
Optimized Strategies for Coordinated Spectrum
Sensing in Cognitive Radio Networks

Zaili Wang†, Zhiyong Feng‡, Di Zhang§, Jiantao Xue¶, Ping Zhang$

Wireless Technology Innovation Institute
Key Laboratory of Universal Wireless Communications, Ministry of Education

Beijing University of Posts and Telecommunications, Beijing, 100876, P.R.China
Email: {zaili.wang†, zhangdiwti§, xuejiantao¶}@gmail.com, {fengzy‡, pzhang$}@bupt.edu.cn

Abstract—In Cognitive Radio Networks, coordinated spectrum
sensing is a novel technique that the cognitive terminals are
assigned to sense different channels in the same sensing slots
in order to obtain the occupancy status of all the channels in
every sensing period. In this paper the coordinated spectrum
sensing strategies are discussed, the functional architecture is
put forward, a Kuhn-Munkres based, alongside with a greedy
based algorithm for coordinated sensing strategies arrangement
is proposed. Simulation results show that the algorithms can
significantly improve the overall sensing performance compared
with a basic greedy based algorithm.

I. INTRODUCTION

Cognitive Radio (CR) has been developing rapidly for the
last ten years since it was proposed by Mitola in 1999 [1].
As solutions to the spectrum scarcity problem, CR tech-
nologies enable the unauthorized users (Secondary Users,
SUs) to utilize the spectrum when it is not in use by the
authorized users (Primary Users, PUs). Therefore Cognitive
Radio Networks (CRNs) have to be equipped with spectrum
sensing functionalities so that they can detect whether the
channel is occupied by PU signals. Spectrum sensing has been
extensively studied as an indispensable technique for CRNs. A
number of sensing algorithms have been put forward, such as
energy detection, matched filter detection and cyclostationary
feature detection [2]. Furthermore, cooperative spectrum sens-
ing that a controlling node fuses the local sensing results from
the cognitive terminals to get a final decision, has also been
extensively studied as an approach to improving the sensing
performance and overcoming the hidden node problem. Most
of the study on cooperative sensing focus on sensing nodes
selection [3], data fusion [4], sensing-throughput tradeoff [5]
and relevant MAC protocol design [6].

In practice, CRNs usually have numerous potentially uti-
lizable channels for dynamic access. The networks need to
get the accessibility of all the channels in each sensing cycle.
However, the time length of the sensing slots has to be very
short to avoid the harmfully interruption of the communica-
tions in CRNs, therefore it is hardly possible for a cognitive
terminal (CT) to perform wideband spectrum sensing in a
sensing slot due to hardware (e.g. A/D sampling rate) and
energy constraints. To solve the problem, an effective way is
to assign the terminals to sense different channels in the same
sensing slots.

We name the scheme as coordinated spectrum sensing to
distinguish it from the conventional cooperative spectrum sens-
ing schemes. In coordinated spectrum sensing, each terminal
is assigned to detect a channel and every channel needs to
be detected unless the terminals are less than the channels.
Moreover, a joint work of coordinated sensing and cooperative
sensing is available in case the terminals outnumber the
channels, as the terminals assigned to sense the same channel
can cooperate to achieve better sensing performance. The idea
of coordinated spectrum sensing was proposed in [7] with the
name of Frequency-Division Cooperative Spectrum Sensing
(FD-CSS) and adopted in the works in [8].

Here comes the vital question in coordinated sensing: how
to assign the terminals to sense the channels to achieve the best
overall sensing performance? In [8] the terminals are randomly
assigned, which may lead to poor system sensing performance.
[7] pointed out that the band assignment strategy should be
obtained based on the various conditions of the channels at
each terminal. However, it is very hard for CRNs to estimate
the channel condition of the terminals to the PU transmitters
in real-time. In addition, the band assignment algorithm was
not discussed in detail in [7].

In this paper we discuss several key issues in coordinated
spectrum sensing. First, we put forward a functional archi-
tecture in the cognitive base station (CBS) that supports the
coordinated sensing procedure. Second, we propose a band
assignment strategy for coordinated sensing based on the
Kuhn-Munkres Algorithm. Third, we propose a strategy with
relatively inferior performance but lower complexity based on
the greedy algorithm .

