
Autonomy in Collaborative Manufacturing Networks
Yun Guo and Amihai Motro

Department of Computer Science
George Mason University

Fairfax, VA
{yguo7, ami}@gmu.edu

Abstract—A collaborative manufacturing network is an al-
liance of business entities (mostly manufacturers and suppliers)
who collaborate on the production of complex products. An
essential element of this type of collaboration is that the partici-
pating entities are allowed to retain some measure of autonomy.
In this paper we examine different approaches to collaborative
manufacturing that support different levels of cooperation and
autonomy. We identify three major architectures for collaborative
manufacturing networks, and we describe a design for a single
platform that supports all three architectures. The platform is
based on three major components: an information repository,
a service repository and a workflow repository. We also ad-
dress several challenging issues, such as collaboration failures,
management of supply capacities and order quantities, and risk
estimation.

I. INTRODUCTION

The term collaborative network describes a coalition of
partners who integrate their capabilities and resources to
achieve common goals. The operation of collaborative net-
works is typically supported by computer networks, allowing
the participants to be geographically distributed. The collabo-
rative network paradigm has been deployed in a variety of
disciplines, including learning, health care and information
retrieval. When the common goal concerns business oppor-
tunities, the collaborative network is often referred to as a
virtual enterprise. An example of a virtual enterprise is an
alliance of manufacturers and suppliers who collaborate on
the production of complex products — in which case we refer
to it as a collaborative manufacturing network.1

An essential element of this type of collaboration is that
the participating entities are allowed to retain some measure of
autonomy. That is, each participant is an independent business
entity that, while participating in the collaborative network,
continues to maintain a degree of independence. This man-
ifests itself in different ways: While satisfying the common
goals, the participant may pursue additional goals, protect its
information resources, or participate in multiple collaborative
networks. Consequently, the different architectures that have
been proposed for virtual enterprises exhibit quite different
approaches to autonomy.

In this paper we examine different approaches to collabora-
tive manufacturing that support different levels of cooperation
and autonomy. We observe four fundamental feautures with

1Although a collaborative manufacturing network is an example of a
virtual enterprise, we shall use the terms interchangeably. That is, the virtual
enterprises that we discuss focus on manufacturing.

which the different approaches may be distinguished, and
we combine these feautures to create three major types of
virtual enterprises, which we call centralized, distributed and
autonomous. Section III describes our underlying model for
virtual enterprises, and identifies these three district architec-
tures.

Realizing that no particular approach is the “best”, we
advocate the creation of a single platform for launching and
running all three types of virtual enterprises. The common
platform consists of three major components: an information
repository to support the data needs of the enterprise, a
service repository to provide the basic functionalities, and a
workflow repository to describe the different workflows that
weave together services and information from the two afore-
mentioned repositories. These components are designed to be
shared among the different architectures wherever possible.
Sections IV, V and VI describe these three major components.
A small example is then presented in Section VII to illustrate
the principal differences among the three architectures under
consideration in this paper.

The workflows we describe involve several challenging
issues including: collaboration failures (e.g., participants quit-
ting or not responding), risk estimation (to assist both clients
and participants in making procurement decisions), and cached
optimizations (that by the time executed might no longer be
optimal). Preliminary treatment of these issues is provided in
Section VIII. Finally, Section IX summarizes the contributions
of this paper and outlines future research directions. We begin
in Section II with a brief survey of related work.

II. BACKGROUND

Work related to this paper can be divided into three groups:
models, issues and platforms.

A. Models

It seems appropriate to begin this survey with research on
model development for collaborative networks. VirtuE [1] is
a formal model for describing collaborative manufacturing.
The focus is on information products, but the model can
be applied in other disciplines. Among other features, it
introduces enterprise rules to enforce enterprise policies, and
computed indicators to track performance performance. AR-
CON [2] proposes a comprehensive modeling framework that
considers several dimensions (termed structural, componential,

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257369

functional and behavioral) across the life cycle of an enter-
prise. Collaborative network modeling can also be based on
mature enterprise modeling frameworks such as the framework
suggested by Zachman [3] or the Open Group Architecture
Framework (TOGAF) [4]. The model defined in this paper
follows the overall approach of VirtuE in that it is built
around a small set of formal concepts, and collaboration is
regulated in specific procedures. This approach allows formal
treatment of issues such as risk, failure and optimization.
Most importantly, the model allows architecting systems with
different levels of participation and autonomy. Additionally,
whereas enterprise modeling frameworks provide a generic
framework for any type of enterprise, this model focuses on
manufacturing collaborative networks.

