
Detection of Plugin Misuse Drive-By Download

Attacks Using Kernel Machines

Manoj Cherukuri

Computer Science

Institute for Complex Additive and

System Analysis

New Mexico Institute of Mining and

Technology

Socorro, NM, USA

manoj@cs.nmt.edu

Srinivas Mukkamala

CAaNES LLC.

Institute for Complex Additive and

System Analysis

New Mexico Institute of Mining and

Technology

Socorro, NM, USA

srinivas@cs.nmt.edu

Dongwan Shin

Computer Science

New Mexico Institute of Mining and

Technology

Socorro, NM, USA

 doshin@cs.nmt.edu

Abstract – Malware distribution using drive-by download attacks

has become the most prominent threat for organizations and

individuals. Compromised web services and web applications

hosted on the cloud act as the delivery medium for the exploits.

The exploits included often target the vulnerabilities within the

plugins of the web browsers. Implementing security controls to

counter the exploits within the browsers for ensuring end point

security has become a challenge.

In this paper, a set of features is proposed and is extracted by

monitoring the communications between the browser and the

plugins during the rendering of webpages. The Support Vector

Machines are trained using the defined features and the

performance of the trained classifier is evaluated using a dataset

with both malicious and benign use cases of the plugins. The

dataset included 10,239 malicious use cases and 37,369 benign use

cases. To compensate the imbalance in the distribution of the

dataset, experiments were performed using weighted costs and

oversampling. Our analysis shows that the Support Vector

Machines trained by using the proposed set of features classified

with an average accuracy of about 99.4%. On integrating the

proposed approach as an inline defense, an average performance

overhead of 5.14% was observed.

Keywords- plugin exploits; drive-by download; web malware;

I. INTRODUCTION

The implementation of defense in depth strategy for

securing large networks and individual machines at network

level had shifted focus of the attack vectors on to the port 80.

The traditional HTTP (Hypertext Transfer Protocol) attacks

like webpage defacements are being monetized by the

attackers using the drive-by download attacks. Attackers are

hosting the watering hole attacks by compromising legitimate

web applications and serving malicious code to users

requesting the compromised webpages or web services.

Attackers exploit vulnerabilities like Cross Site Scripting

(XSS), Uniform Resource Locator (URL) redirection,

Injection, Response Splitting to compromise and redirect the

traffic towards webpages hosting the malicious code.

The drive-by download attacks often involve multiple

types of webpages namely, landing, exploit, distribution and

intermediary webpages. The landing webpage is often the

compromised webpage that generates the traffic to the exploit

webpages using a redirection or a frame. The exploit

webpages fingerprint the environment of the machine

generating the request and responds with the code containing a

targeted attack. Large numbers of landing webpages share a

common exploit webpage. The distribution webpages are the

webpages used in malware distribution for hosting malware

which are downloaded and installed on to the victims

machines post exploitation. The intermediary webpages act as

traffic redirectors making the attack network complex and

untraceable. Except for the landing page, all the other

webpages are under the control of the attackers.

With web browsers acting as the single point of access for

diverse web applications and web services hosted on the cloud

environments, the attacks in the exploit webpages target the

vulnerabilities associated with the browsers. The malicious

code fingerprints the browser environment from the request

headers and also by using the asynchronous communications

with the browser.

The attacks are often identified to target exploits in the

plugins installed on the browsers. As the plugins are

developed across the globe by different teams, it is

challenging to detect the bugs that could be exploited to

perform drive-by download attacks. Over 300 browser plugin

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257749

vulnerabilities were identified in years 2010 and 2011, and the

trend continues [1].

The drive-by attack targeting the vulnerability in

Microsoft’s Snapshot Viewer control is shown in Fig. 1. This

control is used for viewing the Microsoft Access files within

the browser. To view using the Snapshot Viewer, the control

needs to be initialized followed by setting the path of the file

to be viewed. Snapshot Viewer is set to download the file to

the temporary files folder. The vulnerability provided access

to the function for setting the location where the file needs to

be stored.

