
Fault Tolerance in Heterogeneous Distributed
Systems

Zhe Wang, Naftaly H. Minsky
Department of Computer Science

Rutgers University
Email: {zhewang,minsky}@cs.rutgers.edu

Abstract—Dependability of heterogeneous distributed systems
is an important issue. Coordination failures may occur even if
the given coordination protocol is adhered to by all participants.
The fault tolerance (FT) properties of systems are difficult
to achieve, especially at application level. What is common
to current FT-techniques is their reliance on the code of the
various system components, which are often required to be
written in a specific language. From the viewpoint of distributed
systems, such techniques are feasible for homogeneous systems,
or at least systems that are designed and maintained by a
single administrative domain. But such code-based techniques
are generally unreliable for open systems, due to the lack of
overall control over the code of components. This leaves open
distributed systems vulnerable to their own faults and to attack
on them.

However, certain types of FT measures can be established
in distributed systems by controlling the flow of messages
between system components, independently of the code of system
components—which we plan to do via a distributed coordination
and control mechanism called Law-Governed Interaction. We
demonstrate in this paper, there is a substantial range of FT
measures that can be established completely by controlling
messaging. Moreover, although the FT-measures to be developed
are meant mostly for open systems, some of them can be useful
for distributed systems in general, even where traditional code-
based techniques are feasible.

I. INTRODUCTION

Heterogeneous distributed systems face two issues: (1)
the implementation of system properties, i.e., of properties
and regularities that span the entire system, or a substantial
subset of its components; and (2) the dependability of such
properties, by which we mean the resilience of such properties
to failures and attacks.

These issues are particularly problematic in heterogeneous
systems whose components may be written in different
languages, may run on different platforms, and may be
designed, constructed, and even maintained under different
administrative domains. Such a distributed system is often
said to have an open architecture, or just be an open system
1 [1], [2]—because of the lack of effective constraints on the
organization of the system as a whole, and on the internals of
its disparate components. Systems are increasingly designed

1The term “open system”, as used here, has nothing to do with the concept
of open source.

to be open, with the hope that this would make them
more flexible. The concept of service oriented architecture
[3](SOA) is a prominent example of this trend, which is being
adopted by a wide range of complex distributed systems,
such as: commercial enterprises, societal and governmental
institutions, and various types of virtual organizations.

While the systems of such type are hard to be implemented
correctly. The fault tolerance (FT) properties of the systems
are also difficult to achieve, especially at application level.
The need to develop fault tolerance techniques specifically for
the application level of systems—sometimes called “software
fault-tolerance”–has been pointed out already in 1975 by
Randell [4], who argued that the traditional FT techniques,
designed mostly for hardware failures, are not sufficient for
handling the various ways in which an application may fails.
This is true, in particular, for coordination failures. Such
as a failure of a group of distributed actors to collaborate
effectively towards a common goal, or to compete safely
over some resources, due to the failure of any one of them to
abide by the necessary coordination protocol.

Considerable research effort has been devoted to application
level FT—see [5] for a survey. This generally involves
incorporating failure-handling code (henceforth “FT-code”)
into the software. Various types of FT measures have
been developed in this way—such as exception-handling,
recovery blocks [4], and N-version programming [5]—for
handling various kinds of failures at the application level.
The deployment of such techniques suffer from two types of
difficulties: (a) they tend to complicate the system, and (b)
when a similar, or even same, FT-code has to be used in many
system components, their deployment tends to be laborious
and error prone. These problems are sometimes alleviated via
meta object protocol (MOP) [6], which enables what is called
reflection; and via aspect oriented programming (AOP) [7],
[8], [9]. Moreover, special programming languages, such as
Argus [10], and coherent sets of tools, such as Arjuna [11],
were developed for building fault tolerant distributed systems.

What is common to these FT-techniques is their reliance
on the code of the various system components, which are
often required to be written in a specific language. From
the viewpoint of distributed systems, such techniques are

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257585

feasible for homogeneous systems, or at least for systems that
are designed and maintained under a single administrative
domain—which can, for example, ensure that all system
component are governed by the same AOP code. But such
code-based technique are generally unreliable for open
systems, due to the lack of overall control over the code of
the various components, or even of the language in which they
are written. This leaves open distributed systems vulnerable
to their own faults, and to attack on them.

