2 Winning Buyer Determination Algorithm
1: Input: Bidding series generated in III-B for bidding group

set 𝐺 and the number of resources 𝑅 for sale.
2: Output: Assignment for each group 𝐺𝑖 in 𝐺.
3: for 𝑖 = 1 to ∣𝐺∣ do
4: for 𝑗 = 1 to 𝑅 do
5: for 𝑘 = 1 to 𝑗 do
6: if 𝐵𝑖𝑑 [𝑖] [𝑘] + 𝑆𝑊 [𝑖− 1] [𝑗 − 𝑘] > 𝑆𝑊 [𝑖] [𝑗]

then
7: 𝑆𝑊 [𝑖] [𝑗]← 𝐵𝑖𝑑 [𝑖] [𝑘] + 𝑆𝑊 [𝑖− 1] [𝑗 − 𝑘]
8: 𝐴𝑠𝑠𝑖𝑔𝑛 [𝑖] [𝑗]← 𝑘
9: end if

10: end for
11: end for
12: end for
13: Initialize temporary variable 𝑗 = 0.
14: for 𝑖 = ∣𝐺∣ to 1 do
15: 𝑁 [𝑖] = 𝐴𝑠𝑠𝑖𝑔𝑛[𝑖][𝑅− 𝑗]
16: 𝑗+ = 𝑁 [𝑖]
17: end for

each intermediate state with an auxiliary two dimensional
array 𝑆𝑊 [∣𝐺∣][𝑅] for avoiding duplicated computations. Vari-
able 𝐴𝑠𝑠𝑖𝑔𝑛[𝑖][𝑗] denotes the optimal amount should be al-
located to bidder 𝑖 when 𝑗 resource available and 𝑆𝑊 [𝑖][𝑗]
means the corresponding maximal revenue.

2) Winning seller determination: Our winning seller de-
termination follows what McAfee proposed in [10], which is
a VCG scheme in nature and is commonly used in truthful
auction. Sort sellers by their bidding prices in non-decreasing
order first, then find the proper argument 𝑘 value.

D. Pricing

1) Costs of buyers: Before charing a single buyer, we
need to calculate firstly how much each bidding group should
pay when 𝑘 resources assigned, then accumulate each buyer’s
charge with different 𝑘. The pricing algorithm for each group
with 𝑘 resources assigned is stated as algorithm3 shows.

According to descriptions of algorithm 3, we first derive
net bid of each group 𝐺𝑖 when 𝑘 resources assigned from
initial bid series generated in algorithm III-B. We can see that
charge of bidding group 𝐺𝑖 when 𝑘 resources assigned equals
to the difference of total revenue obtained under two situations.
The first one is accumulated revenues when he is absent from
this auction, and the other is sum of revenues from all other
bidders when he participates. This is also the main idea of
VCG truthful auction. Charge of each buyer 𝐵𝑗 in group 𝐺𝑖

can be computed with the following equation.

𝑝𝑖𝑗 =

min(𝑁 [𝑖],𝐵𝑛
𝑗 ×𝐵𝑤

𝑗 )∑
𝑘=1,𝑘%𝐵𝑤

𝑗 =0

𝐶𝑘
𝑖

𝐵𝑖𝑑𝑛𝑒𝑡 [𝑖] [𝑘]
× 𝑝𝑘𝑖 ×𝐵𝑤

𝑗 (2)

In equation 2, we accumulate charge of buyer 𝐵𝑗 with
different 𝑘 which meets 1 ≤ 𝑘 ≤ min

(
𝑁 [𝑖] , 𝐵𝑛

𝑗 ×𝐵𝑤
𝑗

)
and



Algorithm 3 Pricing Algorithm for Bidding Groups
1: Input: Bidding series 𝐵𝑖𝑑, assignment solution 𝑁 and the

amount of available spectrum resource 𝑅.
2: Output: Pricing scheme 𝐶𝑘

𝑖 for group 𝐺𝑖 in buyer groups
set 𝐺 when 𝑘 resources assigned.

3: Derive net bid of each group 𝐺𝑖 when 𝑘 resources
assigned 𝐵𝑖𝑑𝑛𝑒𝑡 from bid series 𝐵𝑖𝑑.

