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Abstract – Malware distribution using drive-by download attacks 

has become the most prominent threat for organizations and 

individuals. Compromised web services and web applications 

hosted on the cloud act as the delivery medium for the exploits. 

The exploits included often target the vulnerabilities within the 

plugins of the web browsers. Implementing security controls to 

counter the exploits within the browsers for ensuring end point 

security has become a challenge. 

In this paper, a set of features is proposed and is extracted by 

monitoring the communications between the browser and the 

plugins during the rendering of webpages. The Support Vector 

Machines are trained using the defined features and the 

performance of the trained classifier is evaluated using a dataset 

with both malicious and benign use cases of the plugins. The 

dataset included 10,239 malicious use cases and 37,369 benign use 

cases. To compensate the imbalance in the distribution of the 

dataset, experiments were performed using weighted costs and 

oversampling. Our analysis shows that the Support Vector 

Machines trained by using the proposed set of features classified 

with an average accuracy of about 99.4%. On integrating the 

proposed approach as an inline defense, an average performance 

overhead of 5.14% was observed. 

Keywords- plugin exploits; drive-by download; web malware; 

I. INTRODUCTION 

The implementation of defense in depth strategy for 

securing large networks and individual machines at network 

level had shifted focus of the attack vectors on to the port 80. 

The traditional HTTP (Hypertext Transfer Protocol) attacks 

like webpage defacements are being monetized by the 

attackers using the drive-by download attacks. Attackers are 

hosting the watering hole attacks by compromising legitimate 

web applications and serving malicious code to users 

requesting the compromised webpages or web services. 

Attackers exploit vulnerabilities like Cross Site Scripting 

(XSS), Uniform Resource Locator (URL) redirection, 

Injection, Response Splitting to compromise and redirect the 

traffic towards webpages hosting the malicious code. 

The drive-by download attacks often involve multiple 

types of webpages namely, landing, exploit, distribution and 

intermediary webpages. The landing webpage is often the 

compromised webpage that generates the traffic to the exploit 

webpages using a redirection or a frame. The exploit 

webpages fingerprint the environment of the machine 

generating the request and responds with the code containing a 

targeted attack. Large numbers of landing webpages share a 

common exploit webpage. The distribution webpages are the 

webpages used in malware distribution for hosting malware 

which are downloaded and installed on to the victims 

machines post exploitation. The intermediary webpages act as 

traffic redirectors making the attack network complex and 

untraceable. Except for the landing page, all the other 

webpages are under the control of the attackers. 

With web browsers acting as the single point of access for 

diverse web applications and web services hosted on the cloud 

environments, the attacks in the exploit webpages target the 

vulnerabilities associated with the browsers. The malicious 

code fingerprints the browser environment from the request 

headers and also by using the asynchronous communications 

with the browser. 

The attacks are often identified to target exploits in the 

plugins installed on the browsers. As the plugins are 

developed across the globe by different teams, it is 

challenging to detect the bugs that could be exploited to 

perform drive-by download attacks. Over 300 browser plugin 
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vulnerabilities were identified in years 2010 and 2011, and the 

trend continues [1].  

The drive-by attack targeting the vulnerability in 

Microsoft’s Snapshot Viewer control is shown in Fig. 1. This 

control is used for viewing the Microsoft Access files within 

the browser. To view using the Snapshot Viewer, the control 

needs to be initialized followed by setting the path of the file 

to be viewed. Snapshot Viewer is set to download the file to 

the temporary files folder. The vulnerability provided access 

to the function for setting the location where the file needs to 

be stored. 

 

Figure 1.  JavaScript code exploiting the vulnerability in Microsoft’s 

Snapshot Viewer 

In the exploit code shown in Fig. 1, adversaries point the 

remote file location to a malicious executable and the local 

path for storage is set to the startup folder with the help of 

“CompressedPath” method, to ensure its execution. The 

“PrintSnapshot” method is called for performing the drive-by 

attack. 

