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Abstract—Spectrum sensing is the crucial task of a cognitive 

radio. Cognitive Radio (CR) have been advanced as a technology 

for the opportunistic use of underutilized spectrum where 

secondary users sense the presence of primary users and use the 

spectrum if it is empty, without affecting their performance. 

Spectrum sensing in CR is challenged by a number of 

uncertainties, which degrade the sensing. The discrete-time 

memory less multiple inputs multiple output (MIMO) fading 

channel conventional model is implemented to appraise the 

performance of different spectrum sensing techniques. The signal 

detection in CR networks under a non parametric multisensory 

detection scenario is considered for performance comparison 

under the presence of impulsive noise. The examination focuses 

on performance evaluation of five different spectrum sensing 

mechanisms namely energy detection (ED), Generalized 

Likelihood Ratio Test (GLRT), Roy’s largest Root Test (RLRT), 

Maximum Eigenvalue detection (MED) and Cyclostationary 

feature detection (CSFD).  The analysis of the result indicates 

that, the sensing performance is improved in GLRT method for 

conventional model also it can be concluded that the performance 

under the conventional model can be too pessimistic in absence of 

impulsive noise. 

Keywords-Cognitive Radio; Cyclostationary feature detection ; 

Energy detection; GLRT; RLRT; Spectrum Sensing. 

I. INTRODUCTION 

With the rapid growth of wireless communication, the 

demand for radio spectrum is expected to grow rapidly in the 

near future. However, radio spectrum is a limited resource and 

it is already very crowded. It seems that it is difficult to 

accommodate more wireless applications within this limited 

resource. On the other hand, the licensed spectrum bands are 

underutilized due to the current static spectrum allocation 

policy. This point of view is supported by recent studies of the 

Federal Communications Commission (FCC) [1],which 

reveals that in some locations or at some times of day, 70% of 

the allocated spectrum may be sitting idle.  

Cognitive radio (CR) is originated as the paramount 

solution for this low usage of the available spectrum by the 

licensed primary users (PU). [2]. In CR the unlicensed 

secondary user (SU) is allowed to access the spectrum if it not 

utilized by the PU. However, CRs are adapted as lower 

priority to a PU. Sensing the available spectrum is the most 

vital task of the spectrum management. The basic requirement 

of the CR is to sense the spectrum opportunities known as 

spectrum holes or white spaces in the wireless environment 

without interfering the PU before accessing the channel [3].  

Major problems for CR like multipath fading, receiver 

uncertainty hidden terminals and correlated shadowing 

observed in a non cooperative spectrum sensing can be solved 

by adapting the cooperative spectrum sensing techniques. This 

also decreases the probabilities of mis-detection and 

probability false alarm.The cooperative spectrum sensing is 

found as the most efficient method for its capability to solve 

hidden PU problem and also the decrease in sensing time is an 

added advantage to this. In [4–7], it is confirmed that the 

cooperative spectrum sensing is the most helpful way to fight 

with multipath fading and shadowing and diminish the 

receiver uncertainty trouble. The cooperative sensing is found 

handy in enhancing the sensing performance by exploiting the 

spatial diversity in the observations of spatially located CR 

users. The sensing information can be shared by the CR users 

and it helps to form an opinion based on the combined 

decisions which are more accurate than the than the individual 

decisions [5]. The cooperative gain is defined as the 

performance improvement due to spatial diversity and it can 

be also viewed from the viewpoint of sensing hardware. 

Because of the multipath fading and shadowing, the measured 

signal-to-noise ratio (SNR) of the received primary signal can 

be enormously small thus the detection of becomes a complex 

task.The ability to detect the week signal defines the receiver 

sensitivity. The sensitivity necessities will be forced on a 

severe implementation complexity and the associated 

hardware cost. Increasing the sensitivity is not the solution for 

improving the detection performance when the SNR of the PU 

signals is below a definite threshold level known as a SNR 

wall [8]. 

Fig.1 illustrates that the cooperative sensing scheme is 

useful to improve the sensing performance degraded because 

of multipath fading and shadowing, without increasing the 

implementation cost of CR devices by setting the sensitivity to 

the same level of nominal path loss [6]. 

