
Making Your Programming Questions Be Answered
Quickly: A Content Oriented Study to Technical

Q&A Forum

Yi Wang
Department of Informatics

University of California, Irvine
CA 92617, USA
yiw@ics.uci.edu

Abstract—Online programming forums enable programming
knowledge sharing across organizational boundaries. Under-
standing how questions are asked and answered in forums will
not only help developer to access the knowledge they need fast
but bring important design implications. We report a study of
Q&A process on MSDN’s visual C# general forum. This study
is content oriented instead of conventional social factor analysis
to Communities of Q&A. We identified eight topic categories
through two-round card sorting. We also explored various content
feature’s influence to Q&A process. A qualitative analysis was
performed to identify different life-cycle patterns of questions.
These findings highlight the role of content features, and the
interaction effects between them. Based on these findings, we
make a set of suggestions to information seekers on how to make
their questions be answered faster, and derive implications for
technical forums design and operation. To verify our findings, we
also conducted a small replication to a Java technical forum and
compared the results.

I. INTRODUCTION

Software development is a process of using knowledge
and information to solve real life problems [17]. Given the
fact that Internet has been the largest programming/software
engineering knowledge base, more software developers be-
come “opportunistic” in their programming practices [9]. It
is a pervasive behavior for software developers to learn new
things, get experts’ help, or even find some reusable code
from various online resources. Not only novice or end user
developers, experienced developers also adopt this work style
to build fast prototypes. Today’s knowledge seeking behaviors
in development has crossed the boundaries of teams and
organizations. Hence, sharing expertise and knowledge over
Internet becomes crucial.

Social media and user-generated contents have great po-
tential in supporting software development activities [7], [25].
Among various user generated social media resources (forums,
blogs, wikis, etc.), technical forums, as typical Community
Question-Answer (CQA) application, are main venues for
knowledge and expertise sharing among software developers.
They are not only infrastructures for programmers to find
helps, but also accumulates rich programming and software
development resources. For example, if searching keyword
“const” in Google, three of the top-10 results are linked to
forums. The importance of programming forums in software
development has been highlighted in literature, (e.g., [25],

[27]). However, current research mostly focus on their “social”
side rather than “media” side, or simply mining the activities
of users (e.g., [1], [4]). While many research studied social
factors’ influence on Q&A process, the content of questions
has been largely neglected. As far as our current knowledge,
it is fair to say that there is not much established work on
analyzing the question content, although the question content
directly impacts availability and quality of answers, which
further influence actual knowledge transfer on online technical
forum.

This paper presents an empirical study that investigates
how programming questions are asked and answered on an
online programming forum. Different from prior studies fo-
cusing on important social factors (e.g., reputation, status), we
pay more attentions on the content features of Q&A threads.
We conducted content analysis to 600 sampled threads on
MicroSoft Developer Network (MSDN) C# General forum1

to explore the Q&A process on technical forums from content
oriented perspective. We employed mixed (quantitative and
qualitative) approach in data analysis to ensure the results
are both contextually rich and authentic. Earlier work on
using social media resources to support programming practice
focused on observing and analyzing the user behaviors through
controlled experiments or users’ behavior traces, in another
word, from the of information seeking behavior perspective.
In contrast, focusing on content-oriented perspective allows us
to address the long neglected rich content generated in Q&A
interactions between question askers and answer providers.
Specifically, we make following five major contributions:

• Categories of frequently asked questions in a typical
programming language forum (MSDN C#) through
two-round card sorting focusing on questions’ content.
They can be compared with prior studies such as [27].

• Identifying the influence of different content features
and their interaction effects through conceptual hy-
pothesis development and statistical analysis. In this
process, some novel measurements were introduced or
developed.

• Qualitative analyses to questions and answers to iden-
tify the role of content features in questions’ life-cycle.

1http://social.msdn.microsoft.com/Forums/en-US/csharpgeneral/threads

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257384

• Suggestions to answer seekers and Implications for
the design of programming CQA infrastructures &
mechanisms.

• Self-replication in different context, which is seldom
used in prior empirical empirical studies.

The rest of this paper is organized as follows. Section
2 briefly introduces related work. Section 3 describes the
research design. Section 4 introduces the topic categories of
questions. Section 5 explores what content factors influence the
speed of Q&A as well as the interaction effects between some
of them. Section 6 presents the results of qualitative life-cycle
pattern analysis. Then, we discuss related issues, implications,
and threats to validity of this study in section 7. Section 8
summarizes the main results of our self-replication study, and
section 9 concludes the paper.

II. BACKGROUND AND RELATED WORK

ost of current literature on technical forums focuses on
analyzing the expertise and knowledge exchange process on
the social network. Studies like Zhang et al. [34] suggested
the topology of expertise networks is different from other
social networks. They also tested the efficiency of different
ranking algorithms (e.g., PageRank, and HITS) for the sake
of locating the individual with high expertise on expertise
network. Their empirical study explores the performance of
ranking algorithms for the Java developer forum. They also
ran a discrete simulation process. Similar studies include [32]
and some others.

Yahoo! Answers is one of the frequently studied forums,
although it is not only a programming forum. In Gyongyi et
al. [13], using 10-month user generated data, they investigated
several aspects of user behavior in a question answering
system, such as activity levels, and roles, connectedness and
reputation, and they discussed various aspects of the service
and its possible evolution. Another study on Yahoo! Pipe
community was conducted by Jones and Churchill [16]. They
identified two different engagement levels (core and peripheral
engagement) in Yahoo! Pipe knowledge-sharing community.
They discussed these different roles of engagements and how
individuals in these two groups interact with each other dy-
namically.

Compared with rich evidences of social factors? influence
on CQA or favor requests, content factors are largely ignored
so far [3]. There are some exceptions, such as Mitra & Gilbert
[22]. The study employed phase counting to show that the
successful Kickstart.com requests exhibit general persuasion
principles such as reciprocity, Scarcity, etc. Similar work
includes Althoff et al?s study on reditt.com?s random pizza
requests [3]. However, these studies are not directly linked
to programming CQA sites. Even in study as [5] which
considered content characteristics of programming questions,
the authors only developed correlations rather than causality
in their predictive model.