The rest of this paper is organized as follows: Section II
illustrates the functional architecture as well as an overview
of coordinated sensing procedure. As an important preceding
step in coordinated sensing strategy arrangement, the sensing
performance evaluation process is discussed in Section III.
In Section IV the algorithms for coordinated sensing strategy
arrangement are described in detail. The simulation results are
shown and discussed in Section V and the paper is concluded
in Section VI.
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Fig. 1. The functional architecture of coordinated spectrum sensing

II. AN OVERVIEW OF COORDINATED SPECTRUM SENSING

A. The Functional Architecture

This paper is on the ground of a CRN consisted of a
CBS and N cognitive terminals under the coverage of it. The
spectrum is divided into M channels, marked as f1, f2, ..., fM .
In the CRN, the terminals detect the channels periodically
in the sensing slots, reporting the binary results, where 1
indicating PU signals detected and 0 indicating PU signals
not detected, to the CBS.

It is obvious that some functional modules have to be
appended in the CBS to implement the optimized coordinated
sensing strategies. In general, the functional modules should
include the followings, as illustrated in Fig. 1:

Fusion Center: Fuses the local sensing results to get final
PU occupancy decisions for the respective channels;

Sensing Database: Stores the historical fusion decisions as
well as the raw sensing reports from the terminals;

Sensing Performance Evaluator: Extracts relevant data
from the Sensing Database and evaluates the sensing perfor-
mance of the terminals for the channels based on the data;

Sensing Coordinator: Arrange a coordinated sensing strat-
egy on the basis of the evaluated sensing performance.

B. The Coordinated Spectrum Sensing Procedure

At the terminals, the probability of misdetection (Pmd) and
false alarm (Pfa) are two kinds of sensing errors indicating
the sensing performance. In this paper energy detection is de-
ployed for local sensing, so according to [9], Pfa is expressed
as

Pfa =
Γ(u, λ

2 )
Γ(u)

(1)

where u is the time-bandwidth product, λ is the detection
threshold, Γ(.) is the gamma function and Γ(., .) is the
incomplete gamma function. The probability of misdetection
(Pmd) under Additive White Gaussian Noise (AWGN) channel
is given by

Pmd = 1 − Qu(
√

2γ,
√

λ) (2)

where γ is the SNR at the CT and Qu(., .) is the generalized
Marcum Q-function.

The reported binary local sensing results are fused by the
Fusion Center in the CBS. On the criterion of OR-Rule, the
probability of misdetection and false alarm of channel fm are

Qm
md =

∏
f(n)=fm

Pn,m
md (3)

Qm
fa = 1 −

∏
f(n)=fm

(1 − Pn,m
fa ) (4)

where f(n) = fm means terminal n is assigned to sense fm,
Pn,m

md and P n,m
fa are the probability of misdetection and false

alarm of terminal n for channel fm.
The fused decisions about the occupancy status of the

channels, along with the raw reported data from the terminals,
are stored in Sensing Database. The Database is updated with
the latest reports and decisions, while the expired data are dis-
carded. The data are used to evaluate the sensing performance
of the terminals, and a coordinated sensing strategy is derived
from the sensing performance by Sensing Coordinator. In the
following sections, we focus on the algorithms for optimizing
the coordinated spectrum sensing strategies.

III. THE EVALUATION OF THE SENSING PERFORMANCE

The evaluation process is an important preceding step,
providing the sensing performance information for the coordi-
nated sensing arrangement algorithms. A terminal which just
accessed in the network cannot join the coordinated sensing
procedure until its sensing performance for the channels is
evaluated.

As mentioned above, there are two performance indicators
for local spectrum sensing, which are Pfa and Pmd. To have
a straight and fair comparison of the sensing performance,
Pfa is set to be a fixed, unified parameter so that Pmd itself
can indicate how reliable the sensing results are. However, in
practice Pmd is not available because in (2), γ is not known
by the CT. Hence, Pmd can just be evaluated in a statistical
way.

