

Resilient Hybrid Mobile Ad-hoc Cloud Over
Collaborating Heterogeneous Nodes

Ahmed Khalifa¹,²
¹ Bradley Department of Electrical

and Computer Engineering, Virginia
Tech, Blacksburg, Virginia, USA

² National Telecommunication Institute,
Cairo, Egypt

Email: akhalifa@vt.edu

Mohamed Azab
The City of Scientific Research and

Technological Applications, IRI,
Alexandria, Egypt,

Email:Mohamed.m.azab@gmail.com

Mohamed Eltoweissy
Bradley Department of Electrical

and Computer Engineering, Virginia Tech
Blacksburg, Virginia, USA

Email: toweissy@vt.edu

Abstract—The emergence of Mobile Ad-hoc Clouds (MACs)
promises more effective and collaborative elastic resource-infinite
computing.However, the highly dynamic, mobile, heterogeneous,
fractionized, and scattered nature of computing resources
coupled with the isolated non-cooperative nature of current
resource management systems make it impossible for current
virtualization and resource management techniques to guarantee
resilient cloud service delivery. In this paper, we present
PlanetCloud, our MAC management platform with an intrinsic
support for resilient, highly mobile, cooperative, and
dynamically-configurable MACs. We use PlanetCloud for the
construction and management of resilient hybrid MACs
(HMACs) over mobile and stationary computing resources.
PlanetCloud comprises a trustworthy fine-grained virtualization
layer and a task management layer. PlanetCloud employs the
concepts of application virtualization and fractionation using
intrinsically-resilient and aware micro virtual machines, or Cells
in our terminology, to encapsulate executable application-
fractions. Such employment isolates the running application from
the underlying physical resource enabling seamless execution
over heterogeneous resources, lightweight load migration, and
low cost of failure. Integral to PlanetCloud is resource forecasting
and selection mechanism, which provide a MAC with future
appropriate resource availability in space and time. Further,
these features enable a large set of mobile, heterogeneous, and
scattered resources to collaborate through PlanetCloud smart
management platforms that seamlessly consolidates such
resources into a resilient HMAC. Using analysis and simulation,
we evaluate a PlanetCloud-managed resilient HMAC. Results
show that PlanetCloud can provision high level of resource
availability transparently maintaining the applicat ions’ QoS
while preventing service disruption even in highly dynamic
environments. Additionally, results showed that our approach to
minimizing the cost of failure and facilitating easy load migration
elevates the resilience of the HMAC to a great extent.

Keywords- mobile cloud computing; cloud management; mobile
services; autonomic computing; collaborative computing

I. INTRODUCTION

Recently, cloud computing and mobile computing have
attracted much attention. Cloud computing enables delivery of
computing resources as a utility, which drastically brings

down the cost. Further, mobile computation devices are
becoming ubiquitous to support various applications.
Unfortunately, these resources are highly isolated and non-
cooperative. Even for those resources working in a networked
fashion, they suffer from limited self and situation awareness
and cooperation. Additionally, given the high mobile nature of
these devices, there is a large possibility of failure. Explicit
failure resolution and fault tolerance techniques were not
efficient enough to guarantee safe and stable operation for
many of the targeted applications limiting the usability of such
mobile resources.

Principles of cloud computing are being extended to the
mobile computing domain, which leads to the emergence of a
new paradigm namely, Mobile Cloud Computing (MCC).
Recent literature presented two types of MCC architectures:1)
an MCC offering accesses and service delivery to users
through their mobile devices where all computations, data
handling, and resource management are performed in the static
cloud for the sake of offloading the computational workload
from the mobile nodes to the cloud [1-3]; and 2) utilizing the
idle resources of mobile devices and enabling them to work
collaboratively as cloud resource providers to provide a
mobile cloud [4-5]. In this paper, and in a series of our papers
[6-9], we adopt and extend the latter definition of MCC as
cloud computing, through the cooperation and virtualization,
of heterogeneous mobile fractionized computing resources
forming a Mobile Ad-hoc Cloud (MAC) that provisions
computational services to its users. A Hybrid MAC (HMAC),
the focus of this paper, utilizes both mobile and stationary
computing resources.

Participant nodes in a HMAC depend on the access
network to connect to the cloud and collaboratively share their
resources with other nodes in the formed HMAC. Permanent
connectivity may not be always available. This problem is
common in wireless networks due to traffic congestion and
network failures. In addition, mobile nodes can not
collaboratively contribute to form a HMAC anymore if they
are susceptible to failure for many reasons, e.g., being out of
battery or hijacked. Therefore, in such highly dynamic
networks, a HMAC may suffer from service disruption and

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257848

lack of resilience. On the other hand, current resource
management and virtualization technologies fall short for
building a virtualization layer that can autonomously adapt to
the real-time dynamic variation, mobility, and fractioning of
such infrastructure [4-5]. In general, managing reliability of
dynamic resources, confined in a HMAC, provides a strong
motivation for collaborative autonomic management
capabilities for HMACs to construct a resilient HMAC.
Moreover, for the cloud to operate reliably and safely, we need
to accurately specify the expected amount of resources that
will participate in the HMAC as a function of time to
probabilistically ensure that we will always have the needed
resources at the right time to host the requested tasks.

In this paper, we propose to build and manage a resilient
HMAC over heterogeneous resources consisting of portable
mobile devices and semi-stationary on-board computing
resources of vehicles in a small size hospital scenario. Such
rather huge pool of interconnected computing resources can
serve as the basis of a HMAC. Our previous works did not
consider such a real hybrid model and only considered a MAC
of mobile nodes. In this paper, we present PlanetCloud as the
first platform to provide resilient MAC formation and
management employing the following constructs.