Treude et al. [27] studied stackoverflow.com, which is the
most popular software development CQA. They found that
Q&A sites are particularly effective at code reviews, explaining
conceptual issues and answering newcomer questions. The
most common use of stackoverflow is for how-to questions,

and its dominant programming languages are C#, Java, PHP
and JavaScript. In this paper, they suggested a category system
of questions using similar qualitative coding method used in
this paper. However, the main difference is that the categories
described in our paper focusing on the content of the questions
but their categories are more about “how a question is asked”.
For example, they have the “how-to”, but our categories are
more about “do what” after how to. In semantic level, the
categories in this paper is more consistent than those in [27].
Another study [20] focuses more on the success of community
question-answer sites rather than the success of users.

Nasehi et al. [23] introduced another way to categorize
questions on programming Q&A site which has some overlap
with our study. In this paper, a question can be categories
into different types based on two different dimensions: Topic
and Questioners’ main concern. However, their approach to
extract topic information is different. They relied on the “Tags”
to determine the topic while we used experts’ judgement.
It is hard to say which is better, but it is possible that
some questioners may mis-tag their questions for lack of
experiences. They also summarized some attributes of answers,
while we keep our focus on questions and developed a model
to explain (and make moderate level predication on) how
different content features influence answering speed. To sum
up, their results are more helpful for a question answerer to
get their answer recognized and voted, which is essential for
answerer’s reputation on stackoverflow.com.

A part of Li et al. [19] presented an empirical study
on three programming forums. They found question askers
often wait a relative long time to receive answers. Meanwhile,
a few experts were often overloading to answer questions.
Based on these two observations, they design and implement
a tool named G-Finder to identify potential participant for
answering particular programming questions. They analyzed
information in source code snippets to find latent network
among forum members hence improve the prediction precision
on expertise locating. There have been many studies on online
forums or CQA in disciplines such as Information Science,
and Information Systems. But there studies are focus on the
interaction between forum users and their motivations rather
than supporting programming. There are also some important
works [7] on leveraging the design of social media to support
software development process and evaluate the design space
for software artifacts [15].

III. RESEARCH DESIGN AND PROCEDURE

To achieve satisfying depth and breadth of the given
research topic, we adopted mixed research approach that
combines quantitative and qualitative methods in our study.
It contains two sub-studies. The first is two-round card sorting
aimed to identify the topics categories in subjected program-
ming Q&A forum and prepared clean data for the second
study. The goal of the second is to identify different content
features’ influences to the answering speed in Q&A process.
To validate the results, we also perform a simple replications,
and compared its results with the original study.

A. Data Collection

MSDN C# general forum is the main information portal
for C# and .NET development. We selected this forum for

two considerations. Firstly, C# is ranked by langpop.com as
one of the most popular programming languages. Secondly,
C# language is much easier for end-user developers to learn
and use, hence attracts lots of newbies in programming and
software development. Another consideration is that Microsoft
provides supports to forums on MSDN, maintaining it works
well. As of 11/2011, there has been over 50,000 threads,
including questions and ≈ 1000 general discussion threads.
It is almost impossible and unnecessary to conduct qualitative
content analysis to all of them. Hence, to keep both the validity
of results and the convenience, random sampling method was
used to select 600 question threads (sampling rate is over 1%
threshold value). We first used a crawl to download all threads
automatically, and then excluded all general discussion threads.
For left threads, we sorted them according the post time and
run a random number generate program to identify the 600
sampled question threads.

For each sampled question thread, the basic information
(thread id, question-time, and answer-time) and contents (ques-
tion content, all replies and the reply-time, and right answer)
was extracted and stored in a MySQL database. Besides above
attributes, for each recognized answers, we also recorded
following information: whether a question was answered by
VIP moderator or Microsoft fulltime employee (FTE), whether
a question contains any code snippet, and if there is contextual
information. Also, we computed the Answer Time which
defined as the time interval between question asked and the
appearance of first right answer.

B. Study I: Categorizing Question Themes
through Two-round Card Sorting

We want to find out what are the main topics of developers’
questions. To answer this research question, we performed
a two-round card sorting. All information of each sampled
questions was printed on a paper. Three graduate students2

majoring in computer science or information systems were
enrolled to sort these threads independently according the
topic/themes of each question. The first round card sorting
was based on open coding protocol, which means the sorter
were free to create new themes during the sorting process. 36
themes were generated in this process (the similar categories
with different name were not merged in this phase).

After the first round card sorting, a focus group meeting
(with three card sorters) was held to check the results. We first
merged the themes that are either too general or over-specific.
The total number of themes was reduced to 15. Then, some
themes were merged and clustered due to the similarity of their
meanings, and eventually, 8 unique categories were identified.
Then we cross-examined the consistency of this categorization:
the overlaps of all card sorters’ results are over 90%. Fleiss
kappa was computed (κ = 0.78) which indicates almost perfect
agreements among individual card sorters. Using the categories
decided in the focus group meeting, two experts performed the
second round card sorting and cross-checking.

The second round card sorting generated an unambiguous
mapping between questions and the 8 categories. We excluded
17 questions that are hard to be categorized or totally irrelevant
to programming and software development (e.g., How to play

2All card sorter have at least 3 years experiences on C# programming.

.mp4 media file on Windows). Considering the small number
of them, we just simply remove them from the final data set.
The final data set consists of 583 questions (86 of them are
unanswered).

After the two-round card sorting, we randomly sampled
another 100 threads to cross-examine the validity of 8 emerged
categories. All of them except two irrelevant threads could be
categorized into existing categories. The categorization reached
a saturation state, hence, we are confident to claim the 8
categories capture the high-level themes of the questions on
MSDN C# general forum.