Figure 1. JavaScript code exploiting the vulnerability in Microsoft’s

Snapshot Viewer

In the exploit code shown in Fig. 1, adversaries point the

remote file location to a malicious executable and the local

path for storage is set to the startup folder with the help of

“CompressedPath” method, to ensure its execution. The

“PrintSnapshot” method is called for performing the drive-by

attack.

As the legitimate web applications and services are

compromised, the trust of the user on the legitimate websites

is exploited and the traffic is redirected towards malicious

websites. Therefore implementing the security controls within

the browsers to ensure end point security has become

necessary. For protecting the clients from such attacks, a

machine learning technique for the detection of the malicious

code exploiting the plugin vulnerabilities was proposed and

evaluated in this paper.

II. RELATED WORK

The drive-by downloads targeting the vulnerabilities in

the web clients are on the rise. The security issues have

prompted researchers to come up with novel solutions for

countering the attacks. Several works have been proposed in

this direction using different types of approaches.

Similar to the traditional honeypots which were used to

collect exploits and malware, systems are proposed to crawl

and visit webpages using specially built machines for

detecting the client side attacks. These systems are referred as

the honeyclients. High interaction honeyclients are heavy

weight systems that visit webpages in a virtual machine and

detects the attacks based on the system state changes and other

events [2][3][4]. The high interaction honeyclients take large

amount of time and hardware resources and are not scalable to

the current size of the Internet. The attacks are detected in

these systems only if a download happens.

As an alternative, the researchers have proposed low-

interaction honeyclients that would rely on emulation based

techniques for detecting the attacks. The low interaction

honeyclients are much faster than the high interaction

honeyclients and are scalable. PhoneyC [5] uses emulated

environment to visit webpages and compares the code

identified with the predefined attack signature patterns for the

detection of the attacks. Wepawet [6] uses an emulated

environment for the execution of the code in the webpages and

uses anomaly based model for the detection of the malicious

code based on the predefined set of features. These approaches

are prone to be evaded by the modern attacks which include

fingerprinting code to detect emulated and virtual

environments. This limitation has made researchers come up

with techniques for handling the evasion techniques in such

detection approaches [7] [8]. However, the proposed approach

could be integrated into the web browsers and would not be

prone to such evasion techniques.

WebWinnow [9] uses the defense and attack mechanisms

employed in the exploit kits for the detection of the drive-by

attacks. Features related to the behavior, redirections,

obfuscation and cloaking are used for the analysis. Different

machine learning models were evaluated using the webpages

from the exploit kits and the webpages from the wild.

Detection of shellcodes in the drive-by download attacks using

the kernel machines with the help of opcodes frequencies was

proposed [10]. As the presence of shellcodes in webpages is

malicious, it is effective in detecting only the attacks that use

shellcodes for performing the drive-by downloads.

Zozzle [11] is a lightweight solution based on static

analysis for the detection of JavaScript malware. Zozzle is

designed for integration into the browser and relies on the

construction of the Abstract Syntax Tree (AST) through static

parsing of the JavaScript code and uses Naïve Bayesian

classifier to detect the attacks. BrowserGuard [12] proposes a

behavior based approach for detecting the drive-by download

attacks. The fundamental idea behind this approach is to

identify the files that are downloaded without the consent of

the user and prevent such files from execution.

Nozzle [13] proposed a mechanism for the detection of

heap spraying attacks based on the analysis of the objects

allocated in the heap and measuring the health metrics of the

allocated heap. Nozzle checks each object allocated in the

browser’s heap for detecting the malicious intent.

In [14], the authors have proposed the detection of

ActiveX exploits based on the inter-module communications.

The communications between the browser and the plugins are

monitored. A vulnerability signature database was constructed

from the known set of attacks and symbolic constraint

signatures are used for detection. In order to track the attacks

involving multiple steps, the session is tracked for each plugin.

For the plugins having multiple vulnerabilities, multiple

signatures were constructed and validated individually. The

authors have proposed to track the session states only for the

objects that have an entry in the signature database. Therefore,

this approach is limited to the set of vulnerabilities for which

the attack signatures are defined. The results demonstrated an

overhead of 15%. The overhead introduced is proportional to

the signatures in the database and would increase with the

vulnerability signatures.