1) Hiding the underlying hardware resources
heterogeneity, the geographical diversity concern, and node
failures and mobility from the application. PlanetCloud
utilizes an adaptation of our own CybeX [10] to construct a
thin virtualization layer. CyberX uses micro virtual machines,
Cells, to encapsulate executable application-fractions. At
runtime, CyberX rebuilds the application from such Cells
enabling application to execute in total isolation from the host
resources. Such isolation enables seamless load migration,
and cost-effective replication and fault-tolerance enhancing
the HMAC resilience against potential failures.

2) Providing a resource forecasting mechanism based on a
distributed spatiotemporal calendaring mechanism [6-9]. This
mechanism provides a HMAC with the future spatio-temporal
resource availability.

3) Enabling early failure detection. The loosely coupled,
fractionized nature of PlanetCloud foundation and the resource
prediction mechanism faciliate Cell runtime relocation from
high risk resources to more stable ones with minimal-to-no
interruption to the running application.

PlanetCloud facilitates the provisioning of the right-sized
reliable cloud resources anytime and anywhere. This would
enable ubiquitous and pervasive cloud computing over
dynamically formed HMACs of fixed and/or mobile resources
as shown in Fig. 1. Collaborating HMACs would enable a new
resource-infinite computing paradigm to expand problem
solving beyond the confines of walled-in resources and
services by utilizing the massive pool of computing resources,
in both fixed and mobile nodes.

The rest of the paper is organized as follows. In Sections II
we highlight related work. And in Section III, we give an
overview of PlanetCloud. We then detail the architecture of
the proposed approach to provide resilient resource and task
management in a dynamic environment in Sections IV and V,

respectively. In Section VI, we present our evaluation. Finally,
we conclude the paper in Section VII.

Figure 1. PlanetCloud Concept.

II. RELATED WORK

Many of the existing MCC solutions focus on how the
mobile devices’ capabilities could be enhanced by migrating
resource-intensive computations and process them remotely in
a stable and reliable cloud environment through computation
offloading [4][11]. Other work such as Hyrax platform [5]
introduced the concept of using mobile devices as resource
providers. However, Hyrax did not consider a general high
mobility scenario where mobile nodes have different
configurations. In [12], computing resources on vehicles could
participate, during the absence of their owners for several
days, to form a datacenter at the airport. However, this
scenario is considered as a stable resource environment, such
that the long-term parking lot of an international airport
guarantees that there are at least a specific number of vehicles
parked in the airport at any time and ready for utilization.

All of the aforementioned works do not fit well in the
MAC environment because they assume the mobility of
devices is limited, i.e., connectivity is stable with no
disconnections and faults. Also, none of these approaches
considered the formation and maintenance of a MAC using
heterogeneous resource, i.e., different operating systems and
virtual hardware configurations.

In a cloud environment, it may be possible that some nodes
will become inactive because of failure. Therefore, the entire
work of unsuccessful jobs has to be restarted, and the cloud
should migrate these jobs to the other node. The redundancy
concept is a solution to achieve failover for handling failures
[13-15].There are basically two options of redundancy:
replication and retry. Replication is redundancy in space where
a number of secondary nodes, in stand-by mode, are used as
exact replicas of a primary active node. They continuously
monitor the work of the primary node to take over if it fails.
However, this approach is only feasible for fixed servers or if
the nodes are few [13]. Retry is redundancy in time where a try
again process starts after a failure is detected [15]. However,
most current task scheduling and resource allocation
algorithms [16-18] did not consider the prediction of resource
availability or the connectivity among mobile nodes in the
future, or the channel contention, which affects the
performance of submitted applications.

Few literature works [19-21] have discussed the
implementation of mobile agent technology in the cloud
computing domain to provide elastic and resilient services. For

example, authors in [21] presented an architecture to
implement the Mobile Agent technology in cloud computing
to realize portability, user’s application can span over multiple
Cloud Computing Service Provider (CCSPs), and
interoperability, user’s application can deploy on multiple
CCSPs. The work presented in [19] provided reference
architecture to develop elastic distributed executor service
using mobile agents which can be deployed on the cloud.
However, all these proposed architectures only targets fixed
cloud computing platforms and did not address the mobile
resources scenario.

III. PLANETCLOUD OVERVIEW

Our PlanetCloud architecture enables resilient
MACs/HMACs (we focus here on HMACs)
throughcollaborative autonomicheterogeneous resource
managing. The basic requirement for improving the service
availability in a HMAC is to continuously be driven by a
certain number of participating nodes, which reflects a
guaranteed amount of resource provisioning. To achieve such
a concept onto a HMAC, our PlanetCloud architecture
assumes that there are two primary types of nodes, as shown in
Fig. 2: a fixed control node, and a mobile compute node. Each
type of node has an agent running on it, as the fundamental
building block of our management platform. There are two
types of agents: a Cloud Agent (CA), which runs on a fixed
control node, and a Tenant Agent (TA), which runs on a
mobile compute node. The TA manages the participant’s local
spatiotemporal resource calendar. It connects with all other
agents involved in the cloud formations, and synchronizes the
calendar’s content with the global spatiotemporal resource
calendar on a CA. A CA, as a requester to form a cloud,
manages the formed cloud by keeping track of all the
resources joining its cloud. The CA is deployed on a high
capability node to manage and store the data related to
spatiotemporal calendars for all participants within a cloud.

