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Abstract—Given a short query audio clip, the goal of audio
retrieval is to automatically fetch all similar clips from a given
audio database. Different from traditional audio similarity which
is mainly based on priori knowledge of objective reality, this
paper proposes to use a more subjective method to measure
the perceptual similarity between audio clips. These perceptual
features focus on users’ personal experience, which can be very
helpful for audio retrieval across different databases. In addition,
indexing and audio matching methods are introduced to speed
up the retrieval process. Experimental results on four different
datasets are conducted to evaluate the effectiveness and efficiency
of our proposed approaches.

Keywords-audio retrieval; perceptual similarity

I. INTRODUCTION

Content-based audio retrieval has been a challenging task
for a long time. Given a short query audio clip, the goal of
audio retrieval is to automatically retrieve all similar clips
from a given audio database. Hence the essential problem
is to calculate the similarity between audio clips, which
is particularly difficult for waveform inputs. The difficulty
mainly relies on the following aspects. First, the waveform
audio data is too complex for computer to process directly.
To deal with this problem, a general method is to convert
the audio data within the database into sequences of suitable
audio features. Second, researchers notice that the feature-
based similarities between audio clips are not as intuitive or
user-friendly as they had expected, which is often referred as
the problem of “bridging the semantic gap” [1]. Finally, the
retrieval process is often time-consuming and often can not
meet the requirement of real-time retrieval.

In this paper, we use a natural strategy to conduct audio
retrieval. First of all we use some common features to repre-
sent audio effectively; then we test the effectiveness of various
acoustic features in our perceptual similarity measurement and
select suitable features to represent the perceptual similarity
between audio clips; finally we introduce the indexing and
audio matching method to speed up the retrieval process.

There are some common features used in many audio
tasks including Zero Crossing Rate (ZCR), Mel-frequency
Cepstral Coefficients (MFCC), Line Spectral Pairs (LSP ),
etc. Johnson et al. [3] used Mel PLP cepstrum coefficients of
the audio and a covariance-based distance metric to quickly
locate audio repeats. Muscle Fish system [2] used pitch,
timbre, loudness and brightness to represent the audio. Muller

et al. [4] proposed a new type of chroma-based feature that
strongly correlated to the harmonic progression of the audio.
Melih et al. [5] showed that a new structured representation of
audio features was helpful for content-based audio retrieval.
Many research efforts have also been reported on feature
extraction methods for music audio data [19], [20].

However, traditional signal based audio features are often
directly extracted from the audio, which makes the audio
retrieval task into a simple audio lookup problem [15], [16],
[17], [20]. As a result, only the same homologous audio can
be recalled, which leads to a high precision but poor recall
rate. In recent years, semantic information is emerging in the
field of audio retrieval. Kurth et al. [8] defined the melody
similarity to deal with the music variance. Barrington et al.
[10] trained several SVM (Support Vector Machine) classi-
fiers for semantic tags to improve the retrieval performance.
The definition of “human-centered” similarity is becoming
an important exploration direction of audio retrieval. In our
task, a novel definition of perceptual similarity is proposed to
guide feature extraction and similarity calculation. The new
perceptual similarity shows the potential to break through the
limit of traditional methods.

The audio retrieval efficiency is mainly determined by two
factors: the computational complexity of audio similarity and
the search strategy. Bosteels et al. [6] proposed a fuzzy
similarity calculation based on spectrum histograms and fluc-
tuation patterns. Lo et al. [7] divided the audio into several
homogeneous segments, and trained an ensemble classifier
to provide the audio annotation. Kurth et al. [8] employed
standard indexing techniques to obtain an efficient index-
based audio matching procedure. Zhang et al. [9] took two
stages to speed up the retrieval process, which consisted of
coarse search based on the histogram pruning algorithm and
retrieval based on time information. In this paper, we present
an indexing method and a multi-stage matching procedure to
speed up the retrieval process. Experimental results on four
different datasets are conducted to evaluate the effectiveness
and efficiency of our proposed approaches.