It is our thesis, however, that certain types of FT measures
can be established in a distributed systems by controlling the
flow of messages between system components, independently
of the code of most or of all system components—which
we plan to do via a distributed coordination and control
mechanism called Law-Governed Interaction (LGI)—an
overview of which is provided in Section II. This cannot
be done for all FT measures that can be established by
inserting suitable code into the components themselves. For
example, we cannot ensure orderly checkpointing by selected
components—an important basis for many conventional
FT-measures. Yet, as we intend to demonstrate in this paper,
there is a substantial range of FT measures that can be
established either completely by controlling messaging, or
with the help of relatively few distinguished actors that can
be trusted to carry out the role assigned to them.

Moreover, although the FT-measures to be developed
are meant mostly for open systems, some of them can
be useful for distributed systems in general, even where
traditional code-based techniques are feasible. This for two
main reasons: first, our FT-measures would be independent of
most of the system code, and cannot be violated by changes
in it. Second, enacting such measures would not complicate
the code because the mechanism is completely separate from
it—this is, in a sense, similar to FT measures implemented
via the meta-object protocol, or via AOP, which we can
independently of the language in which the components are
written.

The rest of this paper is organized as follows. Section II
provides a very brief outline of the LGI middleware, which
serves as the basis for this work. Section III introduces
a generic scheme called Coordinated Atomic Actions that
handles coordination failures at application level, and how we
implement this scheme via LGI for open systems. Section IV
introduces a case study of how to handle the coordination
failure during a leadership exchange between police teams.
Section V is the implementation of the case study, showing
how the behavior of the police teams is regulated via LGI,
and how coordination failure is handled. And we conclude in
Section VI.

II. THE LAW-GOVERNED INTERACTION (LGI)
MIDDLEWARE—AN OVERVIEW

LGI is a middleware that can govern the interaction (via
message exchange) between distributed actors, by enforcing
an explicitly specified law—and possibly multiple laws—
about such interaction. We provide here a brief, and rather
abstract, overview of LGI; focusing on what is the most
relevant to this paper. A more detailed presentation of LGI,
and a tutorial of it, can be found in its manual [12]—which
describes the release of an experimental implementation
of the main parts of LGI. For additional information and
examples the reader is referred to a host of published papers,
some of which will be cited explicitly in due course.

The rest of this section is organized as follows. We start,
with the local nature of the interaction laws under LGI—a
key characteristics of this middleware that enables many of
the novel features of it. We then discuss the following aspects
of LGI: the structure of its laws; and the law enforcement
mechanism.

A. The Local Nature of Interaction Laws

Although the purpose of interaction laws is to govern the
exchange of messages between different distributed actors,
they do not do so directly under LGI. Rather, an LGI law
L governs the interaction of any actor operating under it,
essentially by controlling its ability to send messages to
others, and to receive messages from them2. A law L is local
to each actor x operating under it, in that its rulings are based
solely on the local state of x and on the event that occurs at
it, and are completely independent of the coincidental state
and events occurring anywhere else in the system. Such a law
can be enforced locally, and thus very scalably, in a manner
described in Section II-C. Moreover, the locality of LGI laws
has several other beneficial consequences, some of which will
be pointed out in due course.

It should also be pointed out that although locality
constitutes a strict constraint on the structure of laws, it does
not reduce their expressive power. This has been proved in
[12]. In particular, despite its structural locality, an LGI law
can have global effect over what is called an L-community,
defined as the set of actors operating under a common law L.

B. LGI Laws—a Definition

An interaction law (or simply a law) L is defined over
three elements—described with respect to a given actor
x that operates under this law: (1) a set E of interactive
events that may occur at any actor, including the arrival of
a message at x, and the sending of a message by it; (2) the
state (also called the control-state) Sx associated with each

2In fact, a law can also cause messages to be changed and rerouted, and it
can change the state of an agent.

actor x, which is distinct from the internal state of x, that is
invisible to the law; and (3) a set O of interactive operations
that can be mandated by a law, to be carried out at x upon
the occurrence of interactive events at it; this set includes
operations that forward messages to others, along with some
other types of operations that have an effect on the flow of
message into x and from it.