PlanetCloud enables a resilient HMAC, by providing the
HMAC with the ability to continue providing available and
reliable services under different interruptions due to
unexpected node failure our departure. This is achieved by
predicting the future resource availability, in a CA,using
different types of databases that are related to the participating
node, (i.e. the spatiotemporal resource calendar, event
calendar, the resource profile, data from social networks and
other databases). In addition, PlanetCloud employs an
automated recovery through multiple recovery modes. Such
feature enhances the HMAC resilience against failure and
expands its support for different application-requirements and
host-configurations. PlanetCloud enables automated recovery
to ensure high service availability. PlanetCloud offers a
prompt and accurate fine-grained recovery, hot-recovery, for
resourceful hosts executing critical applications, and a more
resource efficient course-grained recovery, cold-recovery, for
less critical applications. In hot-recovery, the Cell can have
one or more fully-alive replicas on different mobile nodes
which can do achieve virtually no task failure downtime but
on the account of increasing resource usage. The cold-
recovery might save some of the resources used by replicas,
by deploying a replacement of the failed Cell, while

compromising some of the execution states, and increasing the
failure downtime.

Our PlanetCloud management platform handles all the
tasks related to both the Resource Domain concerned with the
spatiotemporal resource allocation, and the Task Domain
concerned with the task deployment, migration, revocation,
etc.. The next sections provide more details about the two
domains.

Figure 2. PlanetCloud Architecture Overview.

IV. RESOURCE MANAGEMENT PLATFORM

A. Resource Management at Compute Node

Fig. 3 depicts the building blocks of a Compute Node.
Resource management components of the compute node are
detailed as follows.

1) The iCloud interface: It is an interface between the
agent and a user/ administrator, or other systems, e.g., social
networks and other database systems. A user/ administrator
uses the iCloud interface to manage all data in the
spatiotemporal resource calendar. In addition, the interface
enables defining the settings required for a formed cloud.

Figure 3. Compute Node Building Blocks.

2) The knowledge unit: It consists of two subunits, a local
spatiotemporal resource calendar, which includes spatial and
temporal information about the available resources, and
information bases, that contains predefined or on the fly
policies created by a cloud admin. Also, information bases
contain information about the formed cloud, e.g., Service
Level Agreement (SLA), types of resources needed, amount of
each resource type needed, and billing plan for the service, etc.
The CA uses the updated spatial and temporal information of
resources as inputs of its prediction service for early detection
of node unavailability.

3) Participant Resource Calendaring Service (PRCS):
PRCS includes a Participant Calendar Manager (PCM) which
acts as a service controller for managing the records of the
local spatiotemporal resource calendar. Also, PCM
automatically monitors the internal state of the participant’s
resources. A failure of any type of resources affects a
resource’s ability to do its function in the form of an error or
no response. To mitigate the impact of resource failure on the
resilience of the HMAC, PCM interacts with the synchronizer
to synchronize the spatiotemporal resource calendar with
aspatiotemporal resource calendar on a control node. On the
other hand, PRCS provides the trust management services
with the required data to perform trust and security operations.

4) The Input/Output (I/O) unit: It provides the required
communications for different activities such as cloud
formation requests and responses.

The lowest layer, of the TA's building blocks, consists of
the application, networking, and computing resources, which
are involved in the delivery of the service.

B. Resource Management at Control Node

The main building blocks of a Control Node are shown in
Fig. 4. The functionalities of their resource management are
described below.

1) The knowledge unit:A CA has a global spatiotemporal
resource calendar which includes spatial and temporal
information, resource profiles, and event calendars of the all
available resources of a cloud’s participants. Therefore, the
CA maintains the overall picture of the resource capability
within the cloud. The CA uses a global task repository to store
the all tasks within a cloud.

2) Group Resource Calendaring Service (GRCS):
Distributed GRCSs operate on the updated data from
participants’ calendars. These updated data are stored in a
group spatiotemporal resource calendar. GRCS and PRCS are
the two primary types of services forming a global resource
positioning system (GRPS) [7], for dynamic real-time resource
harvesting, scheduling, tracking and forecasting. GRCS
comprises four types of modules:The Group Calendar
Manager (GCM) module, the Synchronizer, the Prediction
Service (PS), and the Trust Management Services. GCM acts
as a service controller for managing records of group
spatiotemporal resource calendars. In addition, a calendar
manager feeds the PS with the required data to perform

resource forecasting. The results of resource forecasting
enhances the HMAC resilience to failure by early Discovery
of all different failures that might be encountered at different
communications, resource availability, or reputability levels.
For more details about the GRPS and its GRCS and PRCS
services, please refer to [7].

3) Collaborative Autonomic Resource Management
System (CARMS): We design our CARMS architecture using
the key features, concepts and principles of autonomic
computing systems to automatically manage resource
allocation and task scheduling to affect cloud computing in a
dynamic mobile environment.

a) Cloud Manager (CM): It provides a self-controlled
operation to automatically take appropriate actions according
to the results of the evaluation received from the Performance
Analyzer, described below,due to variations in the
performance and workload in a cloud environment. The Cloud
Manager manages interactions to form, maintain and
disassemble a cloud. A Cloud Manager comprises four
components, a Service Manager (SM), a Resource Manager
(RM), a Policy Manager (PoM), and a Participant Manager
(PrM). A SM stores the request and its identifier. The SM
maps the responses received from the participants with the
service requests from users, and the result is sent back directly
to the user. The user defines certain resource requirements
such as hardware specifications and the preferences on the
QoS criteria. The Cloud Manager decomposes the requested
service, upon receiving a cloud formation request, to a set of
tasks. Tasks of a requested service need to be allocated to real
mobile resources.

Figure 4. Control Node Building Blocks.