As the legitimate web applications and services are 

compromised, the trust of the user on the legitimate websites 

is exploited and the traffic is redirected towards malicious 

websites. Therefore implementing the security controls within 

the browsers to ensure end point security has become 

necessary. For protecting the clients from such attacks, a 

machine learning technique for the detection of the malicious 

code exploiting the plugin vulnerabilities was proposed and 

evaluated in this paper.  

II. RELATED WORK 

The drive-by downloads targeting the vulnerabilities in 

the web clients are on the rise. The security issues have 

prompted researchers to come up with novel solutions for 

countering the attacks. Several works have been proposed in 

this direction using different types of approaches. 

Similar to the traditional honeypots which were used to 

collect exploits and malware, systems are proposed to crawl 

and visit webpages using specially built machines for 

detecting the client side attacks. These systems are referred as 

the honeyclients. High interaction honeyclients are heavy 

weight systems that visit webpages in a virtual machine and 

detects the attacks based on the system state changes and other 

events [2][3][4]. The high interaction honeyclients take large 

amount of time and hardware resources and are not scalable to 

the current size of the Internet. The attacks are detected in 

these systems only if a download happens. 

As an alternative, the researchers have proposed low-

interaction honeyclients that would rely on emulation based 

techniques for detecting the attacks. The low interaction 

honeyclients are much faster than the high interaction 

honeyclients and are scalable. PhoneyC [5] uses emulated 

environment to visit webpages and compares the code 

identified with the predefined attack signature patterns for the 

detection of the attacks. Wepawet [6] uses an emulated 

environment for the execution of the code in the webpages and 

uses anomaly based model for the detection of the malicious 

code based on the predefined set of features. These approaches 

are prone to be evaded by the modern attacks which include 

fingerprinting code to detect emulated and virtual 

environments. This limitation has made researchers come up 

with techniques for handling the evasion techniques in such 

detection approaches [7] [8]. However, the proposed approach 

could be integrated into the web browsers and would not be 

prone to such evasion techniques. 

WebWinnow [9] uses the defense and attack mechanisms 

employed in the exploit kits for the detection of the drive-by 

attacks. Features related to the behavior, redirections, 

obfuscation and cloaking are used for the analysis. Different 

machine learning models were evaluated using the webpages 

from the exploit kits and the webpages from the wild. 

Detection of shellcodes in the drive-by download attacks using 

the kernel machines with the help of opcodes frequencies was 

proposed [10]. As the presence of shellcodes in webpages is 

malicious, it is effective in detecting only the attacks that use 

shellcodes for performing the drive-by downloads.  

Zozzle [11] is a lightweight solution based on static 

analysis for the detection of JavaScript malware. Zozzle is 

designed for integration into the browser and relies on the 

construction of the Abstract Syntax Tree (AST) through static 

parsing of the JavaScript code and uses Naïve Bayesian 

classifier to detect the attacks. BrowserGuard [12] proposes a 

behavior based approach for detecting the drive-by download 

attacks. The fundamental idea behind this approach is to 

identify the files that are downloaded without the consent of 

the user and prevent such files from execution.  



Nozzle [13] proposed a mechanism for the detection of 

heap spraying attacks based on the analysis of the objects 

allocated in the heap and measuring the health metrics of the 

allocated heap. Nozzle checks each object allocated in the 

browser’s heap for detecting the malicious intent.  

In [14], the authors have proposed the detection of 

ActiveX exploits based on the inter-module communications. 

The communications between the browser and the plugins are 

monitored. A vulnerability signature database was constructed 

from the known set of attacks and symbolic constraint 

signatures are used for detection. In order to track the attacks 

involving multiple steps, the session is tracked for each plugin. 

For the plugins having multiple vulnerabilities, multiple 

signatures were constructed and validated individually. The 

authors have proposed to track the session states only for the 

objects that have an entry in the signature database. Therefore, 

this approach is limited to the set of vulnerabilities for which 

the attack signatures are defined. The results demonstrated an 

overhead of 15%. The overhead introduced is proportional to 

the signatures in the database and would increase with the 

vulnerability signatures. 

