
Flexible IoT Middleware for Integration of Things
and Applications

Joseph Boman
Department of Computer Science
University of Southern California

Los Angeles, USA
Email: jboman@usc.edu

Jonathan Taylor
Department of Computer Science

Tougaloo College
Tougaloo, USA

Email: joncody2012@gmail.com

Anne H. Ngu
Department of Computer Science

Texas State University
San Marcos, USA

Email: angu@txstate.edu

Abstract—The Internet of Things (IoT) is a rapidly
growing system of physical sensors and connected devices,
enabling an advanced information gathering, interpreta-
tion and monitoring. However, IoT must be supported by a
middleware that allows IoT consumers and IoT application
developers to interact in a user-friendly way, despite
the differences in each user’s perspective of IoT system.
To that end, our software attempts to bridge the gap
between IoT consumers and IoT application developers.
Through the coupling of GSN (an existing open source
IoT middleware), Firebase (a cloud storage service), and
an IoT data interpreter developed by us, we have created
a software system that takes the first step towards an
ubiquitous middleware for IoT.

I. INTRODUCTION

Internet of Things (IoT) is a domain that represents
the next most exciting technological revolution since the
birth of the Internet. IoT will bring endless opportuni-
ties and impact every corner of our planet. With IoT,
we can build smart cities where parking space, urban
noise, traffic congestion, street lighting, irrigation, and
waste can be monitored in real time and managed more
effectively. We can build smart homes that are safe and
energy-efficient. We can build smart environments that
automatically monitor air and water pollution and enable
early detection of earthquake, forest fire and many other
devastating disasters. IoT can transform manufacturing,
making it leaner and smarter. According to CBS news,
we’ve had nearly 600 bridge failures in the country since
1989. A large number of bridges in every state are really
a danger to the traveling public. IoT can monitor the
vibrations and material conditions in bridges (as well as
buildings and historical monuments) and provide early
warning that would save numerous human lives.

While Internet of Things (IoT) offers numerous excit-
ing potentials and opportunities, it remains challenging

to effectively manage the various heterogeneous compo-
nents that compose an IoT application in order to achieve
seamless integration of the physical world and the virtual
one. In this paper, we investigate a generic IoT middle-
ware system equipped with a set of tools, supporting
streamlined development of IoT applications and their
convenient maintenance, and extension. This middleware
system leverages a cloud storage service (Firebase [1] )
for sharing and consumption of IoT data and an open
source sensor data management system (GSN [2]) for
data acquisition from a variety of sensors. Furthermore,
in using Firebase to store the data received from the
sensors and a general purpose data interpreter for the
collected data on Firebase, this middleware enables the
deployment of any third party application that can inter-
face with Firebase. To demonstrate the capability of this
middleware, we have created two simple applications:
a web application that enables a user to visualize the
status of the physical devices that the sensors monitor,
and a generic notification application (utilizing JESS - a
Java based rule engine) which can post interpreted data
collected for physical devices to social media such as
Twitter, Facebook, or send messages to an e-mail address
when certain conditions are detected by the sensors.

Existing IoT middleware falls into two categories in
general. The first category allows users to add on as
many sensors as they desire, and then gives users some
tools (simple App or Web browser) to view the raw
data that the sensors are collecting, but usually has
limited functionalities when it comes to interfacing with
other applications or interpreting the data. The second
category limits the user on the type and the number
of sensors that they can utilize, but enables the user to
interpret the collected data - since possible use cases
can be determined and programmed in a-priori - and
to interface with many third party applications, usually

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257533



through some cloud storage services. Most of the existing
IoT middleware which focused on supporting a large
variety of sensors tend to fall in the first category, while
IoT middleware focused on consumer usability falls into
the second category. We analyzed the infrastructure of
both existing commercial and academic research IoT
middleware and by combining and extending some of
their components, enabled IoT consumer to both add as
many sensors as they would like and to consume IoT data
in a flexible way. In our framework, data collected from
sensors not only can be monitored in realtime, but also
automatically converted into actionable information by
our data interpreter based on trigger values or conditions
preset by the user. This gives contextual information
about the physical devices and enables IoT applications
to be developed by accessing those high-level contexts
independent of low level physical properties of the
sensors or devices.