The Resource Manager handles the resource allocation on
real mobile nodes using its Resource Allocator component.
Also, the Resource Allocator obtains the required information
about the available real resources from participants by
interacting with a GRCS. The Resource Allocator interacts
with the registry of CA to store and retrieve the periodically
updated data related to all participants within a cloud. The
Cloud Manager interacts with CyberX servers to assign a set
of virtual resources in a cell to these tasks according to the
received SLA information from the Cloud Manager. The PoM
prevents conflicts and inconsistency when policies are updated
due to changes in the demands of a cloud. In addition, it
distributes policies to other CARMS components. The PrM
manages the interaction between a cloud requester and
resource providers, the cloud participants, to perform a SLA
negotiation.

b) Monitoring Manager: It includes a Performance
Monitor unit which continuously monitors the performance
measured by monitoring agents. Then, it provides the results
of these measurements to the Performance Analyzer
component. The workload information about the incoming
request is periodically collected by the Workload Monitor
component.

c) Performance Analyzer: It continually analyzes the
measurements received from the Monitoring Manager to
detect the status of tasks and operations, and evaluate both the
performance and SLA. This helps in early error detection.
Then, the results are then sent to both the Account Manager
and the Cloud Manager for taking actions which lowering the
risk of downtime.

d) Account Manager: In case of violation of SLA,
adjustments are needed for the bill of a particular participant.
These adjustments are performed by the Account Manager
depending on the billing policies negotiated by the requester
of cloud formation.

V. TASK MANAGEMENT PLATFORM

PlanetClouduses CyberX to manage the cloud tasks and
the running applications on the cloud and to handle
faulttolerancein distributed task execution. CyberX is based on
a biologically inspired architecture termed as the Cell Oriented
Architecture (COA). The COA employs a mission-oriented
application design and inline code distribution to enable
adaptability, dynamic re-tasking, and re-programmability. The
Cell, is the basic building block in COA, it is an abstraction of
a mission-oriented autonomously active resource. Generic
Cells (Stem Cells) are generated by the host middleware
termed COA-Cell-DNA (CCDNA), then, they participate in
varying tasks through a process called specialization. Cells are
intelligent, independent, autonomous, single-application
capsules that acquire, on the fly, application specific
functionality in the form of an executable code variant "The
specialization process". Cells act as a simple, single
application virtualization environment (sandbox) isolating the
executable Logic from the underlying physical resources. Fig.
5 illustrates an abstract view of CyberX Cell. Cells are also
dynamically composable into larger structures “organisms”
representing complex multi-tasking applications. An

Organism is a dynamic structure of single or multiple Cells,
working together to accomplice a certain mission. CyberX
uses the COA features enable applications to dynamically
adapt to runtime changes in their execution environment. Such
feature enables CyberX to tolerate high frequency task
preemption and migration that might be induced by failures as
a consequence of unexpected resource mobility or power
failure. Due to the nature of our resources the high level of
heterogeneity is a major concern for task deployment and
migration. Using CyberX vitalization architecture adequately
resolves this issue.

CyberX enables the application to exchange real-time
status and recommendation messages with the host Cell for
administrative purposes to enhance the Cell local application
awareness and to enable application driven adaptation.
CyberX uses these messages to guide the Cell runtime quality-
attribute manipulation towards accurate and prompt
adaptation. Further, CyberX collects, analyzes and
trustworthy-share these messages and status reports,
constructing a real-time sharable global view of the Cell
network.

Figure 5. COA Cell at runtime.

A. CyberX platform architecture

CyberX is composed of a set of central powerful nodes we
will address them as servers. These servers cooperate
autonomously to manage the whole network of Cells. This
platform is responsible for the organism creation “composition
and deployment of Cells”, management, the host side API(s)
“CCDNA”, real-time monitoring and evaluation of the
executing Cells, and recovery management. Further, it
provides the necessary management tools for system
administrators to manage, analyze, and evaluate the working
Cells/organisms. CyberX will act as an autonomously
managed resource and application virtualization platform of
PlanetCloud.

1) Task Management at Control Node
All related task management procedures are performed on

fixed control nodes as follows.

a) Auditing and Reputation Management Server (ARMS):
Its main task is to monitor outgoing or incoming Cell
administrative messages for the lifetime of the Cell. This
information is used to assist evaluating the trustworthiness of
the Cell. This server cooperates with the recovery tracking
servers and routing nodes to frequently evaluate the Cell
behavior for any malicious activities. This server will hold
comprehensive reports about each Cell for the lifetime of the

Cell. A trust feedback will be generated from ARMS and send
to the Trust Management Services which helps in the
evaluation of the trustworthiness of a participant.

b) Recovery and Checkpoint Tracking Server (RCTS):
This monitors, and stores checkpoints changes for all running
Cells. Checkpoint updates are always enclosed as a part of the
Cell frequent beacon message updates. RCTS is also
responsible for reporting failure events by comparing the
duration between consecutive beacon messages to a certain
threshold matching the reporting frequency settings of each
Cell. Failure events are validated by comparing the recently
noticed reporting-delay for a particular Cell to the average
reporting-delay within its neighbors and other Cells hosted on
the same host. A Cell failure notice is reported to the global
management servers with the last known failure recovery
settings, checkpoint, and variant settings to start deploying
replacement Cells.

c) Global Management Server (GMS):The main task of
this server is to manage the underlying COA infrastructure.
GMS is responsible for Cell deployment, coordinating
between servers, facilitating and providing a platform for
administrative control. GMS is the only server authorized of
issuing Cell termination signals. It can also force Cell
migration or change the current active recovery policy when
needed. GMS is responsible for assigning the infrastructure
global policy, routing protocol, auditing granularity,
registering/revoking new hosts, and keeping/adjusting the
host-platform configuration file.