Our manufacturing model borrows concepts from supply
chain network (SCN). As in SCN, our model guides the
strategic decisions of the participants, aiming to satisfy client
orders, while achieving optimized value. SCN design models
can be classified into deterministic [5], [6] and nondeterminis-
tic [7], [8], [9] depending on the use of stochastic parameters.
Our manufacturing model is a simplified static-deterministic
model derived from OptiVE [10]. In this model, product types
are either elementary or complex, the capacity of elementary
products is predetermined, production is in multiple stages,
and various product properties are aggregated in formulating
optimal production goals. As with most static deterministic
SCN design models that can be formulated as mixed integer
programming (MIP) [11], [12] optimality can be achieved
efficiently with recent versions of commercial solvers such
as CPLEX [13] and Xpress-MP [14].

B. Issues

Several issues that are considered in this paper have been
addressed by others, albeit not in the same context. Using
concepts from coalitional game theory [15] addresses the issue
of enterprise formation: how to determine the membership of
virtual organization to reduce cost and guarantee maximum
profit. The dual phase of enterprise dissolution is addressed
in [16], which studies the different causes that justify dissolu-
tion. Our interest in tracking and advertising the performance
the participating entities is strongly related to the concept of
reputation investigated in [17].

C. Platforms

In the service-oriented programming paradigm, programs
are composed by weaving together platform-independent soft-
ware components that are accessible over the World Wide
Web [18]. The deployment of this paradigm for architecting
virtual enterprises has been suggested in several works. Usu-
ally this paradigm is used to model enterprise participants
as service providers [19], [20], [21]. Our approach here is
different: We use services to provide the different function-
alities of the system (e.g., messaging, data management and
optimization). We argue that this paradigm is well suited for
the requirements of collaborative network. It facilitates sharing

data and services among geographically distributed partici-
pants; it alleviates the compatibility issue among participants
of heterogeneous organizations; and it enables rapid retrofitting
of enterprises to a new style or architecture.

An alternative paradigm has been suggested that uses an
agent-based approach. In [22], agents are used to represent
the candidate entities in the process that determines who par-
ticipates in a virtual enterprise. More generally [23] describes
a platform that uses agents to support most of the enterprise
functionalities throughout the life-cycle of the enterprise (cre-
ation, operation, evolution and dissolution).

III. ARCHITECTURE CLASSIFICATION

We begin with a description of the fundamental assumptions
of our model for collaborative manufacturing networks. These
assumptions allow architecting virtual enterprises of many
different types. We then identify four major feautures with
which different architectures may be distinguished. By choos-
ing different combinations of these feautures, six different
architectures may be created. Among these, we focus on three
highly distinct architectures (the other three may be considered
small variations of these).

A. Fundamental Concepts

Our model of virtual enterprises adopts these basic concepts
and terminology.

Marketplace and members. The marketplace is a col-
lection of business entities that are registered as willing to
participate in collaborative manufacturing. These business en-
tities are referred to as members of the marketplace. Members
of the marketplace have properties such as reliability (an
accumulating score of performance).

Virtual enterprises. A virtual enterprise is a group of
marketplace members that have agreed to collaborate on the
manufacturing of specific products. Typically, these members
possess complementary skills and resources that are necessary
to manufacture these products. A participating member is
referred to as an affiliate of the enterprise. The affiliate’s unit
is called a division. A member of the marketplace could be
affiliated with different virtual enterprises.

Products and versions. Each affiliate is capable of manu-
facturing certain products from “component” products that it
procures from other affiliates, and then making its products
available to other affiliates as components for their products.
The ultimate goal of an enterprise is to manufacture “end”
products that are ordered by outside clients. For successful
exchanges of products among affiliates, products are identified
in a catalog shared by the entire marketplace.

A specific implementation of a product by an affiliate is
referred to as a version of the product.2 Product versions
are either elementary or complex. An elementary product
version is manufactured by an affiliate without the need to
procure any components from other affiliates. A complex
product version is manufactured from other products, either

2Products are analogous to types and versions are instances of these types.

complex or elementary, that must be procured from other
affiliates. If the product is complex, then the affiliate has
a plan for manufacturing it. The plan is simply a list of
necessary component products and their quantities. Although
entirely interchangeable, different versions of a product could
have different plans. Indeed, an affiliate could make available
different versions of the same product, each with a different
plan.

Properties of products. Each product version offered by
an affiliate is associated with various properties. Examples of
properties include the price that must be paid by any affiliate
that wishes to procure it, the cost of manufacturing the product
version, the complexity of the version, which is the number
of elementary products embedded in it (it is the sum of the
complexities of all the product versions used in manufacturing
it), the promised time to delivery, and the risk that the product
would not be delivered on time (or not at all).

Production workflow. Typically, an affiliate receives an
order to manufacture a product version. It then issues orders
to other affiliates for the component product versions in its
plan. When these orders have been fulfilled, it manufactures
the product version that has been ordered from it, and delivers
it to the appropriate affiliate. This results in a workflow in
which orders are propagated across the network, and eventu-
ally fulfillments are propagated in the reverse direction. The
ordering phase just described may be preceded by a quoting
phase in which quote requests are propagated and answered.