This paper is organized as follows. Section II illuminates
the perceptual similarity and discusses a feature selection
procedure. Section III introduces the indexing method and
provides feasible implementation methods. Section IV uses a
Multi-stage matching strategy to complete the audio retrieval
task and discusses the time efficiency. Section V conducts
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experiments and evaluates the performance of the proposed
system. Section VI concludes this paper and presents our
future work.

II. PERCEPTUAL SIMILARITY

Given an audio clip pair, there are many distance defi-
nitions to evaluate their similarity. Traditional feature-based
similarity only conveys raw signal information, but ignores
the perceptual information that the audio transmits to people.
It is hard to define perceptual similarity between audio clips
because of the variance among people and also the variance
related to external conditions. It is a process of a subjective
judgment more or less. Thus we introduce MOS (Mean
Opinion Score [14]), a scoring method of Voice Quality Test
to evaluate the perceptual similarity between audio clips.

The perceptual similarity degree is experimentally divided
into four scales as shown in Table I, and we use the statistical
average scores from a number of people as the subjective
assessment of the perceptual similarity. The larger the score
is, the more similar the audio pair is.

The measurement of the perceptual similarity provides a
proper link between the acoustic features and the perceptual
similarity. Given a specific acoustic feature, we can calculate
the acoustic distance as an objective measurement of the
perceptual similarity. If the acoustic distance well correlates
with the perceptual similarity, the acoustic feature is consid-
ered to be effective. However, one single feature may not be
that effective, so we propose to find a complementary and
effective integration of acoustic features via a feature selection
procedure.

In this paper, we use the SFFS (Sequential Floating For-
ward Selection) procedure [12] to greedily select the optimal
features. Assume that there are N kinds of acoustic features,
denoted as S = {s1, s2, ..., sN}, and correspondingly there are
N kinds of distances, denoted as D = {d1, d2, ..., dN}.

Finally, we get a set of acoustic features U that is considered
most effective for the measurement of perceptual similarity.

III. INDEXING METHODS

The time cost of an audio matching method linearly depends
on the size of the database. Kurth et al. [8] used the indexing
method to speed up the retrieval process. Here we introduce
the indexing idea from unsupervised learning, discuss its limi-
tations, and then propose the ameliorated indexing procedure.

Recall that U is the feature set we have selected to represent
the perceptual similarity of audio clips. If we can find a finite
set C = {c1, c2, ..., cK}, where each index i ∈ [1 : K]
corresponds to a feature class determined by a nearest neighbor
criterion, C is called the codebook of U . A common strategy
to find C is based on unsupervised learning algorithms such
as clustering. In this paper, we use the known ISODATA (It-
erative Self-Organizing Data Analysis Technique Algorithm)
[13] to obtain the codebook C.

When we use the codebook selected by the nearest neighbor
criterion to execute the audio retrieval process, we often make
the following assumptions: (1) samples in the same class are

Algorithm 1 SFFS Feature Selection Procedure.

Input: The set of acoustic features, S = {s1, s2, ..., sN};
MOS perceptual similarity scores of all audio pairs, score;

Output: Selected feature integration, U ;
1: Initialization: Select the initial feature integration U =

{s1′ , s2′ , ..., sk′ }. The residual set is L = S −D;
2: Calculate the cross-validation classification accuracy

cvAcc on U via SVM;
3: Forward process: For each feature in L, add int to U

and calculate its cvAcc. If none of the addition improves
the accuracy, goto 4, else, add the feature which mostly
improves the accuracy to U , and repeat 3;

4: Backward process: If the size of U is bigger than one,
exclude each feature in U and calculate its cvAcc, If
none of the exclusion improves the accuracy, goto 5, else,
exclude the feature which mostly improves the accuracy
from U , and repeat 4;

5: If the accuracy is unchanged, goto 6, else, update L =
S −D, goto 3;

6: return U ;

Algorithm 2 ISODATA Procedure.