d) The Data-Warehouse Server (DWS):It is the main
components of the infrastructure that participates in the
separation between the Data, Logic, and Physical-resources.
DWSs are distributed through the Cell network, they are
responsible for holding and maintaining all the data being
processed, and any other sensitive data that the management
units want to store. All running Cells are not permitted to store
sensitive data on their local memory. All sensitive data has to
be remotely stored in a specific DWS through the dedicated
data channel. DWSs synchronizes their data independently.

e) Distributed Naming Server (DNS): It is responsible for
resolving the real host IP/Port mapping to the virtual Cell Id
and organism names. The working Cells use this mapping at
runtime to direct incoming and outgoing communications.
DNS is a major player in the COA’s separation of concerns
that enables virtually seamless, Cell relocation, and workload
transition in case of failure recovery. In case of Cell
movement, the DNS will be instructed by the GMS to
maintain communication redirection.

2) Task Management at Compute Node
GMS uses the resource-forecasting database to allocate

resources for the CyberX Cells to be deployed on the Compute
Node. The SM updates the task repository by the tasks that
should be executed, and the code variants associated with it.
The GMS encapsulates these variants into one of its Cells
forming a suitable container that matches one of the available
resources. The selected resource will be the target of the Cell
deployment where the CCDNA is installed. That resource

shall accept the deployment package from the GMS,
instantiate and execute the Cell.

In case of failure, or unavailability, the GMS will relocate
the Cells into new active resource seamlessly. All the concerns
that might be involved with the task relocation will be
autonomously and seamlessly handled by CyberX. The details
of task relocation, recovery in case of failure or performance
tuning using diversity employment, which has been addressed
in [10], is omitted from this paper due to space limitation.

VI. EVALUATION

A. Working Scenario

For evaluation purposes, we present a scenario of dynamic
resources in a small size hospital model (25beds). The model
involves different types of mobile devices such as
Smartphones and Laptop Computers and semi-stationary
devices such as on-board computing resources of vehicles in a
long-term parking lot at a hospital. Such rather huge pool of
idle computing resources can serve as the basis of a HMAC as
a networked computing center. We start our evaluation by
predicting the average number of participants in this scenario,
which reflects the amount of computing resources that might
cooperate to participate in a HMAC. Then, we perform
evaluations, using the obtained average number of
participants, to study the effect associated with the
performance of the formed HMAC.

B. Expected Number of Participants in a Resource Pool

We predict the average number of participants of a HMAC
formed at the hospital as follows. Patients arrive at a time
dependent rate λT(t), independent of the number of participants
already participating in the resource pool at the hospital. The
departure rate of participants is µT(t). Further, we assume that
for all t≥0, λT(t) and µT(t) are bounded by the constants M1, m1
,M2, m2, where (0< m1; 0< m2) such that

m1 ≤ λT(t) ≤ M1; m2 ≤ µT(t) ≤ M2 (1)

Consider the event {N(t) = k} occurs if the resource pool at
the hospital contains k patients at time t, where (1≤ k ≤ N).
The probability that the event {N(t) = k} occurs is Pk(t).

Pk(t) = Pr [{N(t) = k }] (2)

We consider the general case where λT(t) and µT(t) are
integrable functions as in [14]. So that if the expected number,
E[NT(t)], of patients in the hospital at time t converges, the
limiting behavior of E[NT(t)] as t →∞ can be written as

Lim t→∞E[NT(t)] = Limt→∞ (λT(t)/µT(t)) (3)

Where,

 (4)

Where n0 is the number of patients in the hospital at t=0.
The success probability, p(t) , is given by

 (5)

Patients arrival, λT(t), and departure, µT(t), rates into/from
the hospital are periodic functions of time, and can be obtained
as following:

λT(t) = a + b sin θ (t) (6)

µT(t) = c + d sin θ (t) (7)

Where a, b, c, and d are constants.

We can use the previous equations to get the expected
number of cars, E[Nc(t)], in the parking lot at time t, where a
relationship do exist between traffic and the number of
arriving/departing patients. Therefore, we can model the
expected number of cars as a percentage factor, v, using the
following cars arrival, λC (t), and departure, µC (t), rates

λ�(t) = v*λ�(t) (8)

µC(t) = x+ y sin θ (t) (9)

Similarly, we can calculate E[Nc(t)] and we set the number
of patients’ cars in the hospital at t=0 to be equal v*n0. The
limiting behavior of E[Nc (t)] as t →∞ can be written as

Lim t→∞E[Nc (t)] = Limt→∞ (λC(t)/µC(t)) (10)

Let E[Nm(t)] be the expected number of patients’ mobile
nodes, in the airport at time t, where each patient holds a
mobile node. This allows us to write

E[Nm(t)] =E[NT(t)] (11)

In addition, we consider the resources of the hospital’s
employees as valuable participants in the formed cloud. Such
resources may include the computational power of the
employees’ mobile devices as well as on-board computing
resources of employees’ cars in the employee parking lots at
the hospital. We set the expected number of employees,
E[Ne(t)], to be

E[Ne(t)] = Emin (12)

Where, Emin is the minimum number of employees that
should be located in the hospital in their regularly scheduled
shifts.