Now, the role of a law under LGI is to decide what should
be done in response to the occurrence of any interactive event
at an actor operating under this law. This decision, with respect
to actor x, is defined by the following mapping:

L : E × Sx → Sx × (O)∗ (1)

In other words, for any given (event, state) pair, the law
mandates a new state (which may imply no state change), as
well as a (possibly empty) sequence of interactive operations.
Note, in particular, that the ruling of the law at a given
moment of time depends on the state of x at that moment;
and that the evolution of the state itself is determined by
the law, and by the history of interactive-events at x. LGI
laws are, therefore, stateful, and sensitive to the history of
interaction.

Note that the law is a complete function, so that any
mapping defined by Formula 1 is considered a valid law—
which means that a law of this form is inherently self
consistent. This does not mean, of course, that a law cannot
be wrong. It can be wrong in the sense that it does not
work as intended by its designer; but this is not a matter of
inconsistency.

Finally, it is worth pointing out that while Formula 1 is
a definition of the semantics of laws3, it does not specify a
language for writing laws. In fact, the current implementation
of LGI supports two different law-languages, one based
on the logic-programming language Prolog, and the other
based on Java. But the choice of language has no effect on
the semantics of LGI, as long as the chosen language is
sufficiently powerful to specify all possible mappings defined
by Formula 1.

C. The Decentralized Law Enforcement Mechanism

Consider an actor x that chooses to operate under a law L.
It can do so by adopting a generic controller as its mediator,
loading law L into it. Once thus adopted, this controller
is denoted by TLx —meaning that it operates under law L,
serving actor x—and the pair 〈x, TLx 〉, is called agent x and is
referred to as an L-agent—and sometimes simply an “agent”.
This adoption, which signifies the birth of agent x, is one
of the interactive events of LGI, so that the law in question
has the possibility of refusing to be adopted by this actor,

3Modulo the fact that the sets E of events and O of operations have not
been fully spelled out here.

and can mandate some initialization for it, if it does not refuse.

Note the fundamental difference between a bare actor
and its agent: while the interactive behavior of an actor is
unpredictable—unless its code is known—the interactive
behavior of an L-agent is known to conform to law L.

Figure 1 depicts the manner in which a pair of agents,
operating under possibly different laws, exchange a message
(An agent is depicted here by a dashed oval that includes
an actor and its controller). Note the dual nature of control
exhibited here: the transfer of a message is first mediated
by the sender’s controller, subject to the sender’s law, and
then by the controller of the receiver, subject to its law.
This dual control, which is a direct consequence of the
local nature of LGI laws, has some important consequences.
In particular, it facilitates flexible interoperation and it
enables more sophisticated control than possible under many
AC mechanisms that provide control only on the receiver side.

The overhead incurred by this kind of control turns out
to be relatively small. In circa 2000 it was measured to be
around 50 microseconds for fairly common laws, which is
negligible for communication over WAN. This is one of the
results of a comprehensive study of this overhead in [13].

Finally, we note that a generic controller needs to be
trusted to enforce correctly any law it is adopted with. There
are several ways for providing such trusted controllers as the
TCB (Trusted Computing Base) of the system in question.
In the case of a bound OSN, like our BE example, we
expect this to be done by the enterprise E, in the context of
which BE operates. This company could construct what is
called a controller service (CoS) that maintains a set of well
tested controller pools, each of which can host a number—it
is usually in the hundreds—of individual controllers that
can be used by arbitrary actors, upon request. For other
types of OSNs one expects the CoS to be maintained by
some commercial company that provides its services for a fee.

Note, therefore, that a controller TLx and the actor x that
adopted it would run on different hosts. This would help
prevent x corrupting its own controller. Even if a controller is
hacked, since it does not keep the messages it passes, there is
no way to get the information of the whole history. And since
it would be much harder to compromise many controllers than
one, the global view of the whole system will not be obtained.

III. COORDINATED ATOMIC ACTION IN OPEN SYSTEMS

Coordination failures may occur even if the given
coordination protocol is adhered to by all its participants.
For example a leader election protocol may not ensure that a
leader got a majority vote. Another type of failure may be
caused by lost messages. Many such failures can be handled
via the concept Coordinated Atomic Actions (CAAction),

II

CSx CSx’ Ax’Ax

L L’

Tx
L

age
nt x

agent x’

Tx’
L’

Fig. 1. Interaction between a pair of agents, mediated by a pair of controllers
under possibly different laws.

introduced by Randell et al. [14]. This is a generic, broad
spectrum, and quite influential [15] scheme, which can be
described, broadly, as follows: A CAAction is a kind of
virtual box—which needs to be tailor-made for any given
type coordination activity. To engage in a given coordination
activity, the participants “enter” a suitable CAAction, and
then must operate subject to its control. The host CAAction
ensures the ACID property for this activity, and provides
either forward or backward recovery, if the activity fails. We
mention here two key elements of this scheme: (a) a set of
constraints on the behavior of the participants, before they
enter a CAAction4, and once they are in it; (b) a supervisory
code that handles the recovery from failures, and other matters.