4: for 𝐺𝑖 in 𝐺 do
5: for 𝑘 = 1 to 𝑁 [𝑖] do
6: Replace bid of group 𝐺𝑖 when 𝑘 resources assigned

𝐵𝑖𝑑𝑛𝑒𝑡 [𝑖] [𝑘] with zero to construct a new bidding
series 𝐵𝑖𝑑′ and new net bidding series 𝐵𝑖𝑑′𝑛𝑒𝑡.

7: Substitute 𝐵𝑖𝑑′ and available resource 𝑅 into algo-
rithm 2, calculate out a new assignment 𝑁 ′.

8: 𝑟𝑒𝑣1 =
∣𝐺∣∑
𝑗=1

𝑁 ′[𝑗]∑
𝑡=1

𝐵𝑖𝑑′𝑛𝑒𝑡 [𝑗] [𝑡]

9: 𝑟𝑒𝑣2 =
∣𝐺∣∑

𝑗=1,𝑗 ∕=𝑖

𝑁 [𝑗]∑
𝑡=1

𝐵𝑖𝑑𝑛𝑒𝑡 [𝑗] [𝑡] +

𝑁 [𝑗]∑
𝑡=1,𝑡∕=𝑘

𝐵𝑖𝑑𝑛𝑒𝑡 [𝑖] [𝑡]

10: 𝐶𝑘
𝑖 = 𝑟𝑒𝑣1− 𝑟𝑒𝑣2

11: end for
12: end for

is exactly divisible by 𝐵𝑤
𝑗 . 𝐶

𝑘
𝑖
/
𝐵𝑖𝑑𝑛𝑒𝑡 [𝑖] [𝑘] means the scaling

factor between real charge and promising bid of group 𝐺𝑖 with
𝑘 resources allocated, and 𝑝𝑘𝑖 is the least price for unit resource
used for calculating net bid 𝐵𝑖𝑑𝑛𝑒𝑡 [𝑖] [𝑘].

2) Revenues of sellers: For the sellers side auction, we
simplify McAfee’s double auction into single side auction.
Revenues of each seller 𝑆𝑖 is calculated with the following
equation.

𝑃𝑖 = 𝑆𝑛
𝑖 × 𝑆′𝑝

𝑘 (3)

In equation 3, 𝑆𝑛
𝑖 denotes the number of resources 𝑆𝑖 sold

and 𝑆′𝑝
𝑘 is the 𝑘𝑡ℎ sorted price for unit spectrum resource.

E. Proof of Economic Properties

1) Individual Rationality: We prove individual rationality
of winning buyers and winning sellers separately. If payments
of all winning buyers are not bigger than their bid and revenues
of all winning sellers are not less than their expected earnings,
we say that they are rational.

Proof: According to equation 2 and algorithm 1, the
difference between real charged value of buyer 𝐵𝑗

𝑖 and his
promise equals:

Δ𝑖𝑗 =

min(𝑁 [𝑖],𝐵𝑛
𝑗 ×𝐵𝑤

𝑗 )∑
𝑘=1,𝑘%𝐵𝑤

𝑗 =0

(
𝐶𝑘

𝑖

𝐵𝑖𝑑𝑛𝑒𝑡 [𝑖] [𝑘]
− 1

)
× 𝑝𝑘𝑖 ×𝐵𝑤

𝑗 < 0

(4)
From calculation of 𝐶𝑘

𝑖 in algorithm 3, we know that 𝐶𝑘
𝑖 is

critical value of net bid 𝐵𝑖𝑑𝑛𝑒𝑡[𝑖][𝑘]. According to definition
of critical value and theorem 3.3 in [9] , we know that 𝐶𝑘

𝑖 <

𝐵𝑖𝑑𝑛𝑒𝑡 [𝑖] [𝑘], so Δ𝑖𝑗 < 0, that is to say, each buyer 𝐵𝑗
𝑖 is

rational and will not be charged more than what he bids.
For each winning seller, the clearing price is the 𝑘𝑡ℎ bidding

price and sellers are sorted by their bidding price in non-
decreasing order, so winning sellers are payed more than what
they desire.

