CATT: A Cloud Based Authorization Framework with Trust and Temporal Aspects

Ehtesham Zahoor
National University of Computer and
Emerging Sciences, NUCES, Islamabad, Pakistan
{ehtesham.zahoor} @nu.edu.pk

Abstract—Collaborative environments have put an enormous
challenge to secure the information processing systems being
used to manage them. Challenges to provide secure framework
are amplified when it comes to the domain of flexible and
distributed systems as the trust, temporal and performance
related aspects need to be catered for. In this paper, we handle
some security challenges among others the sub-mentioned ones
by proposing a formal cloud-based authorization framework.
We have considered trust to be a dynamic attribute to facilitate
authorization decisions and have proposed models to handle
different qualitative, quantitative and periodicity based tem-
poral constraints. Further, we have presented an architecture
for policies evaluation in the cloud.

I. INTRODUCTION

The need to protect the information has always been there.
When it comes to implementing security for an organization,
the need for proper and detailed planning can be the road
to success. Thus, we need a plan that specifies exactly how
we would approach the challenge and this plan is termed as
security Policy of an organization. There are different kind
of security policies and in this paper we would focus on
one important class of security policies, called the access
control or authorization policies. An authorization process
can be more specifically regarded as to determine, given
some context, who can access what resources, under what
conditions, and for what purpose. Authorization policies are
high level descriptions of these access rules. In the last few
years, the widespread adoption of the Cloud Computing has
introduced new opportunities and the associated challenges.
It has provided a model where the resources are pooled,
shared and provided on demand over a network. They can
be rapidly, elastically and even automatically provisioned
for providing scalability and the users pay for what they
use. From a client perspective, it has no idea about the exact
location of the resources as they are dynamically provisioned
and released. The widespread usage, benefits and offerings
from different service providers are gaining momentum and
businesses are seeking new opportunities to reduce hardware
and management costs by offloading their capabilities to the
cloud. However, with all the benefits associated with the
cloud are some major challenges in terms of security and
privacy. When the applications are moved to the cloud, we
need new models for enforcing security.

Olivier Perrin and Ahmed Bouchami
Université de Lorraine, LORIA
BP 239 54506 Vandoeuvre-les-Nancy Cedex, France
{olivier.perrin, ahmed.bouchami}@loria.fr

The cloud based federated authentication has been an
active area of research with approaches such as SAML
providing SSO for federated environments, however the
authorization capabilities, challenges and solutions are not
thoroughly explored [1]. These challenges are amplified
in a distributed and flexible environment. For cloud-based
applications or resources, authorization should not only be
performed based on the content, but also by the context.
In addition, authorization assertions which refer to policies
should be specified to be handled in a lightweight manner as
well as encapsulating the most well known important policy
requirements such as : role/group abstractions, obligation
and fine-grained constraints, temporal aspect consideration,
possibility to define permissions and prohibitions, rules and
policies interactions, and handle both event and policies/rule
conflict automatically. As our best knowledge, there is no
existing policy model that fulfills all of these requirements
together. In this paper, we propose the CATT (Cloud-based
Authorization with Trust and Temporal aspects) framework.
The proposed approach is based on event-calculus. CATT
supports the sub-mentioned policy requirements with the
computation and specification of authorization policies based
on trust, temporal aspects and their combinations, in an
efficient and flexible way. Specifically our contributions
include:

A new formal authorization policies model: Our approach
presents a new plan for defining access control policies
based on attribute model (ABAC) and the Event-Calculus
formal language. We believe that the logic-based languages
are suited [2], [3] for the policy’s definition, due to their
openness for analysis and reasoning. Thus, policies becomes
more accurate and expressive, with a high flexibility and
non-ambiguous representation, and conflicts checking and
goal refinement become easier. We have used the abductive
reasoning type' [4], that consists in specifying the initial
state(s) and the possible expected goal(s). In summary, with
EC formalism, we were able to propose an expressive and
generic policies framework, that takes into account the most
important security requirement (from our point of view)
that are: dynamic-context consideration, fluid role/group

Iwhich is discussed by Charniak and McDermott (1985,chap.8), Shana-

han (1989;1997b, chap.17; 2000a), Denecker, Missiaen, and Bruynooghe
(1992) and Hobbs, Stickel, Appelt and Martin (1993)

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257312

abstractions, obligations, fine-grained constraints, temporal
authorization assertions aspect, deontic logic (permissions
and prohibitions) [3], rules and policies interactions [5].
Generic pattern-based approach: Proposed EC models
are organized in a generic pattern-based approach where
individual simple patterns are enriched and combined to
model complex requirements. Our approach opens new
directions for authorization research as it can be extended to
include design time verification [6], run time monitoring[7]
and delegation[8].