B. Distinguishing Feautures

In the environment set up by these fundamental concepts
and assumptions, enterprises may be architected in different
ways to provide different levels of autonomy. To classify
these different architectures, we identify four feautures with
which the different architectures may be distinguished. These
four feautures represent a first attempt at the classification of
autonomy, and admittedly, there could be additional feautures.
Moreover, our feautures are all binary, where possibly there
could be more elaborate architectures where some feautures
would possess “intermediate” values.

Does the enterprise have a leader? We distinguish be-
tween centralized organization, in which the virtual enterprise
has a leader, and a distributed organization in which the virtual
enterprise is leaderless.

Who controls ordering? In every virtual enterprise, the
manufacturing affiliates determine the plans for manufactur-
ing; that is, the parts and the quantities that are needed to
manufacture a single product. But enterprises could differ as
to who selects the suppliers and quantities that will be used to
fulfill orders. These decisions could be done locally, by each
affiliate, or globally, by the leader of the virtual organization.

When are orders optimized? Selecting the suppliers and
the quantities to fulfill orders that have been received re-
quires optimization. Such optimization could be performed
on-demand; that is, when the order is received, or in-advance;
that is, unrelated to a particular order.

How many phases in the ordering workflow? The work-
flow of processing orders may involve one or two phases. In
a one-phase workflow orders are propagated and products are
returned. In a two-phase workflow, this phase is preceded by
a quoting phase.

These four binary choices can be combined to create 16
architectures (or modes of operations). We denote each archi-
tecture with 4 characters:

1) Organization: C (centralized) or D (distributed)
2) Control: G (global) or L (local)
3) Optimization: O (on-demand) or I (in-advance)
4) Phases: 1 (one-phase) or 2 (two-phase)

For example, CGO1 denotes an architecture that is centralized
(with a leader), the leader determines the details of the
entire supply chain, these decisions are made when orders
are received, and the workflow of processing orders does not
involve quoting.

C. Three architectures

Upon close examination, ten of the 16 combinations are
of little or no interest. First, since a distributed architecture
has no leader, control of ordering is always with the affiliates
(i.e., D ⇒ L); hence the four combinations DG** make
no sense. Second, when orders are processed in two phases,
optimization cannot be done in-advance, only after quotes have
been received (i.e., I⇒ 1); hence the combinations **I2 make
no sense, either. Third, combinations of the type *LO1 are also
problematic, as they indicate that each affiliate optimizes its
orders when they are received. This requires that the affiliate
has prices from its suppliers, but these suppliers cannot provide
prices until they receive orders. Finally, the combination CGO2
is pointless: Since this is a centralized enterprise with global
control, two phases are never required, because with access to
the data of the affiliates, the leader could discover what would
be the best quotes.

This leaves only six viable combinations: CGO1, CGI1,
DLO2, CLO2, CLI1, and DLI1.

Of these combinations, the second, fourth and sixth can
be viewed as small variations of the first, third and fifth,
correspondingly. In each pair, the difference is in a single
feauture, which results in architectures that are not radically
different. In this paper we focus on three combinations (one
of each pair), with resulting architectures that are substantially
different from each other:

Model Organization Control Optimization Phases
CGO1 Centralized Global On-demand One
DLO2 Distributed Local On-demand Two
CLI1 Centralized Local In-advance One

We shall refer to the three selected architectures, as central-
ized (CGO1), distributed (DLO2) and autonomous (CLI1).
In previous papers, we described a centralized architecture
called OptiVE [10] and an autonomous architecture called
SOAVE [24].

Recall that our goal is to create a single platform that
will support all three architectures. Users of the platform will

be able to indicate the type of virtual enterprise that should
be launched. After creation, the enterprise would operate
in the manner consistent with the chosen architecture. Our
platform evolves around three major components: an informa-
tion repository to support the data needs of the enterprise, a
service repository to provide the basic functionalities, and a
workflow repository to describe the different workflows that
weave together services and information. These components
are described in more detail in the following three sections.

IV. INFORMATION REPOSITORY

The information repository maintains the data that support
the operation of the virtual enterprise. It uses the relational
data model to store data in tables. The tables are of three types
based on their accessibility: external tables store information
that is available outside the enterprise (for example, to poten-
tial clients); global tables store information that is available to
all the affiliates of the enterprise; local tables store information
that is available only to individual affiliates of the enterprise.3

There are only two external tables. E Marketplace is a
registry of the community of members that are available
for participation in virtual enterprises. For each member, it
provides contact information, manufacturing capabilities and
performance statistics. E Public is a catalog of the different
product versions that available for ordering from the enterprise,
along with their essential properties (e.g., the price, the time
to delivery, or the risk that the product will not be delivered
as promised).