The detection of misuse in the ActiveX controls relying

on the graph based model constructed from the functionality

of the plugins was presented by the researchers [15]. Each

plugin under study is executed with the help of test cases and a

model consisting of all the function calls is generated. The

function calls that invoke the dangerous APIs (which lead to

privileged operations) within the browser are listed. The

known plugin misuse attacks are blacklisted for detecting the

attacks at runtime. The approach was evaluated by considering

three ActiveX controls. Keeping track of the plugins built

globally and constructing the models which have complete

coverage of the plugins functionality is hard, providing room

for the evasion of the attacks. In addition the inclusion of new

ActiveX controls into the model would have an adverse

impact over the performance.

In contrary to the other approaches where features are

more on the evasion techniques and the malicious code

including techniques like heap spraying and signature based,

the set of features has been proposed to focus on the method

calls, the arguments and the parameters initialized with respect

to the plugins in legitimate and malicious use cases. The set of

features and the discussed mechanism to handle the

obfuscations provide efficient and accurate means for

detecting the malicious use case scenarios of the browser

plugins.

In this paper, we propose to identify the misuse of the

functionalities provided by the plugins by building a learning

model using the proposed set of features. The proposed

approach has been integrated into the browser and the

overhead in the performance was also studied.

III. SYSTEM

The system uses the proposed feature set that is extracted

from the benign and malicious use cases of different plugins to

generate a model using the Support Vector Machines. The

generated model would have the capability to judge between

the malicious and benign use cases. The features proposed are

both specific to the plugins and generic, enabling the approach

to be extensible to the newer or unseen plugins. The

challenging job in handling the attacks is to overcome the

obfuscations performed using client-side interpreters like

JavaScript. To overcome the limitations of the obfuscations,

the system is designed to read the communications between

the plugins and the browser.

A. Plugin Calls Tracker

The malicious code often uses client-side scripting

languages to obfuscate the code and hide the malicious intent.

The obfuscations are employed using a wide range of

techniques making it hard to de-obfuscate and perform the

analysis. The obfuscations evade the anti-virus signatures and

the other static detection mechanisms in place. In our system,

the communication between the plugins and the browser is

leveraged to track the plugin calls and the parameters passed.

Netscape Plugin Application Programming Interface (NPAPI)

is a cross-platform plugin-architecture that’s widely in use

[16]. We explain the proposed approach using the

implementation of NPAPI in the modern web browsers like

Firefox.

On initializing the plugin, the browser and the plugin

exchange the address of the different functions on both the

ends to establish the communication between them. Fig. 2

represents the communication of the web browsers with the

plugins. All the functions with the name “NPP_*” are

provided by the plugin to the browser and the functions with

the name “NPN_*” are provided by the browser to the plugin.

Further communication between the plugins and the browser

is established through this set of functions. In order to handle

the obfuscations and monitor the plugin function call, a hook

is placed on these functions.

Figure 2. NPAPI IMPLEMENTATION OF PLUGIN AND BROWSER

COMMUNICATIONS

B. Features

The proposed system intercepts the function calls made to

the plugins and extracts the features from the calls which

support our learning machine to classify between a malicious

use case and a benign use case. These features are learnt from

labeled dataset and the generated model would be intelligent

to detect malicious use cases of the plugins. The proposed set

of features relies on the differences that are observed between

the normal and malicious activities. The features that have

been used in our study are described.

Feature 1: Presence of a method. The methods that are

invoked within the plugin are monitored. It helps the learning

machine about the sets of methods involved in malicious and

legitimate use cases.

Feature 2: Number of times a method is called. The

attacks might involve calling the same method repetitively

which would deviate from the normal use case of the plugins.

This feature keeps track of the frequency of the function calls

made by the plugins.

Feature 3: Number of arguments passed to a method. This

feature monitors the number of arguments that are most

frequently used. It facilitates to detect exploits targeting the

method parameters that are exposed unintentionally by the

developers.

Feature 4: Argument types in methods at different

positions. The argument types at different indices of the

method calls are tracked. It helps to identify the exploits

targeting vulnerabilities that arise from the type checking

failure.