Now, the concept of CAAction has been implemented
in a central systems, and in monolithic distributed systems
[16]—where one can ensure that all participants entering a
given CAAction adhere to its constraints, by programming
them accordingly. But since such code-based implementations
are not dependable in open systems, to make CA Actions
feasible in open systems, there are two more properties we
need to provide: 1) operation capability without knowing the
implementation detail of each component; 2) the enforcement
of the components’ behavior on fault tolerance and exception
handling. We implement this scheme via LGI, roughly as
follows: (1) a given type of CAAction will be defined by
a law that enables its participants to engage in the given
coordination activity, while imposing the required constraints
on their behavior in the CAAction and out of it (see (a)
above); and (2) the required supervisory code (see (b) above)
will be programmed, in the conventional sense, in some
trusted actor. It should be pointed out, however, that we will
not be able to implement all aspects of the original CAAction,
for all types of coordination activities. In particular, we will
not be able to provide backward recovery if it requires
checkpointing, because LGI cannot ensure checkpoints by
individual actors.

IV. LEADERSHIP EXCHANGE—A CASE STUDY

Consider three teams (T1, T2 and T3) of traffic police
officers, each of which handles the traffic of a certain region
by operating a set of traffic-related devices, such as draw
bridges, traffic lights, or road blocks. They can do this via a
collection of sensors and actuators distributed in their region,

4In particular, they should not engage in the given activity outside of the
CAAction

which constitutes an open system. Moreover, each team is
managed by a commander (C1, C2 and C3), who assigns
the team members to various tasks, monitors their progress,
and exerts control over what each team member can do. The
command that the commander sends to team member could
be about querying the sensors on the road, operating on
those actuators, or granting the team member access control
rights to devices. The members of a team will only obey the
command from its commander. And the commander is able
to execute the power of its role by presenting the baton of
the role.

Suppose there is a need for three commanders to switch
their roles. They can discuss with each other and delegate
its commander role by sending the baton to the successor.
However, sending the role baton is asynchronous for each
commander in open systems and the execution of the
exchange agreement is not guaranteed, there are two serious
situations could occur: 1) before a commander C1 send its role
Commander(T1) and baton to the other one C2, it duplicates
its baton and only sends the copy to C2. After that it continues
claiming it is the commander of that team Commander(T1).
Then there will be two commanders for T1 and the team
will be confused about two command sources and possible
contrary command contents; 2) What’s even worse is that
if a commander C1 receives role Commander(T2) from
commander C2, it can refuse to send role Commander(T1).
As a result, it will have the commander role of two teams,
which is a very dangerous situation for obvious reason.

To avoid those situations, we employ CA Actions to execute
the role exchange. The essence of CA actions is that for the
outside world(three teams), the activity and communication
between involved actors is atomic. To achieve this, our system
has following according properties:

1) Entering, leaving and operating inside the action will be
managed by actor in a supervisor role: The commanders
may get in to the action freely. But they can not leave
the CA action until they have an agreement on the
activity result. Two commanders have same role or one
commander has two roles can not pass the acceptance
test.

2) The actors might lose some power while inside a CA
action: The commanders can not send command to
anybody when inside the CA Action. However, if the
commanders receive report from its team members dur-
ing the exchange, it can hold it and process it or forward
it afterward.

3) The actors may also gain some power while inside a
CA action: The commanders can only send role to each
other when inside the CA Action.

V. IMPLEMENTATION OF LEADERSHIP EXCHANGE

The law LP is used for regulating every aspect of the
operations and behaviors of the systems. We split it into
several parts according to their functionalities. In Section V-A,

we show how commanders talk to its team and to each other.
In Section V-B, we elaborate how the commanders get into
a CAAction and how to get out of a CAAction if they
all pass the acceptance test or some failure happens. In
Section V-C, we demonstrate how the commanders exchange
their leadership while inside a CAAction. And we show an
exception handling is triggered in Section V-D.