Input: Features related to perceptual similarity, U ; Expected
class number, K; Least samples in class, θk; Discrete
degree in class, θs; Discrete degree between classes, θc;
Initial class number, Nc;

Output: Selected codebook, C;
1: Initialization: Select the initial class centre C =

{c1, c2, ..., cNc};
2: Delete: Allot samples U into different class C by a nearest

neighbor criterion, delete the class whose sample number
is under θk, update C;

3: Split: Calculate discrete degree in each class, split the
class whose discrete degree is bigger than θs into two
new classes, update C;

4: Merge: Calculate discrete degree between classes, Merge
the classes whose discrete degree is smaller than θc into
one class, update C;

5: Iterate: According to different conditions, iterate the Step
2-4 until all conditions are satisfied;

6: return C;

more similar (Figure 1(a)); (2) samples in different classes
are different (Figure 1(b)); and (3) similar audio clips have
the same length.

However in Figure 1(a), A and B are both assigned to C1,
but obviously they are not similar. In Figure 1(b), A and B
are assigned to different classes, but they are similar based on
Euclidean distance. Thus we make the following corrections
to the original indexing method.

1) C1. Assume that the distance between A (or B) and
class center C1 is dAC (or dBC). If | dAC−dBC |> θs,
A and B are not similar; Otherwise, use the nearest
neighbor criterion to provide a judgement.



TABLE I: perceptual similarity definitions

MOS level of similarity description
4 almost the same the difference is slight, difficult to detect
3 similar there are small differences, relatively obvious
2 a little similar there are many differences, but some similarity
1 not similar at all obvious differences, easy to distinguish

(a) same class (b) different classes

Fig. 1: A counter example.

2) C2. Instead of classifying each point to one exact class,
we provide nbest labels corresponding to the nearest
classes. If the label lists of two points intersect with
at least one label, we say that the tow points may be
similar.

3) C3. We use a limited flexible method instead of the com-
plex DTW (Dynamic Time Warping [11]) technique to
solve the unequal-length series matching problem.

When we have a query audio Q and an audio clip Dk

within the database, we can calculate their similarity using
the following formula:

S(Q,Dk) =

LQ−1∑
j=0

Score(j, k), (1)

where Score(j, k) indicates the matching score of Q(j) in
Dk. From C3, Score(j, k) can be calculated as follows,

Score(j, k) = max
i=−N :N

{ci · s(Q(j), Dk(j + i))}. (2)

Assuming that the label list of Q(j) is sj =
{l1, l2, ..., lnbest} and the label list of Dk(i) is bi =
{q1, q2, ..., qnbest}, from C1 and C2 the definition of
s(Q(j), Dk(i)) can be given as follows,

• Assuming that C = sj ∩ bi = {p1, p2, ..., pNC}, and
di =| dsp − dbp |, we can define s(Q(j), Dk(i)) as
follows,

s1(Q(j), Dk(i)) =

⎧⎪⎨
⎪⎩

1 if C �= φ and ∃i ∈ [1, NC]

s.t. di < θs;

0 else.
(3)

• If the NC > 1, we can furthermore get a better definition,

s2(Q(j), Dk(i)) =

NC∑
i=1

ai · I(di<θs). (4)

The final audio indexing procedure is presented as Algo-
rithm 3.

Algorithm 3 The Audio Indexing Procedure.

Input: Audio Database, D; Query audio clip, Q; Similarity
threshold, Tsim;

Output: Candidate similar audio clips, E;
1: Index construction: Extract perceptual features of D and

Q as Algorithm 1, select the codebook C of all frames in
D using Algorithm 2, and construct the database index
with the nbest classes and each class i is labeled as L(i) =
{i1, i2, ...}, where ik is the frame number corresponding
to i;

2: Query process: Classify the query clip to nbest classes
using the nearest neighbor criterion, and get the query
label list Q(j) = sj = {l1, l2, ..., lnbest} and the candidate
matching frames L(s0), L(s1), ..., L(sLQ−1);

3: Locate the matching frames: Calculate the similarity be-
tween Q and candidate audio clip Dk which can be
determined by L using formula (1);

4: Candidate selection: If S(Q,Dk) > Tsim, add Dk to the
candidate set E;

5: return E;

IV. MULTI-STAGE MATCHING

Although the indexing method has greatly reduced the audio
quantity, the amount of the candidate similar audio clips is still
too large. A general strategy for audio matching is to construct
a probabilistic model to characterize the distribution of audio
features, and then calculate their similarity by measuring the
difference between the models. Wold et al. [2] counted the
mean and variance of audio features to perform the audio
retrieval task. Another useful method is DTW , which can
align two sequences with different lengths into the same
length.