When accessed to the CRN, a terminal should at first
sense all the channels in a round robin schedule in successive
sensing slots for T loops (i.e. M × T slots), reporting the
binary sensing results that take part in data fusion. Sensing
Performance Evaluator applies a statistical method estimating
Pmd for sensing the channels [10]. The local sensing reports
are stored in matrix

yloc = [yloc
m,t]M×T

while the fusion decisions are stored as

yfus = [yfus
m,t ]M×T

where yloc
m,t ∈ {0, 1} is the tth local sensing report for channel

m, and yfus
m,t ∈ {0, 1} indicates the corresponding fusion

decisions. The evaluated Pmd of the terminal for channel m
is

Pm
md =

T∑
t=1

yloc
m,t

T∑
t=1

yfus
m,t

(5)



For any terminal, the sensing performance usually varies
from different channels because the channels may be used
by various PU transmitters that the PU signals have different
transmitting power as well as different path loss and shad-
owing to the sensing terminals. Hence, coordinated spectrum
sensing strategies should be carefully designed to achieve
optimized overall sensing performance.

IV. ALGORITHMS FOR COORDINATED SPECTRUM

SENSING STRATEGIES

A. Problem Formulation

The terminals who have their sensing performance evaluated
can join the coordinated spectrum sensing arranged by Sensing
Coordinator. Assume that there are N participating terminals
for coordinated sensing, and N > M so that several terminals
can detect the same channel with cooperative sensing to further
improve sensing performance. With Pfa fixed and unified, the
sensing performance matrix can be defined as

Pmd = [Pn,m
md ]N×M

where n = 1, 2, · · · , N ; m = 1, 2, · · · , M .
On the criterion of OR-rule in the fusion of the cooperative

sensing reports, it is obvious that the probability of misdetec-
tion Qm

md will decrease as more terminals join the cooperation
for sensing channel m. We define the cooperation gain for
terminal n joining the cooperative sensing of channel m as
the decrement of misdetection probability

ΔQn,m
md = Q̃m

md − Pn,m
md Q̃m

md (6)

where Q̃m
md is the misdetection probability for channel m

before the joining of terminal n.
However, the number of the terminals cooperatively sensing

a channel cannot be unlimitedly increased because the prob-
ability of false alarm Qfa is simultaneously increasing. The
system should set Qfa upper bound for detection as a system
requirement. When unified Pfa and Qfa values are set for
sensing, the maximum number of the terminals cooperatively
sensing one channel with OR-rule in data fusion is

N coop
max =

⌊
log(1−Pfa)(1 − Qfa)

⌋
. (7)

The objective of coordinated spectrum sensing is to assign
every terminal with a most appropriate channel to detect,
optimizing the overall sensing performance. Each terminal can
sense one channel while each channel can be cooperatively
sensed by at most N coop

max terminals. The overall sensing
performance can be indicated by the overall probability of
misdetection of the channels, which should be minimized in
the coordinated sensing strategy. Furthermore, the assignment
matrix X = [xnm]N×M is introduced

xnm =
{

1 f(n) = fm;
0 else.

So the sensing task assignment problem for coordinated sens-
ing can be formulated as

min
X

M∑
m=1

Qm
md =

M∑
m=1

( ∏
xnm=1

Pn,m
md

)
;

s.t.

M∑
m=1

xnm = 1, n = 1, 2, · · · , N ;

1 ≤
N∑

n=1

xnm ≤ N coop
max , m = 1, 2, · · · , M ;

xnm ∈ {0, 1}, n = 1, · · · , N ; m = 1, · · · , M.

B. The Kuhn-Munkres Based Algorithm

Kuhn-Munkres Algorithm [11] [12] is a well-known so-
lution for Linear Assignment Problem (LAP) optimization
[13] that works with a pair consisting of an infeasible primal
and a feasible dual solution which fulfill the complementarity
slackness conditions. The algorithm updates the solutions
iteratively until the primal solution becomes feasible, while
keeping the complementary slackness conditions fulfilled. At
this point the primal solution is also optimal, according to
duality theory.