A. Communication Outside of CAAction

There are three roles in this police systems—regular
police officer who belongs to a team, commander of a team
and a supervisor who takes care of role exchange. They
communicate with each other by sending messages using
their electronic devices. A message must have a header and/or
a body. Some message headers can be used by anyone, some
cannot. For example, “freeTalk” header is used by anyone
for conversing with another officer, while “command” header
can only be issued by a commander to its team. For the sake
of simplicity, we assume that all the messages will arrive at
their destination within a certain amount of time. As a police
officer, it has a “team(Ti)” in its control state by providing
its baton when entering this system. And a commander has
a “commander(Ti)” in its control state by the same way of
providing its baton for its commander role. Rule R1 shows
that a commander of a team can send command only to its
team members, while it is not in the stage of role exchange. If
the commander is in the stage of role exchange, it will have
“state(CAA)” in its control state. We will explain this in one
of following rules. When a team member receives a command
from its commander, as in Rule R2, it will execute it
immediately. As has been demonstrated in [17], the command
could be querying the sensors on the road, operating on
those actuators, or granting the team member access control
rights to devices. And the officer will execute it accordingly.
Whether it is the member of team i is determined by whether
it has “team(Ti)” in its control state, which is added when it
joins the system and provides its baton for its team. The team
member will not need to concern about whether the command
is really from the commander, because that is guaranteed
by Rule R1. Rule R3 shows that a person (no matter it is
commander, team member or supervisor) can talk to others
freely as long as it is not using the keywords, such as
“command”, “delegate” or “exchange”. The free talk between
two persons is not restricted by its team or role. Thus, it is
very useful for commanders to communicate for initiating a
role exchange or distributing roles. And Rule R4 shows that a
person can receive and see the free talk message from anyone.

B. Entering and Leaving CAAction

When there is a need for exchange roles, a commander can
request to exchange roles by sending the request, individually
or jointly, to a supervisor, as in Rule R5. After the supervisor
receives a role exchange request from a commander, it
will wait a certain time for exchange request from other

R1)
UPON sent(Commander,command(Ti,

command),X)
if (Commander(Ti)@CS and
¬state(CAA)@CS)
do(Forward)

R2)
UPON arrived(Commander,command(Ti,

command),X)
if (team(Ti)@CS)
execute(command)

R3)
UPON sent(X,freeTalk(M),Y)

do(Forward)
R4)
UPON arrived(X,freeTalk(M),Y)

do(Deliver)

Fig. 2. Communication Outside of CAAction Part of the Law LP

commanders. If there are more requests, it will notify those
commanders to get into the exchange stage and exchange
their roles. If there is no other request, it will ignore the
request back to that commander. After the supervisor notifies
the commanders to exchange their roles, it will wait for their
confirmations and impose an obligation for recovery in case
the exchange doesn’t succeed. During this period of time,
the commanders can talk freely as we described in Rule R3
and delegate its role to each other, which we will discuss in
next section. Rule R8 shows that after receiving a massage
of getting into the stage of role from the supervisor, the
commander will be added a control state “state(CAA)”, under
which the commander will lose a certain power, like issuing
a command. It will also keep the record of its role history
for the purpose of recovery. When the exchange is done,
all the commanders will send the supervisor a confirmation
message. After the supervisor receives the confirmations
from all the commanders, which means the role exchange
succeeded, it will notify them to get out of the exchange
stage and repeal the obligation for recovery through Rule R9.
When a commander receives a notification that the exchange
is finished, it will remove the “state(CAA)” control state and
exercise its commander role as shown in Rule R10. The
backup for the exchange will be collected as garbage.