The global and local tables are organized in two layers: a
common layer of tables that are used in every architecture,
and a layer of three individual sets of tables, each used in a
particular architecture only.

The common layer includes three global tables and one local
table. G Catalog describes the products of the enterprise, both
end products to be offered to external clients, and component
products to be used by affiliates in their manufacturing plans.
G Directory describes the affiliates of the enterprise (it is a
subset of E Marketplace). G Order is a complete log of the
orders of product versions executed by the enterprise. The
subset of orders pertaining to an individual affiliate is stored
in L Order. Each log entry includes about a dozen fields,
including the time order was received, the status of the order,
the time it was delivered, the quantity ordered, and the price.

In the autonomous architecture, the four common tables are
supplemented with three tables: L Availability describes the
product versions offered by each individual affiliate, including
fields such as price, time-to-delivery and risk. G Availability
is the union of the individual local availability tables (the
aforementioned E Public is a view of G Availability showing
only versions of end products). L Plan stores the bill-of-
materials information for each product version offered by an
affiliate.

The centralized architecture uses three similar tables, but
with somewhat different attributes. However, access to the

3In the following, the three types are denoted with prefixes E , G and L .

local tables is granted to the enterprise leader. The distributed
architecture uses the same three tables as the centralized
architecture, and adds G Request and G Proposal to track the
quoting process.

Altogether, the information repository supports the three
architectures with a total of 14 tables and views.

V. SERVICE REPOSITORY

A service-oriented software approach is an attractive so-
lution for a platform that is intended to support different
architectures. This modular approach facilitates sharing of
functionalities among the different architectures. A repository
is established to house services that are accessible to the affil-
iates of the enterprise. Repository services are of three types:
management, production and information and communication,

Three management services are provided to control the
community of the enterprise, its evolution, and its offerings.
To manage the enterprise community, a membership service
provides functions for inviting and dismissing affiliates, and
keeping track of their performance scores. Note that in a dis-
tributed architecture members join and leave an enterprise on
their own. An evolution service provides functions for creating
and dismantling enterprises, and for creating or dismantling
enterprise divisions (these are invoked automatically when an
affiliate joins or departs). In a distributed architecture, creation
and dismantling of an enterprise is invoked automatically as
the first affiliate joins or the last affiliate departs. The offerings
of a virtual enterprise are managed by a resources service.
It enables adding, removing and modifying products, product
versions, and plans.

Three production services support the manufacturing pro-
cess. An optimization service optimizes the procurement pro-
cess. It is invoked with a product and a desired quantity, locates
the available plans throughout the enterprise, and based on the
objectives of the initiating affiliate, calculates the best procure-
ment options for producing the target product in the specified
quantity. In locating component products the optimization
service considers product parameters such as price, risk, and
time-to-delivery. The objectives of the initiating affiliate could
involve any of these parameters, and possibly a weighted
combination of parameters. The optimizer could possibly fail,
when it cannot not construct any plan for the given product
and quantity. In the autonomous and distributed architectures,
where procurement decisions are determined by each affiliate,
the optimization service is invoked by individual affiliates.
The service then returns the best procurement strategy for
the initiating affiliate. In the centralized architecture, where
all procurement decisions are controlled by the leader (it has
access to the production plans of all the affiliates), the service
is invoked by the leader. The service then returns the best
procurement strategy for the entire enterprise.

At the completion of an order initiated by a client a perfor-
mance tracking service is invoked. It examines final values in
the global and local order logs to determine whether individual
affiliates performed as promised. The output is then used to
adjust the reliability scores of the affiliates. The distributed

architecture requires an additional service to manage quote
requests. This service distributes requests for quotes on behalf
of an affiliate, collects the responses from other affiliates, and
delivers them to the requesting affiliate.

There are two services in the information and communi-
cation group. Virtually all the activities carried out by the
above mentioned services require access to the information
repository. The management of this repository is performed
exclusively by an information service. Finally, a messaging
service facilitates communication among the affiliates of the
enterprise. Enterprise affiliates send messages to each to
execute transactions and to perform management functions.
These include requests for price quotes, responses to quote
requests, orders, deliveries, invitations to join the enterprise,
dismissals from the enterprise, and so on.

VI. WORKFLOW REPOSITORY

Business process workflows of virtual enterprises are col-
lections of activities scheduled according to specific business
logics. In building business process workflows, services from
the service repository serve as building blocks. By assembling
these blocks in customized workflows, virtual enterprises may
be devised to operate in different modes. This design not only
reduces development time by reusing existing functionalities,
but also supports flexibility and diversity of virtual enterprises.
Workflows are stored in a repository, allowing modification,
addition of new workflows, or deletion of exiting workflows.