We designed and implemented a sample smart home
web application prototype and a sample third party
application that post messages to social media or send
email notificatons to showcase our IoT middleware.

The remainder of this paper is organized as follows:
a discussion of related work that currently exists in the
field of the Internet of Things is presented in section II,
an overview and in depth examination of the middleware
that we created is described in section ?? followed by
a discussion about the shortcomings and advantages of
our software. The conclusions that we have drawn from
creating and examining this middleware is presented in
section IV. Finally, the future work that will need to be
done in regard to our IoT middleware prototype in order
to make it into a practical system is discussed in section
V.

II. RELATED WORK

Paraimpu

Paraimpu is a REST-based web-service that connects
physical things/sensors to the web. Its main emphasis is
on sharing of IoT data on the Web. You can interconnect
most of your sensors to appliances or social media such
as Facebook and Twitter [3]. Paraimpu also allows other
people to integrate your IoT data with their own Things
via a rule engine. However, the Paraimpu rule engine is
very simplistic. The if/then rule format is what is used
and it is not possible to connect multiple actuators or
sensors with each other. A sensor must only be attached
to an actuator and if you want to have a second actuator
for the the same connection, you must make a separate
rule to achieve it. Another problem with Paraimpu is that

because the site is still in development, you are limited
to certain number of sensors and actuators at one time
on the site [3]. Finally, there is a limited type of sensors
that are currently supported and if you want more type
of sensors to be added, you have to use a third party
web service Xively to do so.

Xively

Xively, along with LogMeIn, is a public cloud service
that emerged from the IoT movement. The company
has many tools and resources that developers can use
to connect their sensors and collect data from those
sensors [4]. If a developer comes across problems when
using Xively API, there is also a large community
of developers that can help. Xively overall mission is
to help developers and companies to design physical
sensors and connect them to their IoT cloud service
quickly and simply.

Xively is basically used just for connecting the sensors
that you want to Xively’s cloud. If you want a rule engine
that can interpret the data, you will either have to develop
one yourself or find one that is compatible with Xively.
The main goal for Xively is ultimately connecting the
sensors you need to their cloud, where you can pull data
from them easily from anytime and anywhere. There
is no streamlined supported for developing actuators
that can be used to control the sensors. Even though
adding sensors is supposed to be simple using Xively, the
API that is provided can be difficult to use, especially
when using a sensor that is not already supported by
the site. Because the libraries are in beta version, only
experienced developers can set up actuators or add new
sensors.

Google Nest

Google Nest consists of two fully integrated devices
that contain sensors and processors to interpret the data
collected. These devices are a thermostat and a smoke
detector. Once the data is interpreted, the devices send
the results as a JSON document and host the document
on Firebase. Other applications can then read the data
from the JSON document or make changes to certain
sections of the document, in order to react appropriately
to the readings that the sensors have found [5].

While Google Nest provides an excellent method of
interfacing, through Firebase, and the API makes it easy
for any 3rd party application to connect and utilize the
data from Google Nest’s devices, the fact that the devices
are integrated with their software that interprets it means
that to add any devices or sensors to the system requires



an inordinate amount of work. Essentially, unless Google
Nest decides to add more devices for a consumer to pur-
chase, the system is limited to just the smart thermostat
and smoke detector. However, despite this shortcoming,
Google Nest is still a big step forward towards the fully
IoT integrated home, and we draw upon their ideas
for using a hosted and standard-based JSON document
server, Firebase, for the storage and control of sensor
data.