As the sensing task assignment problem is similar to a
LAP to some extent, the proposed assignment algorithm
for coordinated sensing is designed based on Kuhn-Munkres
Algorithm.

In the first step, the algorithm assigns M terminals, one
terminal to sense each channel with Kuhn-Munkres Algorithm
so that overall Pmd is minimized. In each of the subsequent
steps, the algorithm assigns one more terminal to cooperatively
sense each channel, with maximized total cooperation gain.
So the algorithm is realized during an iterative process, in
each iteration the problem is a LAP, solved by Kuhn-Munkres
Algorithm. At the end of each iteration, ΔQmd for the
channels are updated, the assigned terminals are excluded from
subsequent steps. The algorithm terminates when there are no
more unassigned terminals, or every channel has been coop-
eratively sensed by N coop

max terminals. A detailed expression of
the algorithm is given as Algorithm 1.

It is obvious that the iteration time of the proposed Kuhn-
Munkres based algorithm is

Tit = min(�N/M� , N coop
max ) (8)

As Kuhn-Munkres Algorithm can achieve a worst case time
complexity of O(N 3), the worst case time complexity of the
proposed algorithm is O(N 3 · Tit).

C. The Greedy Based Algorithm

Although the Kuhn-Munkres based algorithm can achieve
polynomial complexity, the complexity is still relatively high,
which may hinder its feasibility in practical CRNs. In the fol-
lowings a greedy based algorithm is proposed, which may not
achieve as good performance as the Kuhn-Munkres based one,
but have lower complexity and more applicable in practical
systems.

The greedy based algorithm is based on the idea that Qm
md

can be seen as 1 when there are no terminals assigned to
sense channel m, so the cooperation gain is 1− P n,m

md if n is
the first terminal assigned to sense channel m. Each time the
algorithm finds the maximum cooperation gain value ΔQ ∗

md =



Algorithm 1 The Kuhn-Munkres Based Algorithm
Initialization:
Input: N , M , Pmd, Pfa, Qfa;
Initialize the operation matrix P = [pnm]N×M as P = Pmd;
Initialize the cumulative assignment matrix X = 0,
the iteration assignment matrix X0 = 0,
the cumulative misdetection probability vector Q̃md = 1;
Calculate N coop

max by (7);
Calculate the iteration time Tit by (8).

loop = 0;
while (loop < Tit) do

Nasgn = min(M, (N − M ∗ loop));
Run Kuhn-Munkres Algorithm for P to assign Nasgn

terminals to sense as many channels, ensuring

min
X0

N∑
n=1

M∑
m=1

pnmxnm
0

is achieved;
X = X + X0;
for (every terminal i assigned in this iteration) do

Q̃
f(i)
md = Q̃

f(i)
md P

i,f(i)
md ;

end for
if (No unassigned terminals left) then

break; // Algorithm end.
end if
for (every unassigned terminal j) do

for m = 1 to M do
pjm = Q̃m

md − P jm
md Q̃m

md;
end for

end for
for (every assigned terminal k) do

Set pk,. = 0; /* Exclude the assigned terminals from
the subsequent iteration steps. */

end for
P = 1−P; /* So that the cooperation gain maximization
is transformed into the minimization problem. */
X0 = 0;
loop = loop + 1;

end while

ΔQn,m
md , then assigns terminal n to sense channel m, updates

other terminals’ cooperation gain for channel m, and excludes
terminal n from the subsequent steps. Algorithm 2 describes
the algorithm in detail.

The algorithm proposed in this subsection can be seen as
a sorting procedure followed by the reciprocation of value
adjustment and corresponding repositioning in the sorted array.
Taking advantage of the data structure of heap, the worst case
time complexity of the sorting procedure can achieve O(MN ·
log MN ), which is around O(N log N ) when N is large, and
the complexity of the following steps is no higher than O(N ·
min(N, N coop

max ∗M)), which is around O(N ) when N is large.
Hence, the time complexity of the greedy based algorithm is
around O(N log N ).