Virtual enterprises employ different workflows; for example,
to launch an enterprise, to add a product, to terminate an
affiliate, and so on. Of these, the most critical is perhaps
the production workflow that defines how collaborative man-
ufacturing is performed. Since more than anything else, these
production workflows convey the individual style of each
architecture, we sketch here the production workflows of each
of the three architectures.

Autonomous architecture. This architecture is central-
ized with local control. The leader launches the enterprise,
determines its products, invites affiliates, and manages all
external orders. But the affiliates operate autonomously: They
determine the enterprise products they wish to manufacture,
they choose the suppliers and quantities for these products,
and they set their own prices. The suppliers and quantities
are determined in advance, so the execution of transactions is
efficient. The downside, however, is that price or availability
updates by suppliers may require re-optimization.

1) A client consults the E Public catalog for the available
product versions and their essential parameters and
submits an order to the leader, specifying a version and
a quantity.

2) After verifying the validity of the order, the leader
acknowledges the order with an order number.

3) The leader forwards the order to the manufacturing
affiliate (each version is offered by a specific affiliate).

4) The affiliate launches a production:
a) It consults its L Plan table and sends its suppliers

the appropriate orders.

b) When orders have been fulfilled, the affiliate as-
sembles the product and delivers it to the ordering
affiliate.

c) The ordering affiliate acknowledges with payment
and proceeds to assemble its own product.

5) These steps repeat until the leader receives the final
product and responds with payment.

6) The leader sends the product to the client, who responds
with payment.

Centralized architecture. This architecture is centralized
with global control. In addition to the functions described in
the autonomous architecture, the leader exercises control over
the entire production process. Having access to the manu-
facturing capabilities of each affiliate, it generates a global
production plan and instructs its affiliates on their choice
of suppliers and quantities. Indeed, affiliates are complete
subordinates that put their manufacturing capabilities at the
disposal of the leader.

1) A client consults the E Public catalog for the available
products and the offering affiliates and submits an order
to the leader, specifying a product and a quantity.

2) The leader forwards the order information to the
optimization service. The service scans the global
G Availability and the local L Plan tables to com-
pute an optimal production plan for the order. It sends
this plan to the leader.

3) The leader launches a production. It sends each affiliate
named in the plan specific instructions:

a) What to manufacture and in what quantity.
b) When and from whom to expect deliveries.
c) To which affiliate to deliver its output.

4) The affiliates execute the orders as instructed, until the
final product is delivered to the leader who responds
with payment.

5) The leader sends the product to the client, who responds
with payment.

Distributed architecture. This architecture has no leader
to regulate the behavior of the enterprise: All decision making
is distributed among the affiliates. This includes decisions to
join an enterprise or depart from it, what to manufacture, who
to order from, and what prices to charge. Since optimization is
done at the time product orders are received, a quoting phase
is necessary:

1) A client selects a product from the E Public catalog and
sends the quote service a request for proposals.

2) The quote service distributes the request to the affiliates
that are listed as suppliers of the product, assigning a
deadline to the request.

3) An affiliate who wishes to respond, prepares a proposal.
If the product is elementary, the affiliate simply responds
with the associated parameters (including price). If the
product is composite, it propagates its own requests for
proposals:

a) It examines its L Plan table to locate the com-
ponents of the product, and submits to the quote

service requests for proposals for each component.
b) The quotes received by the deadline are sent to the

optimizer.
c) The solution provided by the optimizer is used to

prepare the response of the affiliate.
4) These steps repeat until the quote service returns its top

solution to the client.
The production phase is similar to the workflow of the

autonomous architecture, except that a leader is no longer
involved:

1) The client submits an order to the winning affiliate.
2) The affiliate launches a production:

a) It consults its L Plan table, which has been up-
dated in the quoting phase, and sends the suppliers
the appropriate orders.

b) When these orders have been fulfilled, the affiliate
assembles the product and delivers it to the order-
ing affiliate.

c) The ordering affiliate acknowledges with payment
and proceeds to assemble its own product.

3) These steps repeat until the client receives the final
product and responds with payment.

VII. EXAMPLE

To illustrate the fundamental differences among the three
architectures we present a small example. A number of sup-
pliers and manufacturers in the furniture industry decide to
form a collaborative network to fulfill an order for a certain
number of chairs by a given deadline. Suppliers S1 and S2

can provide wood legs and backs for the chairs (in different
quantities and prices), whereas supplier S3 can provide only
leather chair seats. In addition, manufacturers M1 and M2 can
assemble chairs from these parts at their set costs; however,
each manufacturer is capable of producing only half of the
requested number prior to the deadline.

One possibility would be to form a centralized collaborative
network to be led by M1 (presumably, because it is trusted
and experienced). M1 collects production plans from the other
affiliates and puts together an optimal plan that produces the
chairs with lowest total cost. It orders the necessary chair legs,
backs and seats from S1, S2 and S3, arranges their delivery to
M1 and M2, and finally delivers the assembled chairs to the
end customer.