Global Sensor Network

Global Sensor Network (GSN) is a middleware that
enables users to more easily integrate with various differ-
ent types of sensors. Primarily, GSN handles the thread
management and data storage aspects of dealing with
sensors. The users must create an XML file and a wrap-
per for each different sensor that they want to connect to
the network [2]. The XML file tells GSN about the basics
of the sensor: what kind of data (numerics, spatial) it will
be giving to the system, any parameters (such as how
often to ping the sensor to get data), and which wrapper
or virtual sensor to use with the physical sensor. The
wrapper tells GSN how to connect (e.g. which network
protocol to use) to the sensor when it is first initialized,
what to do in order to get data from the sensor, and what
to do with the data when it is received from the sensor.
These two things must be created for every new sensor
that one wishes to connect to GSN. Currently, there is no
easy way for users to create new XML files or wrappers,
besides taking the existing ones and modifying them
or writing them from scratch. Furthermore, while GSN
stores the data from the sensors in an SQL database, it
doesn’t do anything to the data other than display it on
a local web application, and the only data displayed is
the raw sensor data - with no interpretation [2].

Ninja Blocks

Ninja Blocks consists of a system based around a
central control hub that has the ability to control any
devices that are plugged into smart power sockets. The
focus of the system is control rather than sensing, and
as such, there are a limited number and type of sensors
that can be purchased from Ninja Blocks, however,
the system is able to interface with a variety of other
products from other companies, including Google Nest
and many others [6]. Furthermore, the system can be
monitored and controlled from a mobile application as
well as the central hub. The main limitation of the
system is that automation is rather limited. While you
can receive notifications via the mobile app and turn on

and off devices for it, you cannot set up rules that will
monitor certain conditions or patterns, limiting the scope
of what you can do with Ninja Blocks. However, despite
this, the system as a whole is one of the best consumer
based IoT systems currently available.

Twine

Twine is a consumer based IoT system that consists
of a hub that contains some simple sensors in it and a
web interface that allows the user to create rules that will
message social media based upon certain values of the
sensors. In addition, other sensors can be purchased and
added to the system in order to allow Twine to detect
more variety of sensors [7]. Despite the simplicity of
Twine, it does fall short in a variety of areas. One such
area is the matter of external sensors. Firstly, the sensors
must be purchased from the company Supermechanical,
which limits the type of sensors that can be purchased.
Secondly, the sensor hub limits the number of sensors
that can be attached, since there are a limited number of
ports to plug in external sensors, and the sensors are all
wired sensors. Furthermore, since all of the sensors are
wired, the distance that any sensor can be placed away
from the hub is limited. However, despite all of this,
the web interface is still an excellent example of a rule
engine - they allow the user to set up as many rules as
they want, with multiple trigger conditions and responses
- even with the limited choices for actions (social media
messages only).

Smart Things

Smart Things is largely based around a mobile phone
application and a central hub. Sensors and actuators
can be purchased from Smart Things or other vendors,
provided that those devices are on the list of devices that
the Smart Things system is able to work with [8]. While
the library of available devices is extensive and growing,
the system as a whole is designed around the idea of
the smart home, and so is not very adaptable to other
environments, as almost all the sensors and actuators
are designed to use in a standard home. Furthermore,
since the devices must be set up by Smart Things before
their application can use them, a user does not have
the ability to get any devices they desire, and most
of the devices that Smart Things has interfaced with
are relatively expensive. Finally, Smart Things is based
entirely around the mobile application and has no web
interface, preventing users from modifying rules and
receiving data from a computer.



SmartHome

The SmartHome system is a prototype for a smart
home where the user can add any number of sensors
and create rules around them to interact with them.
Utilizing an internally developed system called sensor
hive, SmartHome enabled the use of Phidgets sensors to
monitor a variety of household devices. Once the devices
are connected, a web interface allows the user to see
when the devices are on or off, as well as the history
of use of those devices [9]. This system, however, had a
relatively simple rule system and the sensor hive could
only interface with Phidgets sensors. These two aspects
greatly limited the benefits of the system overall, but
the web user interface that was used in SmartHome is a
remarkably simple one that still accomplishes the goal
of getting the information to the user in a way that is
useful and intuitive. Therefore, we took a great deal of
inspiration from the design of their web interface for
visualizing the sensor data. To overcome the limitation of
sensor hive, we adopted the GSN server for connecting
to a variety of sensors.