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257555



Figure 1.  Sensitvity Improvement with cooperative sensing [6]

       Centralized or distributed cooperation 

different ways of implementing the cooperative sensing 

network, which can be build by cooperation among CRs.

      As shown in Fig.2, the central unit coordinates for 

collecting the sensing information from cognitive devices in 

the centralized sensing. It directly controls the CR traffic by 

recognizing the vacant spectrum and broadcasts this 

information to other CRs. 

Figure 2.  Centralized cooperative sensing

At the access point all the sensing results are collected,

which is the central position [9]. The objective is to improve 

the fading effects of the channel and boost detection 

performance. Resulting detection and false alarm rates are 

given in [10] for the sensing algorithm used in [9]. Data fusion 

is the process of combining the reported sensing results for 

making the cooperative decision, where user sends quantized 

edition of their local decisions to central unit fusion center 

(FC) [11]. Then the FC decides the occupancy of the channel. 

In order to satisfy the bandwidth constraints arrived due to 

large number of users the local observations of cognitive 

radios are quantized to one bit (hard decisions) which reduces 

the bandwidth [12]. In addition, only the CRs with reliable 

information are permitted to report their decisions to the 

central unit.  

The basic spectrum sensing techniques are 

detection MFD [13-16], ED [17-20] and CSFD [21

technique is unique in itself and possessing certain advantages 
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andwidth constraints arrived due to 

large number of users the local observations of cognitive 

radios are quantized to one bit (hard decisions) which reduces 

the bandwidth [12]. In addition, only the CRs with reliable 

ir decisions to the 

The basic spectrum sensing techniques are matched filter 

20] and CSFD [21-23].Each 

technique is unique in itself and possessing certain advantages 

and drawbacks. In CSFD, it is necessary to u

thecyclic frequencies of the primary signal, which practically 

may not be available to the secondary users.The high 

computational complexity requirement is another disadvantage 

of CSFD.The (MFD) is assumed to be an optimal signal

detection method. But it is necessary to have the 

knowledge of the primary user, e.g., modulation type, pulse 

shaping, and synchronization of timing and carrier.And in 

MFD, for each PU, the CR will require a committed receiver 

and this requirement is makes it diffic

implementation [24]. From [25- 28] it is observed that the 

eigenvalue–based spectrum sensing techniques is found as the 

best amongst existing sensing methods. The eigen

spectrum sensing methods ahs overcome the limitations of t

previously discussed methods. The prior knowledge of the 

transmitted signal is not essential in this method. Also the 

most basic sensing method the ED is reasonably sensitive to 

the accuracy of the expected noise variance [29]. We 

considered the effect of impulsive noise

repetitive or non-repetitive pulses with a random inte

duration and occurrence for investigating the performance of 

the eigenvalue-based spectrum sensing scheme in perspective 

of spectrum sensing [30-31]. 
The rest of the paper is organized as follows. Section II 

briefly describes the system model for all spectrum detection 
techniques under test. Simulation setup for 
analysis of the five spectrum sensing techniquesw
configuration of parameters is prese
.Simulation results with comparative sensing performance is 
illustrated in Section IV. Finally conclusions are drawn in 
Section V. 

II. SYSTEM M

Memory-less linear discrete-time multiple input multiple 

output (MIMO) fading channel is use

received samples for single-receiver, multi

multiple-receiver, single-sensor cognitive devices in the data 

fusion cooperative spectrum sensing. It is also known as 

conventional model (C-model).It is the 

channel remains idle, we consider Additive White Gaussian 

Noise (AWGN) channel. Because of limitation of no signal 

processing performed by the C-model, 

multiple CR receivers, as the samples collected by each CR 

are considered and forwarded to the fusion center

Hence modifications are essential in the C

The binary hypotheses are applied to the system model with 

the choices are labeled as H0 and H1

states for presence and absence of the signal [3

system model of detection is under the test of following two 

hypotheses H0 and H1 [33]. 

H0: represents the absence of the 

only noise.  

H1:represents the presence of  both sig
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1) Probabilty of  Detection (Pd): i.e P (H1 / H1) ,correpspons 

H1 to be true for the presence of primary signal.   

2) Probabilty of Missed Detection (Pmd): i.e P (H0 / H1) 

,correpspons H0  to be true for the presence of primary signal. 