In another scenario, M1 may still be elected to lead the
production, but the other participants are allowed to keep a
certain level of autonomy by choosing their own suppliers.
For example, M1 may prefer to order chair legs from S1

and chair backs from S2. In such cases the autonomous
architecture seems to be appropriate. The individual affiliates
(manufacturers or suppliers) would need to calculate properties
such as prices and risks for the products they offer and
advertise them within the network. This information would
guide other affiliates in formulating their production plans.
The leader is still responsible for communicating with clients
and for launching the manufacturing process.

In situations where enterprises prefer an even higher level
of autonomy and commitment is limited to individual trans-
actions, a distributed architecture would be attractive. In this
architecture the manufacturing process is not supervised by a
leader. The process begins when a client presents its request
for chairs to the entire community, asking for competitive
quotes. If a manufacturer decides to participate it propagates
its own requests for quotes from other affiliates. Once received,
it determines its production plan and submits its proposal to
the client. When the client accepts a proposal, it triggers a pro-
duction phase: An order is sent to the selected manufacturer,
and subsequent orders are propagated to other manufacturers
and suppliers. Eventually, products are returned in the reverse
direction, culminating in a delivery to the client.

VIII. CHALLENGES

The platform that we described raises several challenging
issues that must be addressed to guarantee successful opera-
tion. We describe here three such challenges and sketch our
approach.

A. Irregular Behavior

Until now we assumed smooth, fault-free operation. In
practice, however, various things could go wrong and the
enterprise must respond accordingly. We identify two major
types of irregularity: abrupt scale-down and lack of response.

At times, an enterprise must be scaled down. For example,
in the autonomous or centralized architectures the leader may
decide to terminate an affiliate or dismantle the enterprise
altogether. In any of the architectures, an affiliate may decide
to withdraw a product version or quit the enterprise and
dismantle its division. The preferred way for scaling down
is to perform these activities gracefully; for example, before
quitting, an affiliate waits until all its offerings expire, and
then satisfies all pending orders. However, at times, scale-
down may be abrupt rather than graceful. For example, an
affiliate who decides to quit instantly would withdraw its
product offerings, refuse new orders, and cancel both orders
that had already been accepted. In cases of abrupt scale-down,
production chains are “disconnected” at a particular node. This
results in delivery cancellations propagating in the reverse
direction. Eventually, the cancellation reaches the affiliate who
launched the production. Each manufacturer orders parts from
its preferred suppliers, and forwards the finished product to
the manufacturer that ordered. The finished chairs are then
delivered to the lesser and eventually to the ordering client.

Another type of irregular behavior is lack of response. This
could happen during production exchanges among affiliates
or during management exchanges between the leader and an
affiliate. Examples of the former case are an affiliate who does
not acknowledge an order, an affiliate who does not fulfill
an order that had been previously accepted, or an affiliate
who does not acknowledge a delivery with a payment. In
these cases a similar disconnection in the production chain is
detected (following a time-out period). This results in a similar

wave of delivery cancellations. Examples of the latter case
include not responding to invitations or termination notices.

Workflows are defined to react appropriately in all these
occasions.

B. Risk

The consequence of irregular behavior is that some trans-
actions do not complete as expected. For the benefit of
external clients and the participating affiliates, failures should
be tracked and advertised. Towards this goal, we formulate
two related concepts: affiliate reliability and risk and product
reliability and risk.

Affiliate reliability and risk. Each affiliate A is associ-
ated with a reliability score reliability(A) in the range 0–
1. It is the probability that future transactions executed by
A will be problem-free. This predictive value is calculated
from the affiliate’s past performance. It is updated by the
performance tracking service at the end of each transaction
in which A was involved. Not delivering a product or not
delivering it on time, or not acknowledging an order or a
delivery, result in a lower reliability score, whereas every
prompt execution of a transaction results in a higher score.
The complement of this score is the risk associated with this
affiliate: risk(A) = 1 − reliability(A). These scores are
posted in the E Marketplace table.

Product reliability and risk. Affiliate reliability reflects
the overall performance of an affiliate. This performance,
however, could vary substantially for the different products
that it offers. To address this, the performance tracking service
also maintains for every product version P that is offered in the
G Availability table a product reliability score reliability(P) in
the range 0–1. It is the probability that future transactions that
order P from A will be problem-free. This predictive value is
calculated from past orders of P from A. Delayed delivery
or non-delivery result in a lower reliability score, whereas
prompt delivery results in a higher score. As before, risk is
the complement of reliability: risk(P) = 1− reliability(P).
Product risk is an important parameter of the product version.
It is advertised in the E Public and G Availability tables,
along with parameters such as price and time-to-delivery, and
it is taken into account during procurement optimizations. For
example, the same affiliate could offer different versions of
the same product, where the version that involves higher risk
is offered at a lower price.