C. Study II: Further Data Analysis to Identify Content Fea-
tures’ Influence

The detailed research design of study II will be introduced
in section 5 (page 4-8). In study II, we want to identify which
characteristics of questions content will contribute to quick
answer. Therefore, Answer Time is the main dependent variable
(DV) of study II. It defined as the time interval between
the occurrences of the question and first accepted answer.
Logarithmic transformation was performed to this variable to
overcome its skewness. We also explored the interaction effects
between content factors and the life-cycle of CQA site.

IV. STUDY I: CATEGORIES EMERGED FROM TWO-ROUND
CARD SORTING

A. Categories and Distribution of Questions

Table 1 shows the topics and the distribution of questions
in each topic. We also briefly explains the meaning of each cat-
egories. Three categories (I, II, and VII) are language specific.
However, they can be translated to more generic terms easily
when applying this classification to other languages. Category
I can be recoded as “Run-time Environment Questions”, cat-
egory II should be “Development Environment Questions”.
We can use other language to substitute the word “C#” in
category VII. For instance, we have conducted a replication for
a Java forum (see section 8). These categories were translated
to be:“Java Runtime Environment (JRE) Questions”, “Java
IDE (e.g., Eclipse) Questions” and “Java and Third Party
Applications”. Similar translations are applicable for many
other mainstream language, such as Python, Ruby, etc. To be
honest, we admit that some categories may be not applicable
for some languages, e.g., “Runtime Environment” is obviously
not applicable to C.

B. Topics, Answer Rate, and Answer Time

We compared the question Answer Rate and Answer Time
over different categories. For Answer Rate, there are three
categories (I, II, III) over the average level (85.25%). The
Answer Rate (65.71%) of development process questions (Cat-
egory V) is much lower than all the others (all the other
Answer Rates are over 80%). It seems that asking development
question in a Programming Language forum might be not a
good idea. The result shows that the importance of selecting
right forums. Most questions can be answered within very
short period; the average Answer Time is 4.12 hours. One
observation is that some questions (often some “difficult”
questions or some “unclear” questions) even took several days
to be answered. Many simple questions could be answered in

TABLE I. QUESTION TOPIC CATEGORIES EXTRACTED FROM TWO-ROUND CARD SORTING.

Question Category Frequency Illustration
I: .net Framework Questions 72 (12.35%) Questions about the details of .net framework, e.g., API.
II: Visual Studio .net IDE Questions 65 (11.15%) Questions about the functions of Visual Studio .net IDE, e.g., how to run a program.
III: General Programming Language
Questions

121 (20.75%) Questions about C# language constructs, e.g., numerical operations.

IV: Error Information 86 (14.75%) Questions about errors, e.g., meaning of error information.
V: Development Process Question 35 (6.69%) Questions about the software development process, e.g., how to create use case diagram to elicit

requirement.
VI: Operating System Questions 59 (10.12%) Questions about the operation system, e.g., how to call a OS service.
VII: C# and Third Party Applications 67 (11.49%) Questions about other using third party libraries, e.g., how to use OpenGL.
VIII: Web Development 78 (13.38%) Questions about network programming, e.g., connecting to a remote server.

less than 20 minutes. For Answer Time, Wilcoxon test was used
to compare whether or not questions from specific categories
were answered quicker than the other categories3. The only
significant result is that the general programming language
questions (Category III) are answered faster (p : 0.002) than
the others. This also indicates that making the right selection
on where to ask your question will improve the possibility of
receiving the right answer in time.

V. STUDY II: CONTENT FEATURES’ INFLUENCE ON Q&A
EFFICIENCY

We already show that questions in different question topics
vary on Answer Time. We believe that more specific, subtle
content factors and their interactions would also influence
Answer Time. To make our work more rigorous and solid,
we first developed a set of hypotheses grounded by existing
literature and then tested them through statistical analyses. All
statistical analyses were performed using R statistical software
(version 3.0.1) on Mac Mountain Lion.

A. Hypothesis Development

A conceptual model and corresponding hypotheses was
developed to frame the relationships between content fea-
tures and Answer Time (figure 1) through reviewing related
literatures. Overall, this conceptual model and corresponding
hypotheses are based on cognitive fit perspective [28], i.e.,
the question may be answered quicker if the information
provided by question askers fits the potential answerers’ mental
model. For a typical question on technical forum, its content
features represent what and how information is presented.
Therefore, it is reasonable to assume the content features
influence the Answer Time either positively or negatively.
According to our literature study, we identified seven content
features (Title, Question Length, Contextual Information, Code
Snippet, Readability, Language Use, and Difficulty) as the
main factors for the conceptual model. Conceptually, these
factors can be divided into three classes: (1) Basic Measure
(Question Length); (2) Additional Information (Contextual
Information, Code Snippet); (3) Language Features (Title,
Readability, Language Use) and (4) Question Difficulty (Diffi-
culty). In next subsection, we specify how we build conceptual

3In performing this comparison, all the others were coded into a large
category “other” except the specific category to be tested. For example, when
studying Category I, we coded Category II through VIII into a new category
“other”. This was iteratively performed for all eight categories. We use non-
parametric Wilcoxon test mainly because it does not require any specific
assumption on the distributions of Answer Time on those “newly” generated
categories.

Fig. 1. Conceptual research framework and corresponding hypotheses.

relationship between these content features and the Answer
Time grounded by existing theories. Please notice that, all
unanswered questions were ignored in this data analysis, for
the lack of their Answer Times.

1) Basic Measure:

Question Length. Excessive long question is often over
detailed. Too much irrelevant information would also introduce
bias to people’s judgment [11]. Linguistic studies have shown
that verbosity will also reduce the reader’s intention to read the
text, especially in online environment where most individuals
are not serious reader [6]. Therefore, we assume:

HYPOTHESIS 1 (H1): Long question is often associated
with longer Answer Time.

2) Additional Information:

Contextual Information. Many question askers are will-
ing to share additional relevant information. For programming
questions, two types of additional information appears fre-
quently in our sample. The first is Contextual Information,
which usually appears in questions about runtime error, for
these questions require runtime contextual information for
question answerers to make right judgments. E.g., if you
program has some memory problem, you may provide your
stack traces as a part of question. If relevant contextual
information were provided, the potential answerers may find
solution much quicker.