III. SYSTEM ARCHITECTURE

When we began to build our IoT middleware, the
question arose as to which language to write it in, and
after examination, we narrowed it down to either C#,
following in the footsteps of the SmartHome system,
or Java, following in the footsteps of GSN [2]. In the
end, we decided to use GSN for sensors connection,
which restricted us to using Java. However, this turned
out to be beneficial, since Firebase has no current API for
interfacing with C# [1]. To utilize Firebase as the storage
system for our IoT data, we have to modify GSN so that
it will forward its data to Firebase instead of simply
storing it in its SQL database. We also developed the
Data Interpreter to pull the data from Firebase and utilize
it to draw conclusions regarding the current status of the
sensors. Our data interpreter is similar to the processors
available in Google Nest, but have the advantage that it is
an independence unit that can be extended by developers.
Finally, we created two sample applications that would
be used to demonstrate how other applications could
connect to Firebase and still remain separate software
systems. Figure 1 shows the architecture of our prototype
IoT middleware system, where the arrows represent the
flow of data through the system. Note that the Data
Interpreter is a separate component from GSN.

Fig. 1. The Data Flow of our prototype

Inputs

The two inputs to the overall system are the sensors
themselves (i.e. the wrappers) and an XML file created
by the user that describe the main properties of the
sensors. The sensors are relatively self explanatory; each
one collects some sort of data and then sends it to GSN
- either on a regular basis, or when prompted by GSN.
These sensors can be of any type, so long as the data
they send is in a numerical format. In the future, this
could be changed, however, at the moment, the type
of sensors that we experiment with are restricted to
collecting numeric data.

The XML file, on the other hand, can get a bit
complicated, since it must contain a great deal of data,
either for GSN or the Data Interpreter to work properly.
Firstly, the XML file needs to list the virtual sensor class
for GSN to represent the sensor with (in most situations,
the Bridge Virtual Sensor is the one to use) and the
name of the wrapper class to use to connect with the
sensor and deal with the data. For GSN, the XML file
must also include a descriptor of the data that the sensor
will be creating - which tells GSN the name of the data
being passed to it and the type of data [2]. In addition,
for the Data Interpreter and Firebase, six values must
be included for each separate numeric value that the
sensor will be generating. First, a unique ID, which must
be different for every value. Second, the name of the
device that the sensor is monitoring, whether it is an
actual device, such as a microwave, or something else,
such as a doorway. The last four values required are the



trigger values for the device. These values tell the Data
Interpreter when the device is on or off, and consist of
the following: an on-floor value, an on-ceiling value, an
off-floor value, and an off-ceiling value. When the sensor
value is less than a ceiling value, then the device is on
or off, respectively, and when the sensor value is above
the floor value, the same is true. The reason both on
and off need a high and low trigger value is because
some devices will be on when the sensor value is under
a threshold (such as a fridge and temperature sensor),
while others will be on when their sensor value are above
a threshold (such as lights and a light sensor). In order to
prevent mistakes, use the value ”-1” if a sensor does not
have a particular trigger value. Finally, any values that
the user wishes to be able to access in the wrapper class
should be placed here as well, rather than hard-coding
them into the wrapper.

GSN

The Global Sensor Network serves two main purposes
in our code; it connects to the sensors and collects the
data from them, and it forwards that data to Firebase in a
generic format. In order to interface with the sensors, the
user needs to create a wrapper class that inherits from
AbstractWrapper which tells the system how to connect
to the sensor as well as what to do to get data from
the sensor. The wrapper must contain some relatively
generic functions that it inherits from AbstractWrapper,
however, the most important two functions are initialize
and run. Initialize is called when the system is starting
up, and should tell GSN how to connect to the sensor. It
is here that the sensor should be checked to verify that it
is connected, and the sensor should be added to the data
uploader, so it can upload it. The run function is called
on a regular basis, as each wrapper has a unique thread
that will perform the run function over and over [2]. It
is here that the code for pinging the sensor to collect
information should be placed, as well as the code for
sending the new sensor values to the data uploader.