Feature 5: Value of the method argument for numeric

types. This feature would keep track of the usage of high

memory addresses for hijacking the instruction pointer.

Feature 6: Length of the string argument with respect to

method and position. It is often observed in memory overflow

attacks that strings with large lengths are utilized in the

exploits. This feature keeps track of the length of the strings

initialized.

Feature 7: Number of non-printable characters in the

string arguments with respect to the method and position. In

order to exploit the vulnerabilities within the plugins, the

exploit might have to send complex data in the form of

arguments. This feature keeps track of the non-printable

characters occurring in legitimate and malicious use cases.

Feature 8: Number of printable characters with in the

string arguments with respect to the method and position. As

in feature 6, this feature keeps track of the printable characters

occurring in legitimate and malicious use cases.

Feature 9: Properties Initialized. The properties initialized

by the plugins are monitored and this helps to detect attacks

relying on unintentionally exposed properties.

Feature 10: Number of times a property is set. The

frequency of the initializations of the property is studied to

detect anomalies due to malicious intents.

Feature 11: Value type set to the property. The types

associated with the properties of the plugins are tracked. It

helps to identify the exploits targeting vulnerabilities that arise

from the type checking failure.

Feature 12: Value of the property set. This feature

monitors the values of the property that has been set. The

malicious code often refers to high memory addresses to

hijack the instruction pointer. This feature would facilitate the

detection of such attacks.

Feature 13: Number of non-printable characters in the

string property values. In order to exploit the vulnerabilities

within the plugins, the exploit might assign complex data to

the properties. This feature keeps track of the non-printable

characters occurring in legitimate and malicious use cases.

Feature 14: Number of printable characters in the string

property values. In order to exploit the vulnerabilities within

the plugins, the exploit might assign complex data to the

properties. This feature keeps track of the non-printable

characters occurring in legitimate and malicious use cases

which facilitates in tracking the arguments with shellcodes or

memory addresses.

Feature15: The presence of a plugin and the number of

times the plugin is created. This feature keeps track of

vulnerabilities exploited by targeting multiple plugins and the

attacks which necessitate multiple instantiations of the same

plugin.

Feature16: Number of printable and non-printable

characters used in the plugin function calls and the properties.

This feature tracks the overall usage of the special characters

in the plugin lifecycle.

Feature 17: Maximum length of the string argument or the

string property used in the lifecycle of the plugin.

Feature 18: Maximum numerical value and the standard

deviation among the numerical values. This feature keeps

track of the values used by the plugins in malicious and benign

use case scenarios.

These features are extracted over the channel used for

communications between the browser and the plugins. The

extracted features are used to train and evaluate the Support

Vector Machines (SVMs) towards the detection of plugin

exploit code.

IV. EVALUATION

The dataset constructed contains instances of plugin

usages for both benign and malicious purposes. For benign use

cases the plugins in about 22,000 webpages listed on Alexa

[17] and the plugins in the webpages obtained by performing

plugin targeted meta-searches were collected. The proposed

implementation for monitoring the plugin calls was included

in the HTMLUnit [18], an emulated browser. The HTMLUnit

has been modified to simulate the presence of the plugins and

the functions accessed by the browser. The proposed set of

features was extracted during the visit to the webpages using

the custom built browser. The malicious use cases were

collected using the exploit kits, Metasploit [19] and malicious

webpages from the wild. Our dataset comprised of 37,369

benign use cases and about 10,239malicious use cases of the

plugins. As the distribution of the samples between the normal

and malicious use cases is not equal, the experiments were

performed by altering the cost of misclassification for a

malicious use case and generating synthetic data for malicious

use cases.

C. Model selection using SVMs

In any predictive learning task, such as classification, both

a model and a parameter estimation method should be selected

in order to achieve a high level of performance of the learning

machine. Recent approaches allow a wide class of models of

varying complexity to be chosen. Then the task of learning

amounts to selecting the sought-after model of optimal

complexity and estimating parameters from training data

[20][21]. Within the SVMs approach, usually parameters to be

chosen are:

 The penalty term C which determines the trade-off

between the complexity of the decision function and

the number of training examples misclassified;

 The mapping function .