Code Snippet. Code Snippet is the second type of ad-
ditional information. It provides more precise and direct in-
formation than text descriptions. Code is often treated as the
unique language of programmers. With code in the question,
potential answerers may understand the question better, which
helps them figure out solution or even fix the problem in it

directly [23]. They may also be willing to “reward” people
show professional behaviors and extra efforts [8]. In fact,
providing code snippet is a natural imitation to the off-line
code review process which most developer are familiar with.
Therefore, we assume:

HYPOTHESIS 2 (H2): Question with Contextual Infor-
mation often associates with shorter Answer Time.

HYPOTHESIS 3 (H3): Question with Code Snippet often
associates with shorter Answer Time.

3) Language Features:

Title. Question’s title could be either specific or general.
For example, in our sample, there are two questions with
different title referring similar problems. One is “Using string
in C#” while the other is “How to convert string to byte in
C#”. Obviously, the second is more specific and it took only 27
minutes to be answered, while the first one is still unanswered
after almost three years. Too general information may lead
to cognitive biases, and further influences the commitment of
action [24]. If the title is too general, it may lead the potential
answerers to form a cognitive bias that this question may be
in lack of enough information, which makes them hesitant to
take further actions.

Readability. Readability reflects the difficulty of under-
standing question content. If the readability is poor, the
potential answerers may not understand the content well or
even misunderstand it. Moreover, low readability may destroy
the potential answerers’ intention to read and answer. The
importance of readability to reader’s intention to read has been
well documented in web experience design [33].

Language Use. In his classic [31], Wittgenstein developed
language game framework. Language games, as social rou-
tines, form as patterns of speech that are produced via the
constant alignment among speakers as they generate discussion
around ideas or objects of common interest. Although the
technical forum is not formal organizations where language
routines are often established explicitly, it also has already
formed its own language routines, especially when combining
with the “programming”. Programmers often share a strong
professional culture, which influences their language routine.
Ahuja and Galvin [2] showed that new comers often take some
time manage the language use in their information seeking.
Once they finished this process, their messages tend to get
more attentions from established members. By analogy, it is
very likely that more professional language use (as well as
professional behaviors on technical forum) will help to shorten
the period for getting right answer. Therefore, we assume:

HYPOTHESIS 4 (H4): Specific Title often associates with
shorter Answer Time.

HYPOTHESIS 5 (H5): Question with good Readability
often associates with shorter Answer Time.

HYPOTHESIS 6 (H6): Questions in Professional Lan-
guage often associate with shorter Answer Time.

Question Difficulty. It is straightforward to assume that
more difficult question usually takes longer time to be an-
swered. To answer hard questions, it requires some special
expertise [?]. Individuals who have the specific expertise only

account for a very small part of the community users. Given
the small number of those hard questions, their visibility may
be not high, hence further reduces the possibility that the right
experts pay attention to these questions. Therefore, we assume:

HYPOTHESIS 7 (H7): Difficult Questions often associate
with longer Answer Time.

B. Measurement Instruments

Question Length. The Length of question is a continuous
variable. We used simple “word count” to measure it. However,
its distribution fails to follow the normal distribution and
exhibits high skewness. So, logarithmic transformation was
performed to the raw word counts. Then, we run another
Kolmogorov-Smirnov test to ensure the variable follows the
normal distribution after transformation (P-value: 0.237).

Title , Contextual Information, and Code Snippet.
Their measurements are straightforward. What we did is
only coding each threads according its content. Title is
coded to a 0-1 variable (0: general, 1: specific). To remove
the subjectivity, two people independently coded them, and
performed a cross examination. Contextual Information was
coded to 0-1 (0: has contextual information, 1: not has). Code
Snippet was coded to 0-1 (0: has code snippet, 1: not has).

Readability. Readability was measured by the SMOG
readability formula developed by McLaughlin [21] with Read-
ability CalculationsTM. SMOG is a simple but powerful tool
in evaluating readability. Each SMOG grade has an exact
mapping to corresponding educational grade in United State
K-12 system. For example, SMOG grade 12 means the content
are easy to be understood by those who has 12 years formal
education. This measurement is an interval variable. For spe-
cific content, the more it is, the harder to be understood (bad
readability). Code snippets and system generated information
were excluded in readability calculation for they are not in
natural language hence may severely distort the measurement.

Language Use. There is no established measurement to
decide whether or net a piece of text uses typical software
engineers’ language, especially for the language used on Inter-
net. Here, we combined the results in [?] and [?] to determine
whether a question is in proper “language”. Based on their
findings, a simple decision tree classifier was implemented in
Python using ID3 algorithm to classify the sample into two
categories, which are professional language (2) and common
Internet language (1). Posthoc check and refinement was
performed manually to ensure the correctness of the automatic
classification.

Question Difficulty. The difficulty was coded to three or-
dinal levels (Simple, Medium, and Difficult). Two professional
C# developers (one was a Microsoft FTE) coded difficulty
independently and cross-examined each other’s results inde-
pendently. The disagreements were resolved by discussion with
the third evaluator. In fact, difficulty is not fully determined
by the content, but also correlated with the expertise of the
questioner and the average expertise of involved answerers[14].
This needs further considerations. however, in the scope of this
paper, Question Difficulty is more about its “absolute” value
than “relative” value.

TABLE II. OLS ESTIMATES FOR REGRESSION ANALYSES EXPLAINING AND PREDICTING Answer Time (LOGARITHMICAL SCALE).