The detection of misuse in the ActiveX controls relying 

on the graph based model constructed from the functionality 

of the plugins was presented by the researchers [15]. Each 

plugin under study is executed with the help of test cases and a 

model consisting of all the function calls is generated. The 

function calls that invoke the dangerous APIs (which lead to 

privileged operations) within the browser are listed. The 

known plugin misuse attacks are blacklisted for detecting the 

attacks at runtime. The approach was evaluated by considering 

three ActiveX controls. Keeping track of the plugins built 

globally and constructing the models which have complete 

coverage of the plugins functionality is hard, providing room 

for the evasion of the attacks. In addition the inclusion of new 

ActiveX controls into the model would have an adverse 

impact over the performance. 

In contrary to the other approaches where features are 

more on the evasion techniques and the malicious code 

including techniques like heap spraying and signature based, 

the set of features has been proposed to focus on the method 

calls, the arguments and the parameters initialized with respect 

to the plugins in legitimate and malicious use cases. The set of 

features and the discussed mechanism to handle the 

obfuscations provide efficient and accurate means for 

detecting the malicious use case scenarios of the browser 

plugins. 

In this paper, we propose to identify the misuse of the 

functionalities provided by the plugins by building a learning 

model using the proposed set of features. The proposed 

approach has been integrated into the browser and the 

overhead in the performance was also studied. 

 

III. SYSTEM 

The system uses the proposed feature set that is extracted 

from the benign and malicious use cases of different plugins to 

generate a model using the Support Vector Machines. The 

generated model would have the capability to judge between 

the malicious and benign use cases. The features proposed are 

both specific to the plugins and generic, enabling the approach 

to be extensible to the newer or unseen plugins. The 

challenging job in handling the attacks is to overcome the 

obfuscations performed using client-side interpreters like 

JavaScript. To overcome the limitations of the obfuscations, 

the system is designed to read the communications between 

the plugins and the browser. 

A. Plugin Calls Tracker 

The malicious code often uses client-side scripting 

languages to obfuscate the code and hide the malicious intent. 

The obfuscations are employed using a wide range of 

techniques making it hard to de-obfuscate and perform the 

analysis. The obfuscations evade the anti-virus signatures and 

the other static detection mechanisms in place. In our system, 

the communication between the plugins and the browser is 

leveraged to track the plugin calls and the parameters passed. 

Netscape Plugin Application Programming Interface (NPAPI) 

is a cross-platform plugin-architecture that’s widely in use 

[16]. We explain the proposed approach using the 

implementation of NPAPI in the modern web browsers like 

Firefox. 

On initializing the plugin, the browser and the plugin 

exchange the address of the different functions on both the 

ends to establish the communication between them. Fig. 2 

represents the communication of the web browsers with the 

plugins. All the functions with the name “NPP_*” are 

provided by the plugin to the browser and the functions with 

the name “NPN_*” are provided by the browser to the plugin. 

Further communication between the plugins and the browser 

is established through this set of functions. In order to handle 

the obfuscations and monitor the plugin function call, a hook 

is placed on these functions. 

 

Figure 2.  NPAPI IMPLEMENTATION OF PLUGIN AND BROWSER 

COMMUNICATIONS 



B. Features 

The proposed system intercepts the function calls made to 

the plugins and extracts the features from the calls which 

support our learning machine to classify between a malicious 

use case and a benign use case. These features are learnt from 

labeled dataset and the generated model would be intelligent 

to detect malicious use cases of the plugins. The proposed set 

of features relies on the differences that are observed between 

the normal and malicious activities. The features that have 

been used in our study are described. 

Feature 1: Presence of a method. The methods that are 

invoked within the plugin are monitored. It helps the learning 

machine about the sets of methods involved in malicious and 

legitimate use cases. 

Feature 2: Number of times a method is called. The 

attacks might involve calling the same method repetitively 

which would deviate from the normal use case of the plugins. 

This feature keeps track of the frequency of the function calls 

made by the plugins. 