Similarly, we set the expected number of employee cars,
E[Nec(t)], as a percentage factor, f, of the number of
employees. We can write

E[Nec(t)] = f*E[Ne(t)] (13)

The total expected number of participants, E[Np (t)], in the
airport can be obtained by

E[Np (t)] = E[Nc(t)] + E[Nm(t)] + E[Nec(t)] +E[Ne(t)] (14)

Using the previously obtained expected number of
participants, we can get the total number of available cells
hosted by participants in a total resource pool. For example,
the on-board computing resources of a vehicle can host an
expected number of cells equals V cells while a Smartphone or
Laptop Computer can host expected number of cells equals M
cells. Therefore, the total expected number of cells could be
calculated as a function in the number of Laptop Computers
and Smartphones.

Using the previous equations, we set the simulation time to
60 hours. We assumed that at t = 0, n0 equals35 patients.
Similarly, we set the number of full-time staff employed, Emin,

equals 35employees [22]. We set θ(t) to be πt/12 for a time

unit equals one hour. We use a quasi-periodic time-dependent
arrival and departure rates as follows.

λT(t) = 32+16[1+2exp(-0.2t)] sin (πt/12) (15)

λC(t) = 0.3* (32+16[1+2exp(-0.2t)] sin (πt/12)) (16)

Where,

µT(t) = µC(t) = 2+ [1+ exp(-0.2t)] sin (πt/12) (23)

We computed the expected number of mobile nodes at
time t as shown in Fig. 6 shows E[Np (t)]. The expected
number of mobile nodesdropped as illustrated in Fig. 6and
settles down to a constant value at 51after t > 20 hours of
simulation. The pattern of the unstable fluctuation, before
stabilization, depends on the probability of the departure of
initially participating nodes and the exponential component of
arrival and departure rates. Similarly, Fig. 7 shows the
expected number of cars in the parking lot of the hospital
stabilizes to a constant number at 19 after 20 hours.

Next, we turned our attention to compute the expected
number of participants in the hospital versus time. Fig. 8
shows E[Np (t)] plotted against time. The expected number of
participants dropped as illustrated in Fig. 8. E[Np (t)]
stabilizes at 70 participants after t > 20 hours of simulation.

Figure 6. The expected number of mobile nodes versus time.

Figure 7. The expected number of cars versus time.

Figure 8. The expected number of participants versus time.

C. Performance Evaluation

In this part, we start our evaluation by studying the effect
associated with execution of applications in a HMAC, consists
of stationary and mobile devices, using different scheduling
algorithms, .i.e., Proactive Adaptive List-based Scheduling
and Allocation AlgorithM (P-ALSALAM) [9], which
determines the best participants based on the availability of its
resources to participate in a cloud and the random-based
algorithm, which does not use this information, where random
mobile nodes with random availability are selected to execute
the submitted application.

To simulate the HMAC environment in hospital, we have
extended the CloudSim simulator [23] to support the mobility
of nodes by incorporating the Random Waypoint (RWP)
model.

A HMAC consists of N heterogeneous nodes, mobile/
stationary participants, characterized by the number of
processing cores. CPU performance is defined in Millions
Instructions Per Second (MIPS), amount of RAM, storage and
network bandwidth.

In our evaluation model, an application is a set of tasks
with one primary task. Each task has a pre-assigned instruction
length and runs in a Cell. A Cell matches the smallest
computational power available in any participants, which is
simulated as a single virtual machine (VM) deployed on a
participant. A VM can be migrated out from the participating
node as the node becomes unreliable to execute a task.
Migrations happen when communications are established
among participating nodes. VMs on participating nodes could
only communicate with the VM of the primary task node and
only when a direct ad-hoc connection is established between
them. For simplicity, a primary node collects the execution
results from the other tasks which are executed on other
participating nodes in a cloud. There is only one cloud in this
simulation. For scheduling any application on a VM, first-
come, first-served (FCFS) is followed.

For calculating the collision delay, we consider the worst
case scenario where each node has a packet to transmit in the
transmission range.

We modify the simulation to include spatiotemporal data,
future availability, obtained from the calendaring mechanism.
Also, we consider that participating nodes cannot always
function well all the time and may fail. In our evaluation, we
only consider the cold-recovery mode in case of node failure.
We set the number of inactive nodes to be sampled following
a Poisson Process during a time t. We suppose that the
distribution of detection time of failure is uniform from 0 to 1
second. Detection time represents the length of a period from
the time when a participant starts crashing to the time to be
suspected.

1) Metrics and Parameters
We evaluate the average application execution time, which

is the time elapsed from the application submission to the
application completion. Also, the mean number of VM
migrations is evaluated, which is the number of VM
migrations during the simulation time.

2) Assumptions
• A SaaS model is only considered in our model.

• Communication between nodes is possible within a
limited maximum communication range, x (km).
Within this range, the communication is assumed to be
error free and instantaneous.

• The distribution of speed is uniform.

• A participant may have many cells running on it.

3) Simulation Setup
We consider a HMACat a small size hospital, where a

HMAC is composed of the previously obtained stabilized
number of mobile nodes, in Fig. 6, and stabilized number of
semi-stationary cars, in Fig. 7, with heterogeneous
characteristics: 512 or 1024 MB RAM, 4 GB Storage, and 54
MB bandwidth. Each mobile node may have one or two cores
with processing capabilities of 2000 or 7500 (MIPS),
respectively. In our evaluations, we create VMs each has one
processing core with processing capability 1256 MIPS and
512 MB RAM.

Results of our evaluations are collected from different
simulation runs and the value of sample mean is signified with
t-student distribution for a 95 % confidence interval for the
sample space of 30 values in each run.