 The kernel function such that

 () () ().

In the case of RBF kernel, the width, which implicitly

defines the high dimensional feature space, is the other

parameter to be selected.

Model selection was performed on the training datasets by

considering 50% of the normal use cases and 50% of the

malicious use cases. Grid search was performed with 5-fold

cross validation to select the C and γ values. Grid search

verifies the accuracies of the model using the cross-validation

for different values of C and γ and returns the C and γ value

pair with optimal accuracy.

Grid search was performed over C and γ values ranging

from -5 to 15 and -15 to 3 respectively. Fig. 3 shows the grid

search plot obtained from the training dataset. Due to the

imbalance in the data distribution of malicious and benign

instances, the grid search was performed by using weighted

costs. Since the ratio of benign to malicious use cases is

approximately four by number, the cost of misclassification of

malicious use case is set to be four times the cost of

misclassification of benign use case. The (C, γ) value pair with

optimal detection accuracy was (8192, 0.0000305).

Figure 3. RESULTS OF GRID SEARCH FOR COST(C) AND GAMMA(Γ) VALUES

ON TRAINING DATASET

D. ROC Curves

Receiver Operating Characteristic (ROC) curve is the plot

of sensitivity on y-axis versus the specificity on x-axis. The

ROC curves represent the trade-off between the true positives

and false positives. The x-axis represents the false positive

rate and the y-axis represents the true positive rate. The point

(0, 1) represents an ideal classifier with 100% true positive

rate and 0% false positive rate.

Figure 4. ROC CURVE FOR THE CLASSIFICATION MODEL OBTAINED BY USING

TRAINING DATASET 50% OF THE ORIGINAL DATASET

The ROC curves are plotted by considering the training

files of 50% of the total number of samples in each class and

testing on the remaining samples of the dataset. The ROC

curves obtained from the considered dataset using the selected

C and γ values is shown in Fig. 4.

The Area Under Curve (AUC) on each plot represents the

overall accuracy of the classifier. The AUC under the ROC

curve for the model generated by training 50% of the samples

was 0.9956.

E. Detection Effectiveness

SVM classifier was built by training with 50% of the total

dataset samples and tested on the remaining dataset of

samples. The false positive rates, false negative rates and

overall detection accuracy obtained by using the generated

classifier were measured. The optimal values for C and γ

selected through the grid search were used.

The results observed in the evaluation are presented in

Table I. The cost for misclassification for malicious instance

was set to be four times the cost of misclassification of a

benign instance. This was done to compensate the imbalanced

distribution of benign and malicious use cases in the dataset.

The accuracies observed are listed in Table I under “Weighted

Costs” column.

TABLE I. DETECTION EFFECTIVENESS OF TRAINED SVMS

 Weighted

Costs
Over

Sampling

Accuracy

99.72% 99. 03%

False

Positive

Rate
0.03% 0.71%

False

Negative

Rate
1.15% 1.21%

As high false negative rates were observed on using the

weighted costs, the classification accuracy was evaluated on

balanced data using synthetically generated data from the

existing data points. Synthetic Minority Over-Sampling

Technique (SMOTE) [22] algorithm was used for the

generation of synthetic data for the malicious use cases. In this

oversampling technique new data points are created rather

than duplicating the existing data points. Each sample from

the minority class is considered and a sample is generated

along the line joining the k minority class nearest neighbors.

The number of nearest neighbors (k) was set to be five,

the default value. Based on the amount of over-sampling

required, neighbors among the k nearest neighbors are selected

randomly. If 100% oversampling is desired, one data point is

randomly selected from the 5 nearest neighbors with respect to

the original data point and a synthetic data point is created

along the line joining the original and the randomly chosen

data point. Series of steps involved in generating the synthetic

data points:

 Compute the difference between the original data

point and the randomly chosen data point

 Multiply the difference with a random number

between 0 and 1

 Adding the generated vector to the original data point

results in the new synthetic data point along the line

joining the original and the randomly chosen data

point.

Synthetic data of 30,717 malicious samples were created

using the SMOTE technique and the detection accuracy was

computed by using 50% of the samples for training and 50%

of the samples for testing. The accuracies observed are listed

in Table I under “Over Sampling” column.