The data uploader is part of GSN, and utilizes a
singleton model, so all of the wrappers have access to it
and multiple upload requests will not cause the system
to repeat the same request. The uploader collects the
data that the sensors are giving to it, and on a regular
basis, forwards that data up to Firebase. A local copy of
the data is stored in the data uploader class, to allow it
to determine which sensor to assign the new data to.
Currently, initializing the data uploader initializes the
Data Interpreter, however, this is just a workaround to
make the software easier to operate.

Firebase

Firebase is a cloud storage service that we have lever-
aged in order to enable our middleware to be decoupled
and interface with 3rd party applications [1]. We decided
to use Firebase upon an analysis of Google Nest’s API.
They utilized Firebase to allow developers to create
mobile and web applications that used the data generated
by their smart thermostat and smoke detector, without
having to adjust to the specific format of data they were
generating. Figure 2 shows the web interface where data
is stored on Firebase and can be edited. Since Firebase
stores data in a JSON format, many applications can
already interpret that format, but Firebase also allows
developers to create listeners for specific sections of the
JSON document that will fire when data is changed,
added, removed or moved. This means that creating a
mobile or web application that will interface is incredibly
simple. Furthermore, since Firebase enables users to add
authentication to their own personal Firebase, users can
rest assured that their data is protected from malicious
attackers.

Fig. 2. The web interface for Firebase, showing the data from our
system in a JSON format

There are a few potential drawbacks to Firebase, how-
ever. Firstly, since the system utilizes its own scheduling
system for activating the listeners, it may be the case
that when a large number of sensors and applications are
connected to the system, the delay in firing the listeners
could result in data being received that is no longer



current [1]. Also, Firebase only allows a free account
to utilize 500 MB of data. While that is a large amount,
and certainly enough for most situations, if users wish to
store history for their devices, they would certainly end
up using more than that, given enough time. All in all,
however, as cloud storage services for IoT go, Firebase
seems to be the best currently available, which is why
we have chosen to use it.

Data Interpreter

The Data Interpreter pulls all of the sensor data down
from Firebase, and then using the devices that were listed
as being monitored by each sensor in the XML file,
determines which sensors need to conclude that each
device is on or off before the interpreter can actually
determine that the device is on or off. It creates Firebase
entries for each one of the devices that are listed as being
monitored and uploads their initial state. Following that,
no changes will be made unless the state of the device
changes - whether the change is the device going from
on to off, off to on, or simply changing location. When
such an event happens, the interpreter will upload the
new values to Firebase, and update the pastValues list.
Currently, the pastValues list only stores up to ten values,
since we felt that it would be safer to err on the side
of less values, especially since we want the system to
have the ability to scale with a large number of devices.
Furthermore, due to the implementation of Firebase, the
list of pastValues is wiped clean every time the software
is restarted. This will need to be fixed, however, the data
is still stored locally via GSN in an SQL database, so
it exists and is accessible, just not in the cloud as we
would have preferred.

Sample JESS App

The JESS Application is a sample application that
demonstrates the way that our system can be used to
allow a user to create rules that will trigger actuators. In
the case of the JESS Application, the rules themselves
are stored on Firebase in a specific format, however, in
the future, the rules would be native, written through
a GUI that would enable the user to drag and drop
sensors, devices, and actuators to combine them into
rules. JESS is a rule engine based in Java that utilizes the
Rete algorithm in order to facilitate a large quantity of
rules [10]. The JESS Application pulls the rules, sensor
data, and device data from Firebase, and parses the rules
into the JESS format, which is similar to Lisp. Once
that is done, the rule is passes to the JESS Rete engine,

which stores the rules and the data from the sensors and
devices.

The application currently only has three different
actuators: sending an email, posting a tweet, and sending
a message to a twitter account. We attempted to interface
Facebook with it as well, however, the difficulty and
lack of an official Java API forced us to abandon that.
These actuators can be used on separate rules or on
the same rule. Furthermore, the rules currently do not
support ’or’ functionality, which is a failure of the parser
- when it was created, it did not have the ability to make
separate triggers into ’or’ statements, and so it was not
implemented. The system as a whole is able to support
it, however, it would require a rewrite of the parser or a
different method of inputting the rules into the system.
Overall, the JESS Application demonstrates the benefits
of decoupling the IoT system, since it is able to run
independently of the main system, and can actually be
run on a completely separate network, provided that it
has access to Firebase and the proper authentication to
read the Firebase data.