Independent Variables Model 1 Model 2 Model 3 Model 4 Model 5
Question Length -0.11 -0.03 -0.01 0.02 -0.03
Contextual Information −0.13† -0.09 0.06 -0.11
Code Snippet -0.31** -0.29** -0.34* -0.22*
Question Title -0.07** -0.10** -0.13**
Question Readability 0.04 0.02† 0.05†

Language Use -0.13* -0.25** -0.39**
Question Difficulty 0.09* 0.12*
Interaction Effect
Readability × Language Use -0.05*
Model Summary
Adjusted R2 0.06 0.23 0.31 0.35 0.38
F 2.08 4.12** 4.68** 4.92** 5.16**
df. 1, 497 3, 497 6, 497 7, 497 8, 497

Note.† : p < 0.10, ∗ : p < 0.05, ∗∗ : p < 0.01

C. Hypothesis Testing Results

We perform OLS regression analysis to test the hypotheses
using R (Version 3.0.1). The dependent variable (Answer Time
is measured in minute first and then transformed to log-scale.
The results is summarized in table 2. We presented 5 nested
regression models by adding different sets of variable step by
step. Model 1 contains length only; model 2 includes vari-
ables of additional information; model 3 adds three language
features; and model 4 contains all 7 variables. Model 5 further
consider an interaction effect, which will be discussed in next
subsection. Model 2 to 5 are statistically significant while
Model 1 is not. The adjust R2 keeps increase with adding more
variables, reaching 0.38 in model 5. All VIFs are less than 5,
suggesting no severe multicollinearity in the OLS model.

For H1, the results of regression test (model1 through 5)
indicates Question Length doesn’t significant influence Answer
Time. Therefore, H1 is rejected. However, to further clarify the
relationship between them, we plotted all threads in our sample
into a diagram where x-axis is Length and y-axis is Answer
Time, an apparent pattern is that the curve is in U-shape, hence,
we can reach a possible proposition that very short and very
long questions are both need more time to be answered than
medium length questions.

For H2, the results of regression tests do not provide
convincing evidence to conclude that providing Contextual
Information would shorten the waiting time for right answer.
It only shows some marginal significance in model 2 (β =
−0.13, p < 0.10), but is not significant in model 3, 4, and 5.
Hence, we reject H2. We qualitatively analyzed questions with
contextual information in it, and found that most contextual
information is irrelevant. Therefore, the contextual information
does increase the information overload and blurs judgment.
We will further discuss this point in discussion section. H3
is accepted. The support to H3 is consistent in the regression
results. The significance of it at least achieves 0.05 level (see
model 2, 3, 4, and 5). All coefficients are negative, indicating
that question has Code Snippet in it usually takes less Answer
Time.

H4 is accepted. As our expectation, questions with specific
title are generally to be answered quickly. The support to this
is stable in model 3, 4, and 5. H5 is marginally accepted.
Although it is not significant in model 3, it gains marginal
significance in model 4 and 5 with p < 0.10. This indicates the
Readability may play some “weak” role in determining Answer
Time. Consider the informal nature of Internet language; it

Fig. 2. The interaction effects of Readability and Language Use.

is likely that there are some noises which interfere with
the statistical test results. H6 is accepted. Its significance is
consistent and the coefficients are keep negative (see model 3,
4, and 5). Question answerers tend to reward questions using
Professional Language of software development.

H7 is accepted. Difficult questions takes more time to be
answered (β = 0.12, p < 0.05 in model 5). The result fits
our expectation well. However, some other facts about difficult
question are really surprising. First of all, we noticed an
interesting phenomenon that almost all very difficult questions
are finally answered. Although the Answer Time may over
several days, the Answer Rate (88.73%) is slightly higher than
the average. Meanwhile, we noticed a fact that Microsoft FTEs
seldom answered these difficult questions. It seems they prefer
to answer simple questions. We will make further discussions
later.

D. Interaction Effect

When examining the interactions, we found that “Language
Use” moderates the effect of Readability on Answer Time. As
figure 2 demonstrates, when questions are in Professional Lan-
guage, even those of low Readability almost take same amount
of time to be answered as those of good Readability. However,
when questions are not in Professional Language, it takes
much more time for less readable ones to be answered. An
explanation to this phenomenon is likely to be the readability

measurements we used are developed for general purpose but
do not for software development. Using professional language
often make some loss on “general” Readability. In software
development, the heavy use of jargons and acronym may lead
general public failed to understand in proper way, for example,
“VM”” for virtual machine. For we use general readability
measurement (SMOG), it is possible that the language use in a
question is high professional but has bad general readability. In
this case, the potential question answerer may still understand
the question well enough. But for unprofessional questions,
readability become more important in determining the Answer
Time.

VI. LIFE-CYCLE PATTERNS OF Q&A
THREADS

We noticed a common phenomenon that question contents
are often added incrementally. This motive us to identify
whether the actual life cycle patterns of Q&A threads are in-
fluenced by this incremental improvement of question content.
In this section, we qualitatively analyzed the life cycle patterns
of Q&A threads. Although this may not shorten the Answer
Time, it greatly influence whether a question can be answered!
Two basic patterns (quick: 425 and delayed: 72) were identified
for 497 answered questions. The quickly-answered questions
often share two things in common: first, they are not difficult
or unusual, second, the statement of these questions are clear,
with necessary information to make it answerable. The left
side of figure 3 is an example of quick-answered question,
it was answered in 20 minutes. The right part of figure 3 is
an example of delayed-answered question that attracted rich
discussions. We noticed that the answers gradually appeared
with the continuous participation of both question asker and
question answerers. There are several “idle waiting periods”,
which demonstrates of importance of continuous interacting
indirectly. In fact, this also reflects the importance of providing
source code snippet. Looking at step 6 and step 7, once the
question asker provided the code snippet, a question answer
fixed the long-lasting problem in fifty minutes. In total, 49
of 72 (68.06%) delayed questions are directly benefit from
discussions.