Algorithm 2 The Greedy Based Algorithm
Initialization:
Input: N , M , Pmd, Pfa, Qfa;
Initialize the cooperation gain matrix
ΔQmd = [ΔQn,m

md ]N×M as ΔQmd = 1− Pmd;
the assignment matrix X = [xn,m]N×M as X = 0,
the cumulative misdetection probability vector Q̃md = 1;
the number of assigned terminals y = 0;
Calculate N coop

max by (7).

while (y < min(N, N coop
max ∗ M)) do

Find the maximum cooperation gain value
ΔQ∗

md = ΔQn,m
md in ΔQmd;

xn,m = 1; /* Assign terminal n to sense channel m. */
Q̃m

md = Q̃m
mdP

n,m
md ;

if (N coop
max terminals are assigned to sense channel m)

then
Set ΔQ.m

md = 0; /* No more terminals can be further
assigned to sense channel m. */

else
for (every unassigned terminal j) do

ΔQjm
md = Q̃m

md − P jm
md Q̃m

md;
end for

end if
Set ΔQn.

md = 0; /* Exclude the assigned terminal from
the following steps. */
y = y + 1;

end while

It should be mentioned that when N ≤ M , cooperative
sensing is not available, but the optimized coordinated sensing
strategies can still be obtained by the proposed algorithms.

V. SIMULATION RESULTS

In this section we offer the simulation results to demonstrate
the performance of the strategies as results of the proposed
algorithms in comparison with a basic assignment strategy
(hereinafter referred to as Algorithm 3), where each terminal
detects the channel which it can sense with the best sensing
performance.

In the simulated scenarios, there are 8 channels to be sensed
by the CRN. For the fusion of the local sensing reports on the
channels, OR-rule is adopted, hence the false alarm probability
Pfa should be very low to maintain an acceptable Qfa. In
the simulation Pfa is set as 0.01 for all the local sensing
and the false alarm probability upper bound Q fa = 0.05
for cooperative sensing of the channels. Therefore N coop

max is
5 according to (7).

The simulation results shown in Fig. 2 demonstrate the aver-
age Qmd over different number of terminals with average local
Pmd around 0.6 and 0.4 respectively. Although Pmd for the
scenarios are not listed in detail, the fairness of the comparison
is guaranteed as the algorithms are separately executed for the
same scenarios. The results show that Algorithm 1 has the best
performance, followed closely by Algorithm 2. By contrast,
Algorithm 3 has a remarkably poorer performance.
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Fig. 2. Average Qmd over different number of terminals, M = 8

The evaluation of the local sensing performance introduced
in Section III is vital for coordinated sensing, but in reality it is
hardly possible to evaluate the performance with perfect accu-
racy. Hence the performance of coordinated sensing strategies
with imperfect local sensing performance evaluation should be
discussed.

To simplify the problem, we introduce a estimation error
factor matrix e = en,m, where the elements are i.i.d variables
following normal distribution: en,m ∼ N(1, σ2). The evalu-
ated local sensing performance with estimation error is

Pn,m
md,e = Pn,m

md en,m n = 1, · · · , N ; m = 1, · · · , M.

The results are shown in Fig. 3, indicating that the al-
gorithms are merely affected by estimation error. Moreover,
the curve of Algorithm 2 is almost overlapped with that
of Algorithm 1 as estimation error gets larger. This means
Algorithm 2, with lower complexity, is the most practical
algorithm for CRNs when the number of terminals is large.
Although Algorithm 1 is less applicable due to its higher
complexity, it is also significant because the algorithm leads
to an optimal strategy with accurate sensing performance
evaluation, providing a lower bound for the average Q md over
the channels.

VI. CONCLUSION

In this paper we discuss the band-assignment problem for
coordinated spectrum sensing in detail. In addition to the func-
tional architecture, two algorithms for the coordinated sensing
strategies with different complexity are proposed. From the
numerical results, it can be concluded that the greedy based
algorithm is the most adoptable in practical CRNs owing to
its low complexity, near-optimal performance and robustness
to the inaccurate local sensing performance evaluations.
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