In our evaluation, we consider that every car has a fixed
location. We consider that every participating car can always
function well all the time with high reliability and does not
fail. Also, the communication among cars is always possible
within the hospital. However, we consider that the mobility
pattern of mobile nodes follows a Random Waypoint (RWP)
model. A mobile node moves along a line from one waypoint
to the next waypoint. These waypoints are uniformly
distributed over a unit square area. At the start of each leg, a
random velocity is drawn from a uniform velocity distribution.
Also, each node has an average speed equals 1.389 (m/sec).
We consider that mobile nodes are different in their reliability,
in terms of future availability, which follow the values of the
arrival rate of inactive nodes.

4) Results
The average execution time of an application is

investigated at different values of the arrival rate of inactive
nodes, ranging from 1/45 to 1/15 (nodes/sec). We consider a
small-sized hospital (25 beds) with total number of
participants equals 70 (19 cars and 51 mobile nodes). Also, we
consider that each node has a transmission range equals 0.2
km. We consider one application is submitted to be executed,
with a number of tasks equals to 20, and we set the task length
to be equal to 500000 MI.

Fig. 9 shows that at a larger value of arrival rate of inactive
nodes, e.g. 1/15 (nodes/sec), the worst performance is obtained
than in the case of results at a smaller arrival rate of inactive
nodes, e.g. 1/45 (nodes/sec). This is because of the probability
a node could fail is high when compared with a lower arrival
rate of inactive nodes value.Consequently, the average number
of migrations of a VM increases when the arrival rate of
inactive nodes is increased as shown in Fig. 10.

The node failure forces a VM to migrate to another reliable
node. This leads to an extra time overhead of VM migration
which is added to the execution time of an application. These
results showed that our PlanetCloud performs well in terms of
the average execution time of application with a smaller
number of VM migrations even in case when a large number
of mobile nodes have left the HMAC. Also, results showed
that PlanetCloud has a better capability to minimize the delay
overhead added to the average execution time of an
application due to mobility of participants than the case of
random selection of participant nodes.

Figure 9. Average execution time of an application when applying different

reliability based algorithms at a small-sized hospital (25 beds).

Figure 10. Average number of VM migrations when applying different

reliability based algorithms at a small-sized hospital (25 beds).

In the next evaluation, we compare results of three cases: a
mobile nodes scenario, a stationary nodes scenario, and a
hybrid nodes scenario. In a mobile nodes scenario, all
participants of a MAC are mobile nodes and each node has a
transmission range equals 0.2 km, and its average speed equals
1.389 (m/sec). In a stationary node scenario, each participant
has a fixed location, and the communication among mobile
nodes is always possible within the hospital.In a hybrid nodes
scenario, some participants are mobile nodes and others are
stationary nodes. The results of this evaluation, as depicted in
Fig. 11, showed that the average execution time of an
application at the stationary scenario has the best performance
compared with the case of hybrid and mobile scenarios, at the
same arrival rate of inactive nodes, where the participants are
always reliable and connected with no overhead of VM
migrations. Also, this figure shows that a worst performance is
obtained at the mobile scenario where the reliability of
participants are changing and the connectivity of these

participants are not stable. However, an adequate performance
could be obtained at the hybrid scenario, where some cells are
deployed on stationary reliable nodes and others are deployed
on mobile nodes with variable reliability, which minimizes the
effect of migration delay in case of a mobile node’s failure.

Figure 11. Performance comparison among different MAC scenarios when
applying P-ALSALAM algorithms at a small-sized hospital.

Fig. 12 depicts a comparison between the results of
applying both P-ALSALAM and random node selection
algorithms in terms of the average execution time of an
application when we consider different communication ranges
, ranging from 0.1 to 1 (km). We perform this evaluation with
an arrival rate of inactive nodes equals 1/45 (nodes/sec).
Where, we consider that the effect of reliability of mobile
nodes is neglected at this arrival rate of inactive nodes. The
results show that the average execution time of an application
has a higher value at a small communication range, e.g. 0.1
(km).This is because the communication delay is dominant.
While, a better performance is obtained at higher
communication ranges, e.g. 1 (km). Results show that P-
ALSALAM significantly outperforms the random node
selection algorithm in terms of the average execution time of
an application at a small transmission range, e.g. 0.1 (km).
However, this evaluation provides that there are no significant
differences between results of the two cases, applying P-
ALSALAM/ random node selection algorithms at a larger
transmission range, e.g. 1 (km). This is because at a
transmission range equals 1 km, we can neglect the effect of
the connectivity, i.e. a node is almost always connected with
others.

Figure 12. Average execution time of an application vs. communication range

(km) when applying P-ALSALAM algorithms at a small-sized hospital.

Our findings can be summarized as follows.

• A better performance may be obtained, even at a
shorter transmission range, if we apply our P-
ALSALAM algorithm. This is because our algorithm
frequently reschedules the delayed tasks and this
minimizes the effect of communication delay.

• The performance is affected by the percentage of the
number of fixed nodes within the total density of
available nodes. It means the more fixed reliable nodes,
participate in a HMAC, the less dependency on mobile
variable reliability nodes. This could enhance the
performance of the submitted application.

VII. CONCLUSION AND FUTURE WORK

The combination of cloud computing and mobile
computing are leading to the emergence of MACs that would
provide new opportunities to efficiently and collaboratively
utilize the ever-increasing pool of computing resources
available on mobile devices. In this paper, we presented a
platform for resilient HMAC management with an intrinsic
support for highly-mobile heterogeneously-composed and
dynamically-configured HMACs. PlanetCloud is powered by
an autonomously managed virtualization layer for
encapsulating cloud applications and facilitating safe and
reliable execution over scattered heterogeneous resources.
PlanetCloud provides multiple recovery modes which enhance
the system resilience and cover different application
requirements and host-configurations. Through analysis and
simulation, we evaluated a HMAC.Results showed that our
PlanetCloud always performs well in terms of the average
execution time of application with a small number of VM
migrations even in case of unstable environment. Also, results
showed that PlanetCloud enabling resource collaboration
enhanced the cloud capability to reduce the delay overhead
added to the average execution time of applications due to the
lack of connectivity of participants. Our ongoing research
seeks to develop a security mechanism to preserve the privacy
and security constraints of MAC/HMAC resource provider,
while allowing multiple users to share autonomous resources.