There are two kinds of failed questions whose life cycle
patterns are similar. The first one is that have no reply or
a few (often less than three) replies. These questions often
miss some key information for question answerers to fully
understand them or contain too much irrelevant information.
A few of them (33 in 86, 38.37%) are too simple and have been
answered many times, no one wants to answer them again. The
second type (53 in 86, 61.63%) is like the delayed-answered
questions that often attract many discussions on it. The only
difference is the discussions do not lead to final answers. Most
of them are very difficult or very rarely to be encountered in
real world programming practices. There is some interesting
exceptions in sampled threads. For instance, in an unanswered
question, the question asker kept engaging to provide more
information in discussions. But the attentions of discussions
turned to another issue posted in a reply (not by the original
asker). There are over 20 replies discussing the new issue,
leaving the original question unanswered. It looks like asking
question in existing threads may be an alternative. We name
this phenomenon as “Engrafting” (similar to“hijacking”) to
original questions, although conventional wisdom shows strong

Fig. 3. Two different life-cycle patterns of answered questions on MSDN.

negative attitude towards it for it is often viewed as a very
impolite behavior and an explicit offense. There are only two
cases in our sample.

VII. DISCUSSIONS

A. Q&A as an Information Articulation Process but More than
It

We noticed an interesting fact that the Q&A process is
also an information articulation process [26]. Let’s have a look
at the example in the right side of figure 4. In this example,
question asker did not quite sure about how to ask his questions
in a proper way initially. With the answerers’ participation,
the question was improved and what that question askers
wanted to know became clear, hence make the problem finally
solved. In this process, the interactions between question asker
and question answers are critical. Without the continuous
articulation, the question may not be answered. For a question
asker, especially new comer who does not know how to ask
question efficiently, it is important to continuous engagements
with the discussion occurring in your question thread. Question
& Answer is an information articulation process, but not just
it. It is also a process for newbies to develop their question
asking techniques. How to shorten and smooth this process to
avoid users’ frustration is essential for community to attract
and keep users.

B. The More, The Better?

The results in section 5 show that excessive contextual
information and excessive words won’t help to make a question
answered faster. Of course, irrelevant information produces
information overload. [11] pointed out that the irrelevant
information does not only increase the information overload,
but also leads to false alternatives that blur the right judgments.
Irrelevant information may make potential question answerers
distract from the right directions. If a question about web
development provides the information of web browser, the

question answerers might tend to think the problem may
be related to the specific web browser while the real cause
might be totally irrelevant. New developers often have little
knowledge to decide what information is relevant. It is may be
better if they include their own judgment (even those judgment
may not be precise) in the question and explicitly state it, for
example, they may say: “I think XX is not irrelevant, but I
include this”. This may partially offset some side effects of
irrelevant information.

C. Should We Answer Difficult Questions?

MSDN is supported by Microsoft whose FTEs are required
to answer specific number of questions as a part of work.
In fact, they do answer many questions. And their replies
make the average answer time significantly reduced. This is
the major reason why MSDN generally has less answer time
than some other forums. But, as we mentioned in section
V.D, a reluctant fact is that MS FTEs are more like to
answer simple questions rather than difficult one. The quantity-
oriented job requirement fails to motivate FTEs to answer the
difficult questions. The reality is that voluntary users mostly
answer these difficult questions. Their motivation is easy to be
explained. They want to show their distinction in community
and treat solving the challenging questions as a pleasure. They
may also believe answering these questions would improve
their skills. But this does reduce the overall efficiency of the
community. The transfer of expertise from FTEs to other users
is slowed or prohibited by the current incentive system. It is
far from an optimal strategy, makes value resources waste on
routine questions. It is necessary for MSDN policy makers to
find some alternatives rather than simply counting the number
of question they answered. A solution is punishing FTEs for
answering simple questions repeatedly, although punishment
is a controversy issue [29]. However, if Microsoft’s strategy
is to use limited resources to serving most users’ needs, it is
efficient enough.

D. Suggestions to Answer Seekers

According to the findings and discussions in this paper, we
suggest following eight tips for question askers to help them
get right answer quickly, which are followed by the sections
of corresponding findings.

1) Read some quick answered questions before ask the
first. Learn how these questions are asked and their
“language”. If you cannot use professional language,
at least make your question more readable.

2) Use specific title rather than general one.
3) Provide more details (if possible, code snippets), but

control the overall length of your question.
4) Provide only relevant contextual information when

you ask questions on errors.
5) Feel free to ask difficult questions on mature forum.

It is very possible to be solved, but, don’t except it to
be solved in forty winks. Keep improving them with
patience.

6) Interact with discussants, especially when you are a
novice question asker.

7) Ask questions in proper forums and at right time.
8) If your question cannot be answered in several days,

try some other ways to solve it.

9) (CAUTION!) Sometimes, asking question in existing
threads may be better than open a new one.

E. Design Implications to Technical Forums

1) Adding MORE Social Network Facilities: Most tech-
nical forums are suffering from large number of unanswered
questions. Even for forums that are associated with commercial
companies, the answer rates are still not very encouraging.
Although some of questions are really hard to be answered, at
least half unanswered question could be solved with relative
small effort according to our observations. However, these
questions often become “invisible” as time goes on. So, mak-
ing them re-visible (at least visible to some sub-community)
is important. One solution is adding social network facilities
may enhance the efficiency of Q&A process as what stack-
overflow.com has already done [20]. In stackoverflow.com, the
questions now integrated with twitter and Facebook, which
are considered as one of its critical success factors. Through
social facilities, people are more connected with those have
similar technical interests. Hence, even the difficult questions
are more visible to those who have special expertise to answer
them. Technical forum designers and operators can use “gam-
ification” strategy to promote high quality questions as what
stackoverflow.com has already done. For example, allowing
users to evaluate the content of questions and rewarding those
who ask good questions (e.g., special badges or titles) may
motivate the users improve their questions.

2) Semantic Based Question Synthesis: The qualitative
study shows that there are many duplicated questions appear-
ing in different period. Some questions are frequently asked
and answered merely in different wording. Current searching
functions provided by most technical forums are based on
simple keyword matching rather than semantic matching. Even
this limited search function often fails when special characters
(e.g., & or !) appear in search terms. This is the most possible
reason for the high frequency of duplicated questions. To
solve this problem, we need semantic based question content
synthesis. Moreover, extracting information from the text of a
specific question is not enough, it is necessary to find a way to
utilize the information (e.g., data/control flow) in code snippet
when it is available. Some program analysis tools have been
precise enough to conduct this kind of job even only part of
program provided [19].