2) Truthfulness: In this section, we try to prove that each
bidding buyer 𝐵𝑗 can not improve its utility by bidding
untruthfully. We examine four possible cases one by one when
bidder 𝐵𝑗 bids truthfully and untruthfully as the following
parts describe.

Proof:
∙ Case 1: Either bidding truthfully or untruthfully in this

case will make buyer 𝐵𝑗 lose the auction, so buyer 𝐵𝑗

will be charged with zero under both situations and his
utility remains to be zero.

∙ Case 2: Buyer 𝐵𝑗 loses when he bids untruthfully and
wins when bids truthfully, as TBMAH always tries to
maximize its revenue from potential buyers, so it is
easy to infer that our auction scheme is monotonic. So
his untruthful bid 𝐵′𝑝

𝑗 must meet 𝐵′𝑝
𝑗 < 𝐵𝑝

𝑗 in this
case, because our auction is individual rational for each
winning buyer, so every winner’s utility is non-negative,
which is not less than that when he bids untruthfully with
utility equals to zero.

∙ Case 3: For the same reason of monotonicity of our
auction scheme, this case only happens when 𝐵′𝑝

𝑗 >
𝐵𝑝

𝑗 = 𝑉𝑗 . Suppose that 𝐵𝑝
𝑗 is not the lowest bid price of

unit spectrum, according to algorithm 1, there must be a
price 𝑝 < 𝐵𝑝

𝑗 which is used for calculating bidding series.
When buyer 𝐵𝑗 bids untruthfully with 𝐵′𝑝

𝑗 , bidding series
and final assignment result should not change, so buyer
𝐵𝑗 loses again. However, this is in contradiction with
the fact that buyer 𝐵𝑗 wins by bidder higher. So our
hypothesis does not hold and 𝐵𝑝

𝑗 is the lowest bid when
he bids truthfully. Let symbol 𝛿 denotes the net increasing
amount of group 𝐺𝑖 with 𝑘 resources assigned. The
following non-equation must exist.

𝐵𝑖𝑑𝑛𝑒𝑡 [𝑖] [𝑘] < 𝐶𝑘
𝑖 < 𝐵𝑖𝑑′𝑛𝑒𝑡 [𝑖] [𝑘]

⇒ 𝛿 ×𝐵𝑝
𝑗 < 𝐶𝑘

𝑖 < 𝛿 × 𝑝′𝑘𝑖

⇒ 𝐵𝑝
𝑗 < 𝐶𝑘

𝑖
/
𝛿 < 𝑝′𝑘𝑖

(5)

In the above non-equation, 𝐵𝑝
𝑗 equals to estimated true

value 𝑉𝑗 of buyer 𝐵𝑗 , 𝑝′𝑘𝑖 is the least unit spectrum price
used for calculating bidding series,𝐶

𝑘
𝑖
/
𝛿 is the clearing

price of unit spectrum. So when buyer 𝐵𝑗 wins by
bidding higher than its true value, his utility becomes
𝑉𝑗 − 𝐶𝑘

𝑖
/
𝛿 is negative and less than the utility when he

bids truthfully which equals to zero.
∙ Case 4: No matter buyer 𝐵𝑗 bids truthfully or not, he

will always win the auction, and will be charged with the
same value which equals to his critical value under both
situations. So his utility which is defined as the difference
between his value and payment is invariant.



In summary, each potential buyer has no motivation to bid
untruthfully and bidding truthfully becomes their dominating
strategy. Proof of truthfulness for sellers side in TBMAH is
similar to McAfee double auction, for the sake of saving space
we omit this part, anyone who wants to see details, please
reference to [10].

3) Ex-post Budget Balance: As the auctioneer stops spec-
trum auction when its income is not less than outcome, so
TBMAH keeps ex-post budget balance and the final transacted
resources 𝑅 is maximal under current bidding functions of
bidding buyers.

IV. EXPERIMENTAL RESULTS

A. Group Algorithms

Grouping algorithms we implemented include Stripe[11],
Max-IS[12], Greedy-U[13], Greedy[13], Rand and
Lexicographic[14]. Potential buyers with coverage radius
equals to 50 are uniformly distributed within location
1000× 1000, and each potential buyer with a circle coverage
stands for a network. Network scale varies from 10 buyers
1 seller to 100 buyers 10 sellers. Experimental results are
averaged over 500 times with each network size.