Feature 3: Number of arguments passed to a method. This 

feature monitors the number of arguments that are most 

frequently used. It facilitates to detect exploits targeting the 

method parameters that are exposed unintentionally by the 

developers. 

Feature 4: Argument types in methods at different 

positions. The argument types at different indices of the 

method calls are tracked. It helps to identify the exploits 

targeting vulnerabilities that arise from the type checking 

failure. 

Feature 5: Value of the method argument for numeric 

types. This feature would keep track of the usage of high 

memory addresses for hijacking the instruction pointer. 

Feature 6: Length of the string argument with respect to 

method and position. It is often observed in memory overflow 

attacks that strings with large lengths are utilized in the 

exploits. This feature keeps track of the length of the strings 

initialized. 

Feature 7: Number of non-printable characters in the 

string arguments with respect to the method and position. In 

order to exploit the vulnerabilities within the plugins, the 

exploit might have to send complex data in the form of 

arguments. This feature keeps track of the non-printable 

characters occurring in legitimate and malicious use cases. 

Feature 8: Number of printable characters with in the 

string arguments with respect to the method and position. As 

in feature 6, this feature keeps track of the printable characters 

occurring in legitimate and malicious use cases. 

Feature 9: Properties Initialized. The properties initialized 

by the plugins are monitored and this helps to detect attacks 

relying on unintentionally exposed properties. 

Feature 10: Number of times a property is set.  The 

frequency of the initializations of the property is studied to 

detect anomalies due to malicious intents. 

Feature 11: Value type set to the property. The types 

associated with the properties of the plugins are tracked. It 

helps to identify the exploits targeting vulnerabilities that arise 

from the type checking failure. 

Feature 12: Value of the property set. This feature 

monitors the values of the property that has been set. The 

malicious code often refers to high memory addresses to 

hijack the instruction pointer. This feature would facilitate the 

detection of such attacks. 

Feature 13: Number of non-printable characters in the 

string property values. In order to exploit the vulnerabilities 

within the plugins, the exploit might assign complex data to 

the properties. This feature keeps track of the non-printable 

characters occurring in legitimate and malicious use cases. 

Feature 14: Number of printable characters in the string 

property values. In order to exploit the vulnerabilities within 

the plugins, the exploit might assign complex data to the 

properties. This feature keeps track of the non-printable 

characters occurring in legitimate and malicious use cases 

which facilitates in tracking the arguments with shellcodes or 

memory addresses. 

Feature15: The presence of a plugin and the number of 

times the plugin is created. This feature keeps track of 

vulnerabilities exploited by targeting multiple plugins and the 

attacks which necessitate multiple instantiations of the same 

plugin. 

Feature16: Number of printable and non-printable 

characters used in the plugin function calls and the properties. 

This feature tracks the overall usage of the special characters 

in the plugin lifecycle. 

Feature 17: Maximum length of the string argument or the 

string property used in the lifecycle of the plugin. 

Feature 18: Maximum numerical value and the standard 

deviation among the numerical values. This feature keeps 

track of the values used by the plugins in malicious and benign 

use case scenarios. 

These features are extracted over the channel used for 

communications between the browser and the plugins. The 

extracted features are used to train and evaluate the Support 

Vector Machines (SVMs) towards the detection of plugin 

exploit code. 

 



IV. EVALUATION 

The dataset constructed contains instances of plugin 

usages for both benign and malicious purposes. For benign use 

cases the plugins in about 22,000 webpages listed on Alexa 

[17] and the plugins in the webpages obtained by performing 

plugin targeted meta-searches were collected. The proposed 

implementation for monitoring the plugin calls was included 

in the HTMLUnit [18], an emulated browser. The HTMLUnit 

has been modified to simulate the presence of the plugins and 

the functions accessed by the browser. The proposed set of 

features was extracted during the visit to the webpages using 

the custom built browser. The malicious use cases were 

collected using the exploit kits, Metasploit [19] and malicious 

webpages from the wild. Our dataset comprised of 37,369 

benign use cases and about 10,239malicious use cases of the 

plugins. As the distribution of the samples between the normal 

and malicious use cases is not equal, the experiments were 

performed by altering the cost of misclassification for a 

malicious use case and generating synthetic data for malicious 

use cases. 