C. Leadership Exchange

During the exchange stage, the commanders can not issue
a command to its team members. It can only discuss with
the other commander, delegate its role or reject the exchange.
The commanders cannot get out of the CAAction until
everyone receives the notification from the supervisor. We
don’t regulate which commander should send its role to
whom. It’s up to them to make the delegation decision. If a
commander decides to send its role to another commander,
as in Rule R11, it has to relieve that role. This is enforced

R5)
UPON sent(CommanderX,requestEnter,

Supervisor)
if (Commander(Ti)@CS)
do(Forward)

R6)
UPON arrived(CommanderX,

requestEnter,Supervisor)
do(Add(CommanderX,requestList))
do(Deliver)

R7)
UPON sent(Supervisor,

admit(requestList),requestList)
imposeObligation(recover,timeout)
do(Forward)

R8)
UPON arrived(Supervisor,

admit(requestList)),CommanderX)
do(+ state(CAA)@CS)
do(+ former(Commander(Ti))@CS)
do(Deliver)

R9)
UPON

sent(Supervisor,exit,requestList)
repealObligation(recover)
do(Forward)

R10)
UPON arrived(Supervisor,exit,

CommanderX)
if(state(CAA)@CS and
former(Commander(Ti))@CS)
do(- state(CAA)@CS)
do(- former(Commander(Ti))@CS)
do(Deliver)

Fig. 3. Entering and Leaving CAAction Part of the Law LP

to avoid the situation of two commanders for one team.
Moreover, it can only send its role when it is inside the
exchange stage. Rule R12 shows that a commander can
become the leader of a team only when it is in the stage of
exchange and receives the role from another commander. It
can not issue command to its new team member since it is
still in the exchange state. Furthermore, it will send a copy
to the supervisor showing it receives the role. According to
Rule R13, a commander can send the confirmation message
to the supervisor, if there is one commander role under its
control state. The supervisor will send out the notification
after it receives the confirmation from every commander.

D. Exception Handling

There are several types of possible exceptions could happen
in such system. One is during the exchange stage, one or
more commanders’ devices is disconnected from the systems.
In this case, it may haven’t sent its role or received from the

R11)
UPON sent(CommanderX,

delegate(Commander(Ti)),
CommanderY)
if (state(CAA)@CS)
do(- Commander(Ti)@CS)
do(Forward)

R12)
UPON arrived(CommanderX,

delegate(Commander(Ti)),
CommanderY)
if(state(CAA)@CS)
do(+ Commander(Ti)@CS)
do(Deliver)

R13)
UPON sent(CommanderX,confirm,

Supervisor)
if(Commander(Ti)@CS)
do(Forward)

R14)
UPON arrived(CommanderX,confirm,

Supervisor)
do(Deliver)

Fig. 4. Leadership Exchange Part of the Law LP

other, or at least haven’t sent out the confirmation message
to supervisor. After the supervisor notifies the commanders
to exchange their roles, it will wait for their confirmations.
If it doesn’t receive all the confirmations within a certain
amount of time, it will consider there is an exception in
the exchange, like in Rule R15. Due to its recovery policy,
it can use backward recovery (all commanders go back
to their former teams), forward recovery (the supervisor
designates the appointments) or combined recovery to handle
that exception. The according exception handling policy will
be applied by the supervisor. If the supervisor choose to
use backward recovery, it will inform all the commanders
to restore its former duty. Rule R16 shows that after the
commander receives the exchange recovery massage from the
supervisor, it will resume its former role based on the backup
and get out of the exchange stage.

VI. CONCLUSION

This paper introduces a fault tolerance mechanism of
handling coordination failures for heterogeneous distributed
systems. Common FT-techniques at application level require
code-injection, which is not achievable for open systems,
since the lack of control over the code of the components.

We propose a coordination mechanism called Law-
Governed Interaction (LGI) to control the flow of messages
between system components, independent from the code of
system components. By providing a range of FT measures
that can be established by controlling messaging, the

R15)
UPON obiligationDue(recover)

do(Forward(Supervisor,recover,
requestList))

R16)
UPON arrived(Supervisor,recover,

CommanderX)
former(Commander(Ti))@CS
do(+ Commander(Ti)@CS)
do(- state(CAA)@CS)
do(- former(Commander(Ti))@CS)
do(Deliver)

Fig. 5. Exception Handling Part of the Law LP

coordination failures within an open system can be handled.
This mechanism for fault tolerance can be used for distributed
systems in general.

This mechanism is implemented for case study of leadership
exchange between police teams. The preliminary testing and
experiments of our implementation show that our method is
feasible and promising.

REFERENCES

[1] C. Bidan and V. Issarny, “Dealing with multi-policy security in large
open distributed systems,” in Proceedings of 5th European Symposium
on Research in Computer Security, Sep. 1998, pp. 51–66.