3) Threats to Validity: From the internal validity point of
view, the sampling process we used ensures the randomness.
However, the qualitative information extracting process may
be not free of bias due to the misunderstandings and wrong
interpretations of the content of discussion threads. Given the
fact that all participants for information extraction and card
sorting have fair knowledge on .net programming and C#
language, the risk to make such kind of mistakes is relative
low. Our rigorous card sorting process also ruled out most
potential threats. From the external validity point of view, this
study is based on one technical forum, which focuses on a
specific general programming language. It is difficult to draw
any conclusion that is also applicable for other contexts (e.g.
Java or other PL forums). In context sensitive studies, no one
can guarantee the generalizability of the findings. However, we
still have confidence about the findings, because the sampled
600 discussion threads represent nearly all kinds of language

Original Study Replication
MSDN: C# General (600 Threads) Java Forums: New to Java (200 threads)

Supported by commercial company, with Full-time
Employees’ involvements. No support from commercial company.

Eight Topic Categories.
All categories were found, but the distributions
over categories are different. More questions
about Networking and Web development.

Answer Rate: 85.25%
Average Answer Time: 4.12 hours

Answer Rate: 76.50%
Average Answer Time: 6.59 hours*

Subject

Background

Content Features

1. Title: Sig.
2. Length: Not Sig.
3. Contextual Information: Not Sig.
4. Code Snippet: Sig.
5. Readability: Marginal Sig.
6. Language Use: Sig.
7. Difficulty: Sig
8. (Interaction) Readability & Language Use: Sig.

1. Title: Sig.
2. Length: Not Sig.
3. Contextual Information: Not Sig.
4. Code Snippet: Sig.
5. Readability: Not Sig.
6. Language Use: Sig.
7. Difficulty: Marginal Sig
8. (Interaction) Readability & Language Use: Sig.

Four types of life-cycle patterns
A few Question Engrafting

Four types of life-cycle patterns
No Question Engrafting

Findings

Note: * t-test: p < 0.01.

Fig. 4. Comparison of the results of original study (MSDN C#) and the replication (Java forum). The differences are highlighted with bold font and underline.

related problems that may be encountered in the programming,
and we tested the saturation through an extra independent
sampling process (see section 3.2). To further examine the
validity of the results, we performed a self-replication study
summarized in next section.

VIII. A REPLICATION

To validate and verify this study, we replicated it in a Java
forum (http://www.java-forums.org/new-java/) using identical
research design but a smaller sample (200 individual threads,
all are relevant to software development). We did not run
separated card sorting process but directly reused the eight
categories to see whether this sample fell into them by the same
set of individuals who participated in the original study. We
adapted the original category definitions in the way described
in section 4 in order to apply it to Java language. Three
new raters with expert-level knowledge in Java were asked to
assign those questions into predefined categories. Their results
show high consistency (κ = 0.821). Then, we performed OLS
regression to estimate each content feature’s influence as we
did in the original study.

In general, the findings in the original study are well
supported. Most of our findings are still valid in new context.
To keep the conciseness of this paper, we do not list all
results as what we did for the original study. There are
several interesting different results. In figure 4, we presents
a comparison of the results form the original study and the
replication. The differences are highlighted with bold font.
Further investigations are needed to identify what contribute
to these differences. We will discuss some of these differences
in more details.

We found instances for all eight categories, but the distri-
bution is different. The most obvious difference is that there
are over 25% questions belonging to Category VIII (Web
development Questions). This reflects Java’s unique position
as one of the most popular web programming language. The
overall answer rate is slight lower (76.50% vs. 85.25%),
while the average Answer Time is around 60% higher (4.12
hour vs. 6.59 hour). Simple t-test indicates the difference is
significant. A possible explanation may be that MSDN is
supported by Microsoft FTEs who help to greatly improve
the forum efficiency.

The OLS regression test results are similar but have two
small differences. First, readability lost its significance (in all
models we developed, the p-value is always greater than 0.1).
Second, difficulty becomes marginal significant (p = 0.092) in
the model considering the interaction effects between Read-
ability and Language use. There are also some slight R2

loss (0.34 vs. 0.38) which may result from smaller sample
size. All life cycle pattern were founded in the replication
study. More delayed question in the second sample. In all 153
answered questions, 37.9% (58 in 153) are delayed questions.
An interesting thing is that some delayed questions are very
simple. This may because the answerers are do not willing
answer these simple questions for there is no any direct
benefit to answer them while Microsoft FTE can answer simple
questions to fulfill their job requirements as quick as possible.
Besides, no “Engrafting” appears in the second sample.

IX. CONCLUSION AND FUTURE WORK

Technical forums are important “infrastructures” for on-
line programming support. Through the Question and An-

swer facilities provided by these forums, interactions between
information seekers and providers generated huge amount
of knowledge. This study explores how questions are asked
and answered on programming forums from the content-
oriented perspective with both quantitative and qualitative
techniques. The findings highlight the importance of various
content features (e.g. title, code snippet, readability, etc.)
and their interactions in making programming question be
answered quicker than the average level. We also introduced
or developed some novel measurements which are rarely used
in Software Engineering research. Through identifying the
life cycle patterns of the subjected forum, we explored the
dynamic influence of content features. We identified four
different life cycle patterns of the Q&A threads. According
to these findings, we make suggestions to question askers
on how to ask questions properly and suggestions for forum
design. The self-replication study was performed to partially
demonstrate the validity of the results. We believe the self-
replication may have further methodological implications to
empirical studies on collaboration in software development
for it provides immediate cross-examination to the results of
original study.