If a complete production is diagrammed as a graph in which
each participating affiliate is a node and each internal order is
an edge between two nodes, then affiliate risk can be viewed
as the risk of node failure and product risk can be viewed as
the risk of edge failure.

C. In-advance Optimization

The advantage of in-advance optimization (as in the au-
tonomous architecture) is that prices and other product pa-
rameters can be disclosed in the product catalog for instant
ordering. In contradistinction, on-demand optimization either
uses a quoting phase that requires a delay for retrieving this

information (as in the distributed architecture), or the customer
simply orders “blindly” with an assurance of receiving optimal
results (as in the centralized architecture). The latter is time
consuming as well, because the leader optimizes each order
upon receipt.

The downside of in-advance optimization is the possibility
that when orders are received, promised prices (and other
parameters) may no longer be available due to events that have
taken place since the most recent optimization; for example,
changes in prices or in the available quantities, or updates to
affiliate or product risks.

One solution to this issue is to react to enterprise state
changes (e.g., an affiliate changes the price of a product that
another affiliate plans to use, or the quantity of a product avail-
able from a supplier is reduced due to another order) with re-
optimization of all the products that are affected by the change.
Note that because products may be affected transitively, re-
optimizations are likely to cascade throughout the offerings
listed in G Availability. To avoid the high cost of frequent
re-optimization, it is possible to re-optimize periodically (e.g.,
once a day), or when the level of change exceeds a threshold
(e.g., when price changes exceed 2%). In such cases the plans
that were pre-selected as optimal may be only near-optimal
when executed; yet this approach is quite common in many
other domains [25], [26]. Note that when available quantities
have changed since the last optimization, it is possible that a
transaction based on in-advance optimization will fail due to
insufficient quantities. Yet, this could also be the case in the
centralized architecture.

IX. CONCLUSION

Collaborative manufacturing networks can take on different
styles, from a tight centralized organization to a distributed
discretionary organization. In this paper we isolated four
important feautures that affect the style of such organiza-
tions, and we combined them in three diverse architectures:
centralized, distributed and autonomous. Realizing that no
one architecture is suitable for every need, we described a
multi-faceted platform that supports the creation and operation
of virtual enterprises in any of the three architectures. The
platform is designed around three repositories: An information
repository to mange the information of the enterprise, a
services repository to provide the necessary functionalities,
and a workflow repository to support multiple ways of weaving
services and information into operational procedures. We also
provided additional details on three significant challenges.

The work is ongoing, and its present focus is on the
implementation of a platform that meets the challenges we
described. We plan to use the Business Process Execution
Language (BPEL) for workflow implementation [27]. BPEL
is an XML-based workflow definition language for describing
business processes that are connected via web services. It de-
couples the business process definitions and service implemen-
tations, thus allowing services replacement and modification
without affecting the business process, and encouraging fast

development of various business processes by reusing existing
services.

Future research directions that this work could follow in-
clude

1) Encapsulating an entire virtual enterprise in an affiliate;
that is, embedding virtual enterprises in other virtual
enterprises.

2) When and how to consolidate different virtual enter-
prises into one, and when and how to split them.

3) How to incorporate affiliates that perform functions
other than manufacturing; for example, transportation of
products.

REFERENCES

[1] A. D’Atri and A. Motro, “Virtue: a formal model of virtual enterprises
for information markets,” Journal of Intelligent Information Systems,
vol. 30, no. 1, pp. 33–53, 2008.

[2] L. M. Camarinha-Matos and H. Afsarmanesh, “A comprehensive mod-
eling framework for collaborative networked organizations,” Journal of
Intelligent Manufacturing, vol. 18, pp. 529–542, 2007.

[3] J. A. Zachman, “A framework for information systems architecture,”
IBM Systems Journal, vol. 26, pp. 276–292, 1987.

[4] The Open Group, TOGAF Version 9.1. Zaltbommel, Netherland: Van
Haren Publishing, 2011, ISBN-10 9087536798.

[5] A. Martel, J. Geunes, and P. Pardalos, “The design of production-
distribution networks: A mathematical programming approach,” Supply
Chain Optimization, vol. 98, pp. 265–306, 2005.

[6] B. Arntzen, G. Brown, T. Harrison, and L. Trafton, “Global supply chain
management at digital equipment corporation,” Interfaces, vol. 25, pp.
69–93, 1995.

[7] T. J. Lowe, R. E. Wendell, and G. Hu, “Screening location strategies to
reduce ex-change rate risk,” European Journal of Operational Research,
vol. 136, pp. 573–590, 2002.

[8] J. Ridlehoover, “Applying monte carlo simulation and risk analysis to
the facility location problem,” The Engineering Economist, vol. 49, pp.
237–252, 2010.