(a) Reusability (b) Standard deviation of reusability

Fig. 1. Group with different algorithms

Performances of different grouping algorithms are measured
with reusability which is defined as average number of nodes
in each group. Standard deviation of reusability characterizes
uniformity among different groups. The X-coordinates of both
figures are case index of different network scale. From Fig.
1(a) we can see that reusability of Greedy-U and Greedy
algorithm are relatively lower than the other four algorithms.
Result shown in Fig. 1(b) tells us that standard deviation of
Stripe is minimum among all these algorithms.

B. Performance comparisons in different scenarios

In a practical spectrum auction, auction patterns can be
single-unit homogeneous, single-unit heterogeneous, multi-
unit homogeneous and multi-unit heterogeneous. However,
TRUST can only support single-unit homogeneous, for the
sake of comprehensive comparisons with our scheme we make
small extensions of TRUST.

For single-unit homogeneous scenario, our spectrum auction
scheme TBMAH is degraded to TRUST. Experimental result
also validates that the number of resources transacted of
TBMAH is the same as that of TRUST. However, for the

other three scenarios which are commonly seen in practical
auction, TBMAH outperforms extended version of TRUST
with Stripe grouping algorithm, as can be seen in Fig.2. The
X-coordinate values are still case index of different network
scales. In Fig.2(b), the reason of extended version of TRUST
exceeds TBMAH at the beginning is that increasing nodes
by duplicating nodes with request large than 1 is favor of
trade with sellers. Moreover, trades with different grouping
algorithms obtain similar results, and we omit results of other
grouping algorithms for the sake of saving space.

C. Impact of Distribution

From Fig.3(a) we can see that with seller’s asking price
increasing from 0.5 to 5, the number of resources transacted
of both TBMAH and TRUST decreases due to elevation of
spectrum price goes against transaction. With the amount of
spectrum buyer requested increases from 1 to 10 in Fig.3(b),
the transacted amount of both TBMAH and TRUST increases
at the beginning due to abundant free spectrum resources
and relative few requests, then both curves go flat because
of reaching system’s maximal capacity and not being able
to accommodate any more requests. With buyer’s request
channel width increases, the number of resources transacted
of TBMAH rises then becomes saturated. While the number
of resources transacted of TRUST rises at the beginning due
to oversupply. Due to increase of request channel width, the
number of super sellers decreases and asking prices of them
increase, the number of successful trade of extended version
of TRUST declines afterwards.

D. Comparisons with Real Network

Besides making detailed comparisons between TBMAH and
TRUST with simulation networks, we also study performance
of them with real networks. We use locations of real cellular
base stations available in FCC public GIS database [15], both
TBMAH and TRUST are set to support multi-unit heteroge-
neous channel width.

Fig. 4. TBMAH vs. TRUST with real networks

Fig.4 shows that TBMAH outperforms TRUST. With the in-
creasing number of potential buyers, the number of transacted
resources of both TBMAH and TRUST increases and gets
saturated finally. It is obvious that due to limited available
resources, the number of buyers required to get TBMAH
saturated is less than that of TRUST. This is because that it is



(a) Single unit heteorgeneous (b) Multi unit homogeneous (c) Multi unit heterogeneous

Fig. 2. TBMAH vs. TRUST in different scenarios

(a) Seller asking price distribution (b) buyer request amount distribution (c) buyer channel width distribution

Fig. 3. TBMAH vs. TRUST with different distributions

unnecessary for TBMAH to format diverse channel widths
with the largest one and reconstruct the graph by making
mirrors of nodes with multiple resources request.

V. CONCLUSION

We propose a truthful bilateral multi-unit auction with
characteristic of supporting heterogeneous networks(TBMAH)
in this paper. Definition of dynamic spectrum allocation prob-
lem from auction perspective and design details of TBMAH
are described. Results of both simulation and real networks
experiments show that TBMAH outperforms TRUST on the
whole, especially in different scenarios, TBMAH trades more
spectrum resources than TRUST by 13.01% in average.
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