Assume that we have two audio sequences S =
{s1, s2, ..., sls} and T = {t1, t2, ..., tlt}, and their length are
ls and lt, respectively. In the DTW algorithm, the start and
end points of S and T are forced aligned. If the track found
in Figure 2 is the best matching track of S and T , the track
from the origin to K is obviously the best matching track of
S

′
= {s1, s2, ..., sK} and T

′
= {t1, t2, ..., tK}. Now assuming

that the distance from the origin to K is D(i, j), the similarity
between si and tj becomes dij , then we have the recursion



Fig. 2: The DTW algorithm.

formula as follows,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D(i, j) = min{D(i− 1, j) + w1 · dij , D(i− 1, j − 1)

+ w2 · dij , D(i, j − 1) + w3 · dij};
D(1, 1) = d11;

D(1, j) = D(1, j − 1) + w3 · d1j j > 2;

D(i, 1) = D(i− 1, 1) + w1 · di1 i > 2.
(5)

In this paper, we propose a multi-stage matching procedure
to speed up the retrieval process. The first step is to calculate
the mean of audio features, and set a threshold to exclude some
dissimilar clips. Then the MFCC distance using the DTW
algorithm is introduced to complete the rough matching of the
query audio. Finally, a SVM classifier based on the perceptual
distance introduced in Section II is used to generate a refined
matching result.

According to the discussion in Section II, we select the
MFCC and LSP features to calculate audio distances. As
shown in Figure 3, the mean distance of MFCC and the
distance of MFCCcan somehow distinguish similar audio
clips, but on the other hand, the overlap of similar and
dissimilar samples will lead to a high loss rate.

The calculation of the mean of features is fast but not
accurate, so we introduce a less efficient but more accurate
DTW method to measure audio distances. Figure 4 shows the
MFCC distance using the DTW algorithm. We can see that
the overlap is reduced, which means a lower loss rate as a
result.

In Section II, we have introduced an integration of acoustic
features U = {u1, u2, ..., uk} that is considered most effec-
tive for the measurement of perceptual similarity. Using the
DTW algorithm for each feature, we get k distance measure
D = {d1, d2, ..., dk}, then we can use the SVM classifier to
generate the final result.

V. EXPERIMENTS

We conduct various experiments to evaluate our audio
retrieval system. We first introduce the data sets we used

Fig. 4: The MFCC distance using the DTW algorithm.

in our experiments (Section V.A). Prior to evaluating the
performance and efficiency of our system, we give the result
of feature selection based on our definition of perceptual
similarity (Section V.B). Then we investigate the indexing
method and its effectiveness (Section V.C). Finally, as the main
result of this paper, we examine the overall performance and
efficiency of the entire system (Section V.D).

A. Data Sets

There are four data sets used in our experiments. The audio
clips in the same set come in pairs.

• 863Data is reading-style Chinese speech, and is sup-
ported by the 863 program. It includes 271 pairs of clips.

• Switchboard is Chinese speech from free-style phone
conversations. There are 533 audio pairs in it.

• BNBC is CCTV News broadcast, and includes 2375
pairs of clips.

• Songs is a collection of Chinese Web songs, and includes
43 pairs of clips.

B. Feature Selection

Here we use all the data to test the effectiveness of acoustic
features for the perceptual similarity we have defined in
Section II. The acoustic distance related to each feature is
calculated using the DTW algorithm as described in Section
IV. The correlation coefficient ρi between feature si and the
perceptual similarity is calculated and compared in Table II.
Note that the larger ρi is, the more effective si is.