[9] Z. M. Mohamed, “An integrated production-distribution model for a
multi-national company operating under varying exchange rates,” Inter-
national Journal of Production Economics, vol. 58, pp. 81–92, 1999.

[10] Y. Guo, A. Brodsky, and A. Motro, “Optive: An interactive platform for
the design and analysis of virtual enterprises,” in Proceedings of EI2N
13, 8th International Workshop on Enterprise Integration, Interoperabil-
ity and Networking, ser. Lecture Notes in Computer Science, vol. 8186.
Graz, Austria: Springer, Heidelberg, 2013, pp. 199–207.

[11] S. Melkote and M. Daskin, “Capacitated facility location/network design
problems,” European Journal of Operational Research, vol. 129, pp.
481–495, 2001.

[12] L. Wu, X. Zhang, and J. Zhang, “Capacitated facility location problem
with general setup cost,” Computers and Operations Research, vol. 33,
pp. 1226–1241, 2006.

[13] I. Research, “Cplex optimizer,” http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/, online; accessed 23-June-
2014.

[14] F. Inc., “Fico xpress optimization suite,” http://www.fico.com/en/
products/fico-xpress-optimization-suite/, online; accessed 23-June-2014.

[15] L. Mashayekhy and D. Grosu, “A merge-and-split mechanism for
dynamic virtual organization formation in grids,” in Proceedings of
IPCCC 11, 20th International Conference on Performance Computing
and Communications Conference. Orlando, USA: IEEE Press, New
York, 2011, pp. 1–8.

[16] N. Hormazbal, H. L. Cardoso, J. L. Rosa, and E. Oliveira, “An
approach for virtual organisations?? dissolution,” in Proceedings of
COIN@AAMAS 09, 8th International Workshop on Coordination, Or-
ganizations, Institutions and Norms in Agent Systems V, ser. Lecture
Notes in Computer Science, vol. 6069. Budapest, Hungary: Springer,
Heidelberg, 2010, pp. 70–85.

[17] F. Kerschbaum, J. Haller, Y. Karabulut, and P. Robinson, “Pathtrust:
A trust-based reputation service for virtual organization formation,” in
Proceedings of 4th International Conference on Trust Management, ser.
Lecture Notes in Computer Science, vol. 3986. Pisa, Italy: Springer,
Verlag, 2006, pp. 193–205.

[18] M. Papazoglou and W. J. Heuvel, “Service oriented architectures: ap-
proaches, technologies and research issues,” The VLDB Journal, vol. 16,
pp. 389–415, 2007.

[19] B. Zhou, H. Zhi-Jun, and J. F. Tang, “An adaptive model of virtual
enterprise based on dynamic web service composition,” in Proceedings
of CIT 05, 5th International Conference on Computer and Information
Technology. Shanghai, China: IEEE Press, New York, 2005, pp. 284–
289.

[20] Y. Rezgui, “Role-based service-oriented implementation of a virtual
enterprise: a case study in the construction sector,” Computers in
Industry, vol. 58, pp. 74–86, 2007.

[21] Q. Wu, Q. Zhu, and M. Zhou, “A correlation-driven optimal service
selection approach for virtual enterprise establishment,” Journal of
Intelligent Manufacturing, 2013.

[22] S. Petersen and M. Divitini, “Using agents to support the selection
of virtual enterprise teams,” in Proceedings of AOIS@AAMAS 02, 4th
International Bi-Conference Workshop on Agent-Oriented Information
Systems, vol. 59. CEUR-WS.org, 2002.

[23] L. Camarinha-Matos and H. Afsarmanesh, “Virtual enterprise modeling
and support infrastructures: Applying multi-agent system approaches,”
in Proceedings of Multi-Agent Systems and Applications, ser. Lecture
Notes in Computer Science, vol. 2086. Springer, Heidelberg, 2002, pp.
335–364.

[24] A. Motro and Y. Guo, “The soave platform: A service oriented archi-
tecture for virtual enterprises,” in Proceedings of PRO-VE 12, 13th IFIP
Working Conference on Virtual Enterprises (Collaborative Networks
in the Internet of Services), vol. 380. Bournemouth, UK: Springer,
Heidelberg, 2012, pp. 216–224.

[25] A. Botea, M. Muller, and J. Schaeffer, “Near-optimal hierarchical path-
finding,” Journal of Game Development, vol. 1, no. 1, pp. 7–28, 2004.

[26] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and
F. Silvestri, “The impact of caching on search engines,” in Proceedings
of ACM SIGIR ’07, the 30th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 2007,
pp. 183–190.

[27] M. Juric, P. Sarang, and B. Mathew, Business process execution language
for web services (2nd Edition). Packt, Birmingham, 2006, ISBN
1904811817.