References

[1] Klein, C. Mannweiler, J. Schneider, and H. D. Schotten, “Access
schemes for mobile cloud computing,” in Eleventh International
Conference on Mobile Data Management (MDM), 2010, pp. 387 –392.

[2] T. Xing, D. Huang, S. Ata, and D. Medhi, “Mobicloud: A geodistributed
mobile cloud computing platform,” in 8th IEEE International
Conference on Network and ServiceManagement (CNSM), 2012, pp.
164–168.

[3] T. Xing, H. Liang, D. Huang, and L. X. Cai, “Geographic-based service
request scheduling model for mobile cloud computing,” in11th IEEE
International Conference on Trust,Security and Privacy in Computing
and Communications (TrustCom), 2012, pp. 1446–1453.

[4] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” 1st ACM Workshop on Mobile Cloud Computing &
Services: Social Networks and Beyond, California, USA, 2010, pp.1-5.

[5] E. Marinelli, “Hyrax: cloud computing on mobile devices using
MapReduce,” Master thesis, Carnegie Mellon University, 2009.

[6] A. Khalifa, R. Hassan, and M. Eltoweissy, “Towards ubiquitous
computing clouds,” in The Third International Conference on Future
Computational Technologies and Applications, Rome, Italy, September,
2011, pp. 52–56.

[7] A. Khalifa and M. Eltoweissy, “A global resource positioning system for
ubiquitous clouds,” in the Eighth International Conference on
Innovations in Information Technology (IIT), UAE, 2012, pp. 145–150.

[8] A. Khalifa and M. Eltoweissy, “Collaborative Autonomic Resource
Management System for Mobile Cloud Computing,” in the Fourth
International Conference on Cloud Computing, GRIDs, and
Virtualization, Spain, 2013, pp. 115–12.

[9] A. Khalifa and M. Eltoweissy, “MobiCloud: A Reliable Collaborative
MobileCloud Management System,” In the 9th IEEE International
Conference on Collaborative Computing: Networking, Applications and
Worksharing, United States, 2013, pp. 158 – 167.

[10] Mohamed Azab and Mohamed Eltoweissy,”CyberX: A Biologically-
inspired Platform for Cyber Trust Management,” 8th International
Conference on Collaborative Computing, Oct 2012.

[11] N. Fernando, S.W. Loke, and W. Rahayu, “Dynamic mobile cloud
computing: Ad hoc and opportunistic job sharing,” Fourth IEEE
International Conference on Utility and Cloud Computing (UCC),
Australia, 2011, pp.281-286.

[12] Arif, S.; Olariu, S.; Jin Wang; Gongjun Yan; Weiming Yang; Khalil, I.,
"Datacenter at the Airport: Reasoning about Time-Dependent Parking
Lot Occupancy," Parallel and Distributed Systems, IEEE Transactions
on , vol.23, no.11, pp.2067,2080, Nov. 2012.

[13] Singh, D.; Singh, J.; Chhabra, A., "High Availability of Clouds: Failover
Strategies for Cloud Computing Using Integrated Checkpointing
Algorithms," International Conference on Communication Systems and
Network Technologies (CSNT), , pp.698-703, 11-13 May 2012.

[14] Pandey, S.; Nepal, S., "Modeling Availability in Clouds for Mobile
Computing," 2012 IEEE First International Conference on Mobile
Services (MS), pp.80-87, 24-29 June 2012.

[15] http://web.mit.edu/6.826/www/notes/HO28.pdf.

[16] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost optimization
algorithm for workflow scheduling in hybrid clouds,” Journal of Internet
Services and Applications, vol. 2, Dec 2011, pp. 207–227.

[17] C. Lin, S. Lu, “Scheduling scientific workflows elastically for cloud
computing,” in IEEE 4th International Conference on Cloud Computing,
USA, 2011, pp. 746 - 747.

[18] B. Yang, X. Xu, F. Tan, and D. H. Park, “An utility-based job
scheduling algorithm for cloud computing considering reliability factor,”
International Conference on Cloud and Service Computing (CSC), Hong
Kong, 2011, pp. 95-102.

[19] A. Bhattacharya, “Mobile agent based elastic executor service,”
International Joint Conference on Computer Science and Software
Engineering (JCSSE), 2012, pp.351-356.

[20] A. Singh and M. Malhotra, “Analysis for Exploring Scope of Mobile
Agents in Cloud Computing,” International Journal of Advancements in
Technology Vol. 3 No 3 (July 2012) ©IJOAT.

[21] Z. Zhang and X. Zhang, “Realization of open cloud computing
federation based on mobile agent,” IEEE International Conference on
Intelligent Computing and Intelligent Systems, 2009, pp. 642 - 646.

[22] Margaret K. Schafer, “Staffing the General Hospital: 25 to 100 Beds,”
U.S. Federal Security Agency, Public Health Service, [Division of
Hospital Facilities, Hospital Services Branch, 1955.

[23] Calheiros RN, Ranjan R, Beloglazov A, Rose CAFD, Buyya R.
CloudSim: a toolkit for modeling and simulation of Cloud computing
environments and evaluation of resource provisioning algorithms.
Software: Practice andExperience 2011; 41(1):23–50.