3) Probabilty of False Alarm (Pfa ): i.e P (H1 / H0) ,correpspons 

H1 to be true for the presence of primary signal. 

Probability of detection (Pd) and probability of false alarm 
(Pfa) can be evaluated respectively as [20], 

       1( ' )
d

P P Y Hγ= <     (1) 

 

 0( ' )
f

P P Y Hγ= <  (2) 

The plot of  
dP  versus 

faP is known as the receiver the 

operating characteristic (ROC) curves as they vary with the 

decision threshold γ . Here, P represents the probability of a 

given event, T is the detection-dependent test statistic and γ  

is the decision threshold. The value of γ  is decided on the 

requirements for the spectrum sensing performance, which is 

typically evaluated through ROC. 

The multi-sensor detection setting is considered, where the 

detectors test statistic is constructed from K sensors (receivers 

or antennas) and N time samples. Let 
1( ) [ ( ).... ( )]

T

ky n y n y n= e 

the 1K ×  received vector at time n, where the element ( )ky n is 

the discrete baseband complex sample at receiver. The 

received power under H0, vector consists of K complex 

Gaussian noise samples with zero mean and variance 2

νσ . 

 

                                    0( ) ( )y n H v n=                         (3) 

      Where,
1( ) (0 , , )K K Kv n NC I

2

× ν ×σ∼ .Under H1, in compare, 

the received vector contains signal plus noise, 

 

1( ) ( ) ( ) ( ) ( )y n H x n v n hs n v n= + = +                  (4) 

 

     Where, s(n) is the transmitted signal sample, modeled as a 

Gaussian
2 

random variable with zero mean and variance
s

2σ and 

h is the 1K ×  unknown complex channel vector. The channel 

is assumed to be memory less and constant during the 
detection time. Under H1, SNR at the receiver is defined as,     
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σ
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σ
                            (5) 

     Where, .  denotes Euclidean (L2) norm. 

     The received samples are stored by the detector in the 

K N×  matrix, 

[ ](1)..... ( ) ( )y y y N h s v≅ = +                       (6) 

 

       Where, [ ](1)..... ( )s s s N≅ is a 1 N× signal vector and 

[ ](1)..... ( )v v v N≅ is a K N×  noise matrix. The sample 

covariance matrix R is then defined as, 

1 H
R YY

N
≅                                          (7) 

 

     Let 
1 .... Kλ λ≥ ≥ be the eigenvalues of R (without loss of 

generality, sorted in decreasing order). 
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are correspondingly considered according to [27-28]. 
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Where, 2σ  is the thermal noise power, understood to be 

known and with identical value in each sensor input, and ()tr

and ║║F are the trace and the Frobenius norm of the 

underlying matrix respectively. 
 

III. SIMULATION SETUP 

For C-model the parameters configured for simulation are 

as, 

m: Antennas in CR 

n: Number of received samples collected from primary 
transmitter. 

Ne: Number of Monte Carlo events simulated. 

The sensing techniques under test are ED, MED, CSFD, 

GLRT and RLRT. 

Type of transmitted signal (noise, BPSK, QAM or user 
defined module). 

Two different simulation processes are carried out. For the 

first simulation type, the SNR is kept at fixed value in dB and 

the decision threshold range is varied between minimum and 

maximum values. And second process of simulation is carried 

out by defining three parameters like a preset threshold, and 

the minimum and the maximum SNR values in dB with the 

number of points within the SNR range. 

IV. SIMULATION RESULTS 

Probability of Detection (Pd)  a n d  Probability of False 

alarm (Pfa) are the performance measurement metrics 

considered for analysis. The performance of different 
spectrum sensing techniques is illustrated by the receiver 



operating characteristics (ROC), curve which is a plot of Pd 

versus Pfa. 

     The performance measurements parameters set for 

simulation scenario one as, m=8, n=50, SNR=-10 dB, no. of 

Monte Carlo events simulated = 1000 and minimum to 

maximum threshold levels set in the range γ = 0.78 to 1.1 with 

8 threshold events. For the second simulation setup the 

threshold level is kept fixed at value γ  = 1.4 and SNR is 

varied in between the range of -10 dB to 20 dB. 