[2] A. Artikis, M. Sergot, and J. Pitt, “Specifying norm-governed computa-
tional societies,” Department of Computing, Imperial College of Science
Technology and Medicine, London, Tech. Rep., 2006.

[3] M. P. PAPAZOGLOU, P. TRAVERSO, S. DUSTDAR, and F. LEY-
MANN, “Service-oriented computing: A research roadmap,” Interna-
tional Journal of Cooperative Information Systems, vol. 17, no. 2, pp.
223–255, 2008.

[4] B. Randell, “System structure for software fault tolerance,” SIGPLAN
Not., vol. 10, no. 6, pp. 437–449, Apr. 1975. [Online]. Available:
http://doi.acm.org/10.1145/390016.808467

[5] V. D. Florio and C. Blondia, “A survey of linguistic structures
for application-level fault tolerance.” ACM Comput. Surv., vol. 40,
no. 2, 2008. [Online]. Available: http://dblp.uni-trier.de/db/journals/
csur/csur40.html#FlorioB08

[6] G. Kiczales, J. Rivieres, and D. Bobrow, The Art of the Metaobject
Protocol. MIT Press, 1991.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold, “Getting started with aspectj,” Communications of the ACM,
vol. 44, no. 10, pp. 59–65, October 2001.

[8] A. Zarras, M. Fredj, N. Georgantas, and V. Issarny, “Engineering
reconfigurable distributed software systems: Issues arising for pervasive
computing,” in Fault-Tolerant Systems, ser. LNCS, M. Butler et al., Eds.
Springer Verlag, 2006, vol. 4157, pp. 364–386.

[9] M. Caporuscio, A. D. Marco, and P. Inverardi, “Model-based system
reconfiguration for dynamic performance management,” Journal of
Systems and Software, vol. 80, no. 4, pp. 455 – 473, 2007,
software Performance 5th International Workshop on Software and
Performance. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0164121206002068

[10] B. Liskov, “Distributed programming in argus,” Commun. ACM,
vol. 31, no. 3, pp. 300–312, Mar. 1988. [Online]. Available:
http://doi.acm.org/10.1145/42392.42399

[11] S. K. Shrivastava, “Lessons learned from building and using the
arjuna distributed programming system,” in Selected Papers from
the International Workshop on Theory and Practice in Distributed

Systems. London, UK, UK: Springer-Verlag, 1995, pp. 17–32.
[Online]. Available: http://dl.acm.org/citation.cfm?id=647369.723769

[12] N. H. Minsky, Law Governed Interaction (LGI): A Distributed
Coordination and Control Mechanism (An Introduction,
and a Reference Manual), February 2006, (available at
http://www.moses.rutgers.edu/).

[13] N. H. Minsky and V. Ungureanu, “Law-governed interaction: a coordi-
nation and control mechanism for heterogeneous distributed systems,”
TOSEM, ACM Transactions on Software Engineering and Methodology,
vol. 9, no. 3, pp. 273–305, July 2000.

[14] J. Xu, B. Randell, A. B. Romanovsky, C. M. F. Rubira, R. J.
Stroud, and Z. Wu, “Fault tolerance in concurrent object-oriented
software through coordinated error recovery.” in FTCS. IEEE
Computer Society, 1995, pp. 499–508. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/ftcs/ftcs95.html#XuRRRSW95

[15] D. P. Pereira and A. C. V. de Melo, “Formalization of an architectural
model for exception handling coordination based on ca action concepts,”
Sci. Comput. Program., vol. 75, no. 5, pp. 333–349, May 2010.
[Online]. Available: http://dx.doi.org/10.1016/j.scico.2009.12.006

[16] J. Xu, A. B. Romanovsky, and B. Randell, “Coordinated exception
handling in distributed object systems: From model to system
implementation.” in ICDCS, 1998, pp. 12–21. [Online]. Available:
http://dblp.uni-trier.de/db/conf/icdcs/icdcs98.html#XuRR98

[17] R. Dudheria, W. Trappe, and N. Minsky, “Coordination and control in
mobile ubiquitous computing applications using law governed interac-
tion,” in Proc. of the Fourth International Conference on Mobile Ubiq-
uitous Computing, Systems, Services and Technologies (UBICOMM)
Florence, Italy, October 2010, pp. 247–256.