C. Model selection using SVMs 

In any predictive learning task, such as classification, both 

a model and a parameter estimation method should be selected 

in order to achieve a high level of performance of the learning 

machine. Recent approaches allow a wide class of models of 

varying complexity to be chosen. Then the task of learning 

amounts to selecting the sought-after model of optimal 

complexity and estimating parameters from training data 

[20][21]. Within the SVMs approach, usually parameters to be 

chosen are: 

 The penalty term C which determines the trade-off 

between the complexity of the decision function and 

the number of training examples misclassified;  

 The mapping function  . 

 The kernel function such that 

 (     )    (  )  (  ). 

In the case of RBF kernel, the width, which implicitly 

defines the high dimensional feature space, is the other 

parameter to be selected.  

Model selection was performed on the training datasets by 

considering 50% of the normal use cases and 50% of the 

malicious use cases. Grid search was performed with 5-fold 

cross validation to select the C and γ values. Grid search 

verifies the accuracies of the model using the cross-validation 

for different values of C and γ and returns the C and γ value 

pair with optimal accuracy.  

Grid search was performed over C and γ values ranging 

from -5 to 15 and -15 to 3 respectively. Fig. 3 shows the grid 

search plot obtained from the training dataset. Due to the 

imbalance in the data distribution of malicious and benign 

instances, the grid search was performed by using weighted 

costs. Since the ratio of benign to malicious use cases is 

approximately four by number, the cost of misclassification of 

malicious use case is set to be four times the cost of 

misclassification of benign use case. The (C, γ) value pair with 

optimal detection accuracy was (8192, 0.0000305). 

 

Figure 3.  RESULTS OF GRID SEARCH FOR COST(C) AND GAMMA(Γ) VALUES 

ON TRAINING DATASET 

 

D. ROC Curves 

Receiver Operating Characteristic (ROC) curve is the plot 

of sensitivity on y-axis versus the specificity on x-axis. The 

ROC curves represent the trade-off between the true positives 

and false positives. The x-axis represents the false positive 

rate and the y-axis represents the true positive rate. The point 

(0, 1) represents an ideal classifier with 100% true positive 

rate and 0% false positive rate. 

 

Figure 4.  ROC CURVE FOR THE CLASSIFICATION MODEL OBTAINED BY USING 

TRAINING DATASET 50% OF THE ORIGINAL DATASET 

The ROC curves are plotted by considering the training 

files of 50% of the total number of samples in each class and 



testing on the remaining samples of the dataset. The ROC 

curves obtained from the considered dataset using the selected 

C and γ values is shown in Fig. 4. 

The Area Under Curve (AUC) on each plot represents the 

overall accuracy of the classifier. The AUC under the ROC 

curve for the model generated by training 50% of the samples 

was 0.9956. 

E. Detection Effectiveness 

SVM classifier was built by training with 50% of the total 

dataset samples and tested on the remaining dataset of 

samples. The false positive rates, false negative rates and 

overall detection accuracy obtained by using the generated 

classifier were measured. The optimal values for C and γ 

selected through the grid search were used. 

The results observed in the evaluation are presented in 

Table I. The cost for misclassification for malicious instance 

was set to be four times the cost of misclassification of a 

benign instance. This was done to compensate the imbalanced 

distribution of benign and malicious use cases in the dataset. 

The accuracies observed are listed in Table I under “Weighted 

Costs” column. 

TABLE I. DETECTION EFFECTIVENESS OF TRAINED SVMS 

 Weighted 

Costs 
Over 

Sampling 
 

Accuracy 

 
99.72% 99. 03% 

False 

Positive 

Rate 
0.03% 0.71% 

False 

Negative 

Rate 
1.15% 1.21% 

As high false negative rates were observed on using the 

weighted costs, the classification accuracy was evaluated on 

balanced data using synthetically generated data from the 

existing data points. Synthetic Minority Over-Sampling 

Technique (SMOTE) [22] algorithm was used for the 

generation of synthetic data for the malicious use cases. In this 

oversampling technique new data points are created rather 

than duplicating the existing data points. Each sample from 

the minority class is considered and a sample is generated 

along the line joining the k minority class nearest neighbors.  