 

 
 

Figure 3.  ROC Curve when SNR=-10 dB for m=8 and n=50 

Fig.3, represents the ROC curve for ED method, it is 

evident from the graph that the value of Pd is comparatively 

high for the less Pfa values. But, as Pfa values are increased, Pd 

values are also increased drastically. Thus, the detection is 

improved in energy detector at low SNR values. We reiterate 

that this is valid for all detection techniques considered here, 

though results were presented only for the ED. 

 
Figure 4.  Pd Pfa Vs Threhold  

      Fig.4. shows comparison of Pd Pfa, with respect to the 

change in threshold levels from γ  = 0.78 to 1.1.Fixed a given 

threshold, the behavior of Pfa ,is shown, it is evident from the 

results that Pd is improved and these curves are useful for 

computing the threshold necessary to achieve a given false 

alarm rate.   

 
Figure 5.  Pd PfaVs SNR 

      Fig.5, presents the relation between the Pd and Pfa, with 

respect to the SNR. It is inveterate that with respect to the 

increase in SNR the value of Pd is also increased. As the value 
of Pfa, varies there is significant improvement in Pd is 

obtained. 

 
Figure 6.  ROC Curve for ED Method with m=8,SNR = -10 dB 

 

Figure 7.  ROC Curve for GLRT method with m=8,SNR = -10 dB 
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Figure 8.  ROC Curve for CSFD Method with m=8,SNR = -10 dB 

 

Figure 9.  ROC Curve for MED Method with m=8,SNR = -10 dB

 

Figure 10.  ROC Curve for RLRT Method with m=8,SNR = -10 dB 

      Fig. 6-10 shows ROC curve for different values of the 
number of collected samples (n) concerning the Probability of 

Detection Pd a n d  Probability of False alarm Pfa .With 

reference to the (n), we set different minimum to maximum 

threshold levels as follows. For n=40 the threshold levels set 

are γmin = 2.8 and γmax = 6.5   and for n=50, γmin=2.8 and 

γmax=6.5 and for n=60, γmin = 2 and γmax = 4.5. From the 

obtained results, it is confirm that with the greater threshold 

value, the values of Pd and Pfa are smaller. Similarly, for 

smaller threshold, Pd and Pfa tend to 1. Increase in sensing 

performance is observed with increase in (n). 

 
Figure 11.  Pd Vs Threshld for all sensing methods 

 
Figure 12.  ROC Curve for all detection techniques 

Fig. 11-12, illustrates the performance comparison of all the 
detection methods under test namely, GLRT, CSFD, MED, ED 
and RLRT. From the comparative plot, it is evident that the 
MED and GLRT methods provide better sensing performance 
than the other detection methods for variable threshold level 
with fixed SNR value. ED method shows poor performance 
with Pd Pfa. The analysis of the results indicates that, the 
sensing performance is improved in GLRT by the improved 
probability of detection as compared to other methods for 
conventional model. 

V. CONCLUSIONS 

In this paper, the performance of different detection 

methods is evaluated with respect to the number of collected 

samples without any kind of signal processing on them with 

multiple CR receivers. The received samples are modeled for 

single-receiver, multi-sensor and multiple-receiver, single-

sensor cognitive devices in the data fusion cooperative 

spectrum sensing. The memory-less linear discrete-time 
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multiple input multiple output (MIMO) fading channel is used. 

Closed form expressions for probability of detection and false 

alarm over different sensing methods are evaluated. 

Simulation results verify that, the GLRT detection method 

produces better sensing performance than the other detection 

methods, particularly in the case of limited samples in 

conventional model even if no signal processing is involved 

between the cooperating CRs.  
   In contrast to earlier work, the conventional model can be 

useful for performance comparison of sensing techniques and 
provide reasonably better results. Moreover the comparison of 
results helps for performance evaluation and of sensing 
methods in Cognitive Radio networks. It is believed that the 
work carried out in this paper is useful to understand the 
performance in Cognitive Radio network for selection of best 
sensing method for discrete-time memory less MIMO fading 
channel. In future work attention can be given on the 
computation of closed form Analysis by using more realistic 
approach with typical CR signal processing tasks. 
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