For future study, our focus is contributing towards the
development of social and interactive technical forums that
address the needs of both question askers and answerers.
Introducing social network analysis (e.g. hybrid content/user
network rather than member only) may help to find more useful
implications. Other content features will also be considered
in future study. Machine learning techniques, such as topic
modeling, may be applied to partially automate the analyzing
process. We also plan to further evaluate the results in more
diverse settings through other methodologies. Our ultimate
goal is to improve the productivity of software development
practice. Improving efficiency and effectiveness of technical
forums as programming information infrastructure through
mechanism and system innovation may be a promising way
to achieve this ambitious goal.

REFERENCES

[1] E. Agichtein, Y. Liu, and J. Bian, Modeling information-seeker satis-
faction in community question answering, ACM Trans. Knowl. Discov.
Data, 3, 2, 10:1-10:27, 2009.

[2] M. K. Ahuja, and J. E. Galvin, Socialization in virtual groups, Journal
of Management, 29, 161-185, 2003.

[3] T. Althoff, C. Danescu-Niculescu-Mizil, and D. Jurafsky, How to Ask
for a Favor: A Case Study on the Success of Altruistic Requests, In
Proc. ICWSM, 2014.

[4] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, Discov-
ering value from community activity on focused question answering
sites: a case study of stack overow, In Proc. KDD, 850-858, 2012.

[5] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider,
Answering questions about unanswered questions of stack overow, In
Proc. MSR, 97-100, 2013.

[6] N. S. Baron, Always On: Language in an Online and Mobile World:
Language in an Online and Mobile World, Oxford University Press,
2008.

[7] A. Begel, Y. P. Khoo, and T. Zimmermann, Codebook: discovering
and exploiting relationships in software repositories. In Proc. ICSE,
125-134, 2010.

[8] T. Boyt, R. Lusch, and G. Naylor, The role of professionalism in
determining job satisfaction in professional services. Journal of Service
Research, 3, 321330, 2001.

[9] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. Klemmer,
Opportunistic programming: Writing code to prototype, ideate, and
discover. IEEE Softw., 26, 5, 18-24, 2009.

[10] C. de Souza, and D. Redmiles, The awareness network, to whom should
I display my actions? and, whose actions should I monitor? IEEE Trans.
Softw. Eng., 37, 3, 325-340, 2011.

[11] M. Dougherty, and A. Sprenger, The inuence of improper sets of
information on judgment: How irrelevant information can bias judged
probability. Journal of Experimental Psychology: General,135, 2, 262-
281, 2006.

[12] V. Etter, M. Grossglauser, and P. Thiran, Launch hard or go home!:
Predicting the success of kickstarter campaigns. In Proc. COSN, 177-
182, 2013.

[13] Z. Gyongyi, G. Koutrika, J. Pedersen, and H. Garcia-Molina, Ques-
tioning Yahoo! Answers. Technical Report 2007-35, Stanford InfoLab,
2007.

[14] B. Hanrahan, G. Convertino, and L. Nelson, Modeling problem diffi-
culty and expertise in stackoverflow. In Proc. CSCW, 91-94, 2012.

[15] D. Hou, and L. Li, Obstacles in using frameworks and apis: An
exploratory study of programmers? newsgroup discussions. In Proc.
ICPC, 91-100, 2011.

[16] M. Jones, and E. Churchill, Conversations in developer communities:
a preliminary analysis of the yahoo! pipes community. In Proc. C&T,
195-204, 2009.

[17] A. Ko, R. DeLine, and G. Venolia, Information needs in collocated
software development teams. In Proc. ICSE 344-353, 2007.

[18] A. Ko, B. Myers, and D. Chau, A linguistic analysis of how people
describe software problems. In Proc. VL/HCC, 127-134, 2006.

[19] W. Li, C. Zhang, and S. Hu, G-finder: routing programming questions
closer to the experts. In Proc. OOPSLA, 62-73, 2010.

[20] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
Design lessons from the fastest q&a site in the west. In Proc. CHI,
2857-2866, 2011.

[21] G. McLaughlin, Smog grading- a new readability formula. Journal of
Reading, 12, 8 (1969), 639-646.

[22] T. Mitra, and E. Gilbert, The language that gets people to give: Phrases
that predict success on kickstarter. In Proc. CSCW, 49-61, 2014.

[23] S. Nasehi, J. Sillito, F. Maurer, and C. Burns, What makes a good code
example?: A study of programming q&a in stackoverflow. In Proc.
ICSM, 25-34, 2012.

[24] Schwenk, C. R. Information, cognitive biases, and commitment to a
course of action. The Academy of Management Review, 11, 2, 298-310,
1986.

[25] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, The impact
of social media on software engineering practices and tools. In Proc.
FoSER, 359-364, 2010.

[26] A. Sutcliffe, M. Ennis, and S. Watkinson, Empirical studies of end-user
information searching. Journal of The ASIS&T, 51, 1211-1231, 2000.

[27] C. Treude, O. Barzilay, and M.-A. Storey, How do programmers ask and
answer questions on the web? (NIER track). In Proc. ICSE, 804-807,
2011.

[28] I. Vessey, and D. Galletta, Cognitive Fit: An Empirical Study of
Information Acquisition. Information Systems Research 2, 63-84, 1991.

[29] Y. Wang, and M. Zhang, Penalty policies in professional software
development practice: a multi-method field study. In Proc. ICSE, 39-47,
2010.

[30] R. Wardhaugh, An Introduction to Sociolinguistics, 6th edition. Wiley-
Blackwell, 2009.

[31] L. Wittgenstein, Philosophical Investigations, 2nd edition. Macmillan,
1953.

[32] J. Yang, M. Morris, J. Teevan, L. Adamic, and M. Ackerman, M. S.
Culture Matters: A Survey Study of Social Q&A Behavior. In Proc.
ICWSM, 2011.

[33] C.-H. Yu, and R. Miller, Enhancing web page readability for non-native
readers. In Proc. CHI, 2523-2532, 2010.

[34] J. Zhang, M. Ackerman, and L. Adamic, Expertise networks in online
communities: structure and algorithms. In Proc. WWW (2007), 221-
230.