Sample Web UI

The Web UI was largely based on the web interface
that was part of the original SmartHome software system,
however, it is not the same [9]. Figure 3 shows the
Web UI with the mouse hovering over the microwave.
The primary purpose of the Web UI is to display the
data provided about the devices in a format that is easy
for users to interpret in a short period of time. To that
end, we emphasized the visual aspects of the system. By
making the interface picture based, the system as a whole
becomes far easier to interpret. Each device has mouse-
over text that displays the name of the device or the
current status and the time that the status changed to the
current status. Furthermore, since the JESS Application
posts data to Twitter, we included the Twitter timeline in
order to allow a user to see it without having to search
for the specific user.

The web interface is an example of a 3rd party
application that a user could choose to add to their
personal IoT system. Not every system in the Internet of
Things would need or want a visualization for a kitchen,
or even a visualization of the system at all, however the
benefit of our system is that since it is decoupled, this
component can easily be replaced or removed entirely
and this removal has no effect on the rest of the system
which will work the exact same way. This customization
enables each user to personalize their own IoT system
without sacrificing anything because they want or do not



Fig. 3. The web interface that displays the data in a user friendly
format

want a particular feature, which betters the idea of the
Internet of Things as a whole.

Benefits of our System

• Through the use of GSN and its virtual sensors, our
system has the ability to interface with virtually any
sensor, enabling any user to add any number and
type of sensors.

• The Data Interpreter enables the system to automat-
ically infer the status of any device, based solely on
the raw data that the system is receiving from the
various sensors attached to it, and the trigger values
that the user inputs in the XML file. This allows the
system to provide useful real-world information, as
opposed to just providing raw data.

• Since the data and information is stored on Firebase,
the system as a whole has the ability to expand,
interfacing with 3rd party applications, regardless
of whether the application is native, mobile, web, or
located anywhere else. Furthermore, since Firebase
can require authentication, each user can protect
their data and information and only give it to the
applications which they want to allow to access their
data.

Shortcomings of our System

• Since adding a new sensor requires creating an
XML file and a wrapper in order to interface
with GSN, adding sensors is time consuming and
requires the user to have a basic knowledge of
programming in Java and writing XML documents.

• Currently, the Data Interpreter is only able to de-
termine whether a device is on or off, and not how

long it has been in whatever state it has been in.
Also, with devices that have states other than on
and off, such as a vent that can be partially open,
the Data Interpreter cannot detect that.

• Due to the Data Interpreter, sensors must all provide
a numerical value, and the user must determine
the trigger values for whatever device the sensor is
monitoring before they can use the sensor/device
combo with the system if they wish to extract
meaningful data.

• Since the ”3rd party” applications we designed
were meant as examples, they have a number of
shortcomings, from the JESS Application’s rules
being stored on Firebase instead of locally, and the
Web UI not showing more than the current value
for any device.

IV. CONCLUSION

While the Internet of Things is certainly a long way
from becoming ubiquitous, it becomes closer and closer
with each passing day. The future of the Internet of
Things will consist of a variety of sensors loosely con-
nected into a network that forwards data to some sort of
cloud storage service, which will make the data available
to either all users, or all users who have the proper
authentication. Once the data is in the cloud, the users
who pull it down can interpret the data, and send their
interpretations back to the cloud, perhaps in the same
location or a different one. Finally, other applications or
the same ones will use interpreted data to fire actuators
or send messages to various final destinations.