Each single feature in Table II shows a corresponding
correlation to the perceptual similarity, but as described in
Section II, we need to find a complementary and effective
integration of acoustic features using the SFFS procedure.

We use part of BNBC data and all the Songs data for
the feature selection. All the acoustic features in Table I are
used for the SFFS procedure. The initial feature sets and the
selected optimal sets are shown in Table III. U1 is the LSP
feature set, U2 is the MFCC feature set, and U3 is the PLP
feature set. They are the most effective features according to
Table II.



(a) MFCC mean (b) LSP mean

Fig. 3: Distances based on MFCC and LSP features.

TABLE II: Correlation coefficient ρi between feature si and
perceptual similarity.

Feature ρi Feature ρi Feature ρi
pitch -0.42 pitch delta -0.13 energy -0.33

energy delta -0.54 chroma -0.55 intensity -0.17
intensity delta -0.19 loudness -0.28 loudness delta -0.31

LSP -0.72 LSP delta -0.63 ZCR -0.45
ZCR delta -0.58 MFCC -0.73 MFCC delta -0.61

PLP -0.74 PLP delta -0.61 centroid -0.52
centroid delta -0.49 entropy -0.46 entropy delta -0.44

flux -0.23 flux delta -0.33 roll off-0.25 -0.51
roll off-0.50 -0.51 roll off-0.75 -0.55 roll off-0.90 -0.53

TABLE III: The initial feature sets and the selected optimal
sets.

Initial set (feature index) Selected set (feature index)
U1 = {10, 11} S1 = {5, 9, 10, 12, 16, 21, 23}
U2 = {14, 15}

S2 = {2, 8, 9, 14, 15}
U3 = {16, 17}

Using the feature sets mentioned above, we conduct an
experiment to determine whether a given audio pair is per-
ceptually similar or dissimilar. 60% of all the data are used
as training data and the rest are testing data, the result of
the similarity classification is represented in Table IV. We can
see that the selected set S1 gives the best accuracy and an
acceptable recall rate, so the features in S1 will be used for
the measure of perceptual similarity.

C. Audio Indexing

Before conducting the indexing experiment, the parameters
are listed in Table V. In this set of experiments, we examine
the impact of nbestD, nbestQ, nCluster and NT on the
performance of the indexing procedure.

TABLE IV: The results of similarity classification with
different feature sets.

Feature set Accuracy (%) Recall rate (%) False alarm rate (%)
U1 84.45 84.34 15.52
U2 87.09 78.65 10.55
U3 86.86 82.92 12.04
S1 89.04 81.49 8.86
S2 86.24 82.21 12.64

TABLE V: Parameters related to indexing.

parameters description
nCluster cluster number
nbestD database index number
nbestQ query index number
NT matching radius
Tdis the largest allowed distance between similar audio clips
TFRR the maximum allowable miss rate during indexing

FARTFRR
the false alarm rate when TFRR

ROC the area under curve FA-FR
T ime indexing time

From Table VI and Table VII, we have three observations
as follows.

• When (nbestD, nbestQ) = (3, 2), FAR0.05 performs
the best. If nbestD/nbestQ becomes larger, the false
alarm rate will be higher. If nbestD/nbestQ becomes
smaller, the miss rate will be higher.

• When NT = 1, FAR0.05 and ROC perform the best,
but the time cost is a little larger than NT = 0.

• When nCluster = 64, FAR0.05 and ROC perform
better than nCluster = 128, but the time cost is a little
larger.

D. Audio Matching

As mentioned in Section IV, we propose a multi-stage
matching procedure to speed up the retrieval process. The
whole system described in this paper is shown in Figure 5,
where stage0 is the indexing procedure, stage1 represents
the distance based on the mean of acoustic features (MFCC
and LSP ), stage2 uses the DTW algorithm to calculate the
distance based on single MFCC features, and stage3 uses
the feature set we have selected in Section V.B to calculate
the distance.

We use 863Data, Switchboard, part of BNBC, and
Songs as training set, the rest of BNBC as testing set to
examine the performance of our system. The performance of
each matching stage in the training set is shown in Table VIII,
and the performance of the entire system in the testing set is
shown in Table IX. The time cost of each stage is listed in
Table X.