False positive rates and the false negative rates are

calculated using the following equations.

 False positives are the instances where the benign use

cases are classified as malicious use cases

 False negatives are the instances where the malicious

use cases are classified as benign use cases

 True positives are the instances where the malicious

use cases are classified as malicious use cases

 True negatives are the instances where the benign use

cases are classified as benign use cases

The proposed approach relying on SVMs classified with

an average accuracy of 99.40%. Though the approach resulted

in false positives, the false positive rate is minimal with 0.03%

and 0.71%. The approach resulted in a false negative rate of

1.15% and 1.21%. The minimum false negative rate of 1.15%

was observed on assigning higher weights to misclassification

on a malicious instance. Though false negative rate is higher,

in applications like web browsers false positive rate has a

severe impact on the usability which is small. The model is

designed with complete focus only on the methods, arguments

and properties associated with the plugins unlike the

approaches that include URL based features, IP address based

features and obfuscation based features. This makes the

approach more generic towards the detection of plugin misuse

vulnerabilities.

F. Performance Evaluation

The performance overhead introduced by implementing

the proposed mechanism is computed by visiting the top 1500

webpages of Alexa [17]. The implementation is done in an

emulated browser, HTMLUnit [18]. The HTMLUnit has been

modified to emulate the presence of the plugins and the

corresponding methods. For performing the experiment, the

clean HTMLUnit and the custom built HTMLUnit with the

proposed implementation were used.

Figure 5. PERFORMANCE OVERHEAD INTRODUCED ON VISITING TOP

WEBPAGES

The performance overhead is evaluated by comparing the

load times of the webpages. An average performance overhead

of 5.14% was introduced by the proposed approach with a

standard deviation of 5.57%. Fig. 5 and Fig. 6 show the

observed overheads for the top 1500 and top 20 webpages by

traffic.

Figure 6. PERFORMANCE OVERHEAD INTRODUCED ON VISITING THE TOP 20

WEBPAGES

V. Conclusions

An approach for the detection of the code exploiting the

plugin vulnerabilities using machine learning was proposed

and evaluated. The proposed features are generic, not specific

to any vulnerability and are completely based on the usage of

the plugins in the browsers.

Grid search has been performed to select the optimal

values for the cost and gamma parameters. The Support

Vector Machines model trained and built using the proposed

set of features performed well with the average detection

accuracy of about 99.40%.

The model built using the Support Vector Machines

learns from both the benign and malicious use cases and

selects support vectors maximizing the area of separation. This

offers advantages in detection and scalability compared to the

signature based detection approaches. The overhead incurred

due to the proposed approach was computed and was observed

to be 5.14%.

REFERENCES

[1] “Web Browser Plug-in Vulnerabilities”, Symantec (2012). Available:
http://www.symantec.com/threatreport/topic.jsp?id=vulnerability_trends

&aid=web_browser_plug_in_vulnerabilities [13 May 2012].

[2] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A Crawler-

based Study of Spyware on the Web. In Proceedings of the 2006

Network and Distributed System Security Symposium, San Diego, CA,
pages 17–33, February 2006.

[3] “Capture-HPC Client Honeypot / Honeyclient”, TheHoneynet Project (2
Sep 2008). Available: https://projects.honeynet.org/capture-hpc [15 Jan

2012].

[4] Y. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S.
King. Automated Web Patrol with Strider HoneyMonkeys. In

Proceedings of the 2006 Network and Distributed System Security
Symposium, pages 35–49, San Diego, CA, February 2006.

[5] J. Nazario. PhoneyC: a virtual client honeypot. In Proceedings of the
2nd USENIX Workshop on Large-Scale Exploits and Emergent Threat,

Boston, MA, April 2009.

[6] M. Cova, C. Kruegel, and G. Vigna. Detection and Analysis of Drive-
by-download Attacks and Malicious JavascriptCode. In Proceeding of

the 19th International World Wide Web Conference, Raleigh, NC, April

2010.