This system may appear to be complicated, however,
it is one of the most promising models for the Internet
of Things. By decoupling everything, it gives the system
the ability to recover from shocks - if the sensor network
goes down, the storage service and 3rd party applications
can continue to operate. Furthermore, it allows any
applications and sensors to be connected to the system
without having to make sure that all other parts of the
system can interface with them. Our system, although
simplistic, is a proof of concept of this, and also takes
the first steps to making such a system a reality. The
future is a lot closer than it used to be, and our system
is a basic glimpse of what such a future might hold.

V. DISCUSSION AND FUTURE WORK

The shortcomings that were discussed above need to
be remedied before the system as a whole can move
forward and become user friendly to the average user.
Some of these fixes are things that will be explored by



our software and personal future work, while other parts
of it will need to be changes made by people working
on the other parts of our system. One of the largest
changes that will need to be explored is the process of
adding a sensor to GSN. While some progress has been
made in this regard [11], the system as a whole is overly
complicated, and some method needs to be found that
will simplify the process, whether that involves providing
some online resource where users can share their XML
files and wrappers, or some form of automatic wrapper
generation. Furthermore, Firebase must be explored to
determine how well the system can scale - unfortunately,
as this would require greater processing and number of
sensors than we have access to, we cannot really explore
this question.

In regards to our system, there are a few changes that
need to be examined. Primarily, a native rule composer
should be created that will allow a user to create rules
easily through a GUI and fire rules based on the in-
formation on Firebase without having to run a separate
application or write the rules on Firebase via a specific
format. Furthermore, the Data Interpreter needs to be
expanded, to add conclusions about states other than
on and off, such as movement, partial states, and time
of states. Next, a better method of storing the history
of sensor readings and history of devices needs to be
developed. And finally, the system as a whole needs to be
made user friendly, whether this involves creating a GUI
for various parts or simply making as much as possible
as intuitive as possible. Overall, while this system is a
step forward, there is still a great deal of work necessary
in order to make it into a system that can be used by
anyone and improves the quality of life for the average
person.

Acknowledgement

We thank the National Science Foundation for fund-
ing the research under the Research Experiences for
Undergraduates Program (CNS-1358939) at Texas State
University to perform this piece of work and the infras-
tructure provided by a NSF-CRI 1305302 award.

We thank Charith Perera for discussing the benefits
and shortcomings of GSN with us, and answering the
questions we had in regard to the papers he had authored.

We thank Craig Smith for granting us a free research
based academic license for JESS.

REFERENCES

[1] “Firebase documents,” https://www.firebase.com/docs/.
[2] GSN Team, Global Sensors Networks, 2009.

[3] A. Pintus, D. Carboni, and A. Piras, “Paraimpu: A platform
for a social web of things,” in Proceedings of the 21st
International Conference Companion on World Wide Web, ser.
WWW ’12 Companion. New York, NY, USA: ACM, 2012,
pp. 401–404. [Online]. Available: http://doi.acm.org/10.1145/
2187980.2188059

[4] M. Köhler, D. Wörner, and F. Wortmann, “Platforms for the
internet of things–an analysis of existing solutions,” (Forthcom-
ing).

[5] “Google nest,” https://developer.nest.com/documentation.
[6] “Ninja blocks,” https://ninjablocks.com/.
[7] “Twine,” http://supermechanical.com/twine/.
[8] “Smart things,” http://www.smartthings.com/.
[9] Lina Yao, Quan Z. Sheng, Anne H.H. Ngu, Byron Gao, “Sens-

ing Your Surroundings: Enabling Web-based Management of
Internet of Things,” 2014.

[10] S. Liang, P. Fodor, H. Wan, and M. Kifer, “Openrulebench: An
analysis of the performance of rule engines,” in Proceedings
of the 18th International Conference on World Wide Web, ser.
WWW ’09. New York, NY, USA: ACM, 2009, pp. 601–
610. [Online]. Available: http://doi.acm.org/10.1145/1526709.
1526790

[11] C. Perera, A. Zaslavsky, C. Liu, M. Compton, P. Christen, and
D. Georgakopoulos, “Sensor search techniques for sensing as a
service architecture for the internet of things,” Sensors Journal,
IEEE, vol. 14, no. 2, pp. 406–420, Feb 2014.