During the multi-stage matching procedure, each stage will
get rid of dissimilar candidates, thus the DTW distance based



TABLE VI: The change trend of FARTFRR along with nbestD and nbestQ.

(nbestD, nbestQ) FAR0.02(%) FAR0.05(%) FAR0.08(%) FAR0.10(%)
(2, 2) 3.3758 1.6539 1.1397 0.9199
(2, 3) 3.7527 1.4038 1.0641 0.7650
(3, 2) 2.2301 1.0620 0.8103 0.7109
(3, 3) 5.8140 1.2345 0.4256 0.3588

TABLE VII: The indexing performance along with NT and nCluster, when (nbestD, nbestQ) = (3, 2).

performance nCluster
NT

0 1 2 3

FAR0.05(%)
64 1.5166 0.9478 1.0620 1.2267
128 2.6380 1.8267 1.9177 2.4863

ROC
64 0.00917 0.00905 0.00953 0.00988
128 0.00922 0.00965 0.01017 0.01094

T ime(s)
64 1.42118 1.66252 1.91380 2.05800
128 1.29132 1.38518 1.50084 1.56142

TABLE VIII: Stage performance in training set.

stage accuracy(%) recall rate(%) false alarm rate(%)
mean based distance 84.98 63.48 9.28

MFCC based DTW distance 87.83 74.96 8.73
multiple features based DTW distance 89.82 83.36 8.45

TABLE IX: System performance in testing set.

accuracy(%) recall rate(%) F-measure(%)
audio 67.7 90.1 77.3
speech 91.5 83.3 87.2

TABLE X: Time cost of each stage (database length = 17368.42s).

query length retrieval time(s) stage 0(s) stage 1(s) stage 2(s) stage 3(s)
17.353 0.468 0.203 0 0.016 0.124
3.25 0.109 0.047 0 0 0
2.707 0.14 0.063 0.016 0 0
27.312 0.89 0.281 0 0.077 0.454
2.565 0.125 0.031 0 0.016 0
1.998 0.093 0.031 0 0 0
2.54 0.109 0.031 0 0 0
9.351 0.218 0.11 0 0.031 0.016
16.961 2.046 0.172 0 0.188 1.61
3.668 0.109 0.047 0 0 0
4.073 0.14 0.047 0 0.015 0.031
2.539 0.109 0.031 0 0 0
2.539 0.109 0.031 0 0 0.016
2.738 0.109 0.031 0 0 0
7.184 0.156 0.078 0 0.015 0
19.579 1.64 0.188 0 0.077 1.282
8.409 0.187 0.094 0 0 0.016

134.766 6.757 1.516 0.016 0.435 3.549

Fig. 5: The proposed system.



on multiple features shows the best performance in Table VIII.
When the query audio clip contains only speech (Table IX), the
performance of our system will become even better, since we
mainly use speech data to select perceptual features and get the
indexing result. Table X shows that stage 3 takes about 52% of
the total time cost, which means that we can properly set the
threshold in stage1 and stage2 to balance the performance
and the time cost.

VI. CONCLUSION

In this paper, we proposed a novel audio retrieval method
based on perceptual similarity, which provides some clues to
the relevance between acoustic audio features and the semantic
information. One simple yet important idea is to define the
perceptual similarity between audio clips, which helps us to
select the most effective feature set. Then we introduce an
indexing method and a multi-stage matching procedure to
speed up the retrieval process. Finally, we obtain 0.667 in
accuracy and 0.901 in recall rate using the audio data in
the experiments. When the query is limited to speech, our
accuracy goes up to 0.915 and our recall rate descends to
0.833. The retrieval time of a query clip with the length of
134.766 seconds in a database with the length of 17368.42
seconds is only 6.757 seconds, which satisfies the requirement
of real-time retrieval.

However, the performance of our system in music-related
retrieval task is not good, which needs more efforts to expand
the coverage of our system to all types of audio.
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