[7] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifer. Rozzle: De-cloaking

internet malware. In Proceedings of the IEEE Symposium on Security

and Privacy, San Francisco, CA, May 2012.

[8] A. Kapravelos , Y. Shoshitaishvili , M. Cova , C. Kruegel , G. Vigna,
Revolver: An Automated Approach to the Detection of Evasive web-

based Malware. In Poceedings of the 22nd USENIX conference on

Security, Washington, D.C, August 2013.

[9] B. Eshete and V. N. Venkatkrishnan. WebWinnow: Leveraging Exploit

Kit Workflows to Detect Malicious Urls. In Proceedings of the 4th ACM
conference on Data and Application Security and Privacy, San Antonio,

TX, March 2014.

[10] M. Cherukuri, S. Mukkamala, and D. Shin: Detection of Shellcodes in
Drive-by Attacks using Kernel Machines. In Journal of Computer

Virology and Hacking Techniques, Vol. 10, Issue 3, pages 189-203,

August 2014.

[11] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle: Low-

overhead mostly Static Javascript Malware Detection. In Proceedings of
the USENIX Security Symposium, San Francisco, CA, August 2011.

[12] F. Hsu, C. Tso, Y. Yeh, W. Wang, and L. Chen. BrowserGuard: A

Behavior Based Solution to Drive-by-Download Attacks. In IEEE

Journal on Selected Areas in Communications, Vol. 29, No. 7, pages

1461-1468, August 2011.

[13] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A Defense

Against Heap-spraying Code Injection Attacks. In Proceedings of the
USENIX Security Symposium, Montreal, Canada, August 2009.

[14] C. Song , J. Zhuge , X. Han and Z. Ye. Preventing Drive-by Download

via Inter-Module communication monitoring. In Proceedings of the 5th
ACM Symposium on Information, Computer and Communications

Security, Beijing, China, April 2010.

[15] T. Dai, S. Sathyanarayan, R. H. C. Yap and Z. Liang. Detecting and
Preventing ActiveX API-Misuse Vulnerabilities in Internet Explorer. In

Proceedings of Information and Communications Security, Vol. 7618,
Hong Kong, China, October 2012.

[16] “NPAPI.” Wikipedia (17 Jun 2014). Available
http://en.wikipedia.org/wiki/NPAPI [19 Jun 2014].

[17] Alexa: Top Sites. http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

[11 Sept 2013]

0

5

10

15

20

25

30

35

1

1
1
1

2
2
1

3
3
1

4
4
1

5
5
1

6
6
1

7
7
1

8
8
1

9
9
1

1
1
0
1

1
2
1
1

1
3
2
1

1
4
3
1

%
 P

er
fo

rm
a
n

ce

O
v

er
h

ea
d

Webpage by Alexa Rank

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 19

%
 P

er
fo

rm
a
n

ce

O
v
er

h
ea

d

Webpage by Alexa Rank

http://dl.acm.org/citation.cfm?id=1755705&CFID=516278186&CFTOKEN=55650074
http://dl.acm.org/citation.cfm?id=1755705&CFID=516278186&CFTOKEN=55650074
http://dl.acm.org/citation.cfm?id=1755705&CFID=516278186&CFTOKEN=55650074
http://dl.acm.org/citation.cfm?id=1755705&CFID=516278186&CFTOKEN=55650074

[18] “HtmlUnit”, Gargoyle Software (05 Aug 2010). Available:
http://sourceforge.net/projects/htmlunit/files/ [05 Jun 2011].

[19] Metasploit: Rapid7. http://www.metasploit.com. [15 May 2012]

[20] J. H. Lee and C. J. Lin.Automatic Model Selection for Support Vector
Machines. Technical Report, Department of Computer Science and

Information Engineering, National Taiwan University, 2000.

[21] V. Cherkassy. Model complexity Control and Statistical Learning
Theory. In Journal of Natural Computing, Vol. 1, pp. 109-133, 2002.

[22] N. Chawla, K. Bowyer,L. Hall, and W. Kegelmeyer. SMOTE: Synthetic

Minority Over-sampling Technique. In Journal of Artificial Intelligence
Research, Vol. 16, pp. 341-378, 2002.