The number of nearest neighbors (k) was set to be five, 

the default value. Based on the amount of over-sampling 

required, neighbors among the k nearest neighbors are selected 

randomly. If 100% oversampling is desired, one data point is 

randomly selected from the 5 nearest neighbors with respect to 

the original data point and a synthetic data point is created 

along the line joining the original and the randomly chosen 

data point. Series of steps involved in generating the synthetic 

data points: 

 Compute the difference between the original data 

point and the randomly chosen data point 

 Multiply the difference with a random number 

between 0 and 1 

 Adding the generated vector to the original data point 

results in the new synthetic data point along the line 

joining the original and the randomly chosen data 

point. 

Synthetic data of 30,717 malicious samples were created 

using the SMOTE technique and the detection accuracy was 

computed by using 50% of the samples for training and 50% 

of the samples for testing. The accuracies observed are listed 

in Table I under “Over Sampling” column. 

False positive rates and the false negative rates are 

calculated using the following equations. 

                   
              

                            
 

                   
              

                            
 

 False positives are the instances where the benign use 

cases are classified as malicious use cases 

 False negatives are the instances where the malicious 

use cases are classified as benign use cases 

 True positives are the instances where the malicious 

use cases are classified as malicious use cases 

 True negatives are the instances where the benign use 

cases are classified as benign use cases 

The proposed approach relying on SVMs classified with 

an average accuracy of 99.40%. Though the approach resulted 

in false positives, the false positive rate is minimal with 0.03% 

and 0.71%. The approach resulted in a false negative rate of 

1.15% and 1.21%. The minimum false negative rate of 1.15% 

was observed on assigning higher weights to misclassification 

on a malicious instance. Though false negative rate is higher, 

in applications like web browsers false positive rate has a 

severe impact on the usability which is small. The model is 

designed with complete focus only on the methods, arguments 

and properties associated with the plugins unlike the 

approaches that include URL based features, IP address based 

features and obfuscation based features. This makes the 

approach more generic towards the detection of plugin misuse 

vulnerabilities. 

F. Performance Evaluation 

The performance overhead introduced by implementing 

the proposed mechanism is computed by visiting the top 1500 

webpages of Alexa [17]. The implementation is done in an 



emulated browser, HTMLUnit [18]. The HTMLUnit has been 

modified to emulate the presence of the plugins and the 

corresponding methods. For performing the experiment, the 

clean HTMLUnit and the custom built HTMLUnit with the 

proposed implementation were used.  

 

Figure 5.  PERFORMANCE OVERHEAD INTRODUCED ON VISITING TOP 

WEBPAGES 

The performance overhead is evaluated by comparing the 

load times of the webpages. An average performance overhead 

of 5.14% was introduced by the proposed approach with a 

standard deviation of 5.57%. Fig. 5 and Fig. 6 show the 

observed overheads for the top 1500 and top 20 webpages by 

traffic. 

 

Figure 6.  PERFORMANCE OVERHEAD INTRODUCED ON VISITING THE TOP 20 

WEBPAGES 

V. Conclusions 

An approach for the detection of the code exploiting the 

plugin vulnerabilities using machine learning was proposed 

and evaluated. The proposed features are generic, not specific 

to any vulnerability and are completely based on the usage of 

the plugins in the browsers.  

Grid search has been performed to select the optimal 

values for the cost and gamma parameters. The Support 

Vector Machines model trained and built using the proposed 

set of features performed well with the average detection 

accuracy of about 99.40%.  

The model built using the Support Vector Machines 

learns from both the benign and malicious use cases and 

selects support vectors maximizing the area of separation. This 

offers advantages in detection and scalability compared to the 

signature based detection approaches. The overhead incurred 

due to the proposed approach was computed and was observed 

to be 5.14%. 
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