II. RELATED WORK

Access control and authorization has been an active
research area since decades and the focus of traditional
research approaches has been the Role Based Access Control
(RBAC) model and its variations [9]. Task based access
control (TBAC) extends the traditional model by considering
task based contextual information [10]. Even though RBAC
is a well defined model, it suffers from role explosion as
too many rules (may even surpass the number of users) may
need to be managed. Some approaches have investigated the
use and challenges for RBAC in a distributed environment
[11], [12], [13], [14]. In contrast to RBAC models, the
Attribute based access control (ABAC) model is based on
the attributes [15]. The resources, subjects and environment
have attributes and the policy rule is a boolean function on
these attributes. ABAC subsumes RBAC and provides more
flexibility and expressiveness than RBAC in term of rules
definition as a role itself can be an attribute in an ABAC
model. In a collaborative context, ABAC is thus the preferred
model as it is more suitable for situations in which finer
granularity and context-aware authorizations are required.

Several policy languages for network and security man-
agement was proposed in literature, and [2], [3] are good
surveys?. Like our proposed policy model, PDL, REI, ASL,
VALID, Webdamlog [16], OrBAC [17], CDL [18] are formal
policy languages, but each of them suffers from some
security requirements problems. For instance, PDL lacks
hierarchical rules grouping and ordering [2], [3]. ASL, Or-
BAC and VALID are not event based, which makes them not
adapted when considering a dynamic context. Furthermore,
policies languages such as REI, PDL, Ponder need additional
processing (meta-policies) for conflict handling.

Policies can also be defined in an XML form, like in
XACML and EPAL [19]. XACML (eXtensible Access Con-
trol Markup Language) is a declarative, XML-based access
control policy language for managing access to resources.
It is based on ABAC model and the attributes are thus
the most basic unit of a policy specified in XACML. As
XACML is based on XML, a number of approaches to
provide formal semantics of XACML using formal logic

Due to space limitation we avoid to give the reference for every policy
language, interested people can find those lacking in the surveys.

have been proposed [20], [21], [22]. A number of approaches
have also been proposed to extend XACML for using it
in collaborative and distributed environments. However, as
XACML is not event-based, one of its major weakness is that
it is not able to support the specification of policies under dy-
namic context. Furthermore, in collaborative and distributed
environments, XACML suffers from other limitations. The
first one is the problem of defining user level policies. In
XACML, an enterprise can easily define a set of policies for
every person within the enterprise, but it is more difficult
for a user to define its own policy for managing access
to its own data. In fact, the need for loosely coupled and
user-centric authorization systems is increasing. XACML is
verbose enough to lead to ambiguities that render difficult
the possibility to analyze and validate a set of policies
coming from various partners (both enterprises and users).
This problem is even more important when it comes to give
the ability to users to define access rules designed to be
combined with the enterprise ones.

In this work, we have defined our policy model on top of
the Event-calculus (EC) formal language [4]. First, we use
Event Calculus for modeling policies patterns in the form
of an Event-Condition-Action paradigm [5]. Therefore, we
were able to model dynamic context changes and to con-
sider them under our authorization model’s scope. Second,
EC allows us to represent (commonsense) knowledge and
scenarios, and then to combine both to reason about these
scenarios. Additionally, we were able to easily model autho-
rization policies patterns with regard to different temporal
aspect. Last, we can readily define authorizations as well
as prohibitions assertions. Another asset of using EC in our
work is the the ability to provide an automated reasoning
thanks to the DECReasoner® tool for policy consistency
checking and fluid conflict detection.

Regarding the concept of trust in a distributed and col-
laborative environment, it has been a highly active research
direction in last few years [23], [24], [25]. Unfortunately,
this interest from the research community has resulted in
several different synonyms for the word trust. It can be
either an indicator for multi-level security, a synonym for
evidence and reputation, it can be used to signify the
origin authentication and can have other meanings in some
other contexts, as discussed in [26]. Most of the research
about trust has been for the computation of trust and these
approaches range from history based approaches to the ones
based on statistical methods [27]. We believe that it should
be possible to authenticate the origin of trust, being an im-
portant attribute. However, in this work we would not focus
on the computation of trust but rather assume that it has been
established, measured, associated or agreed upon. Our focus
on trust-related aspects of this work is how to define efficient
and expressive authorization policies that can incorporate

3http://decreasoner.sourceforge.net/

trust, once it is already there. One important aspect of our
proposal is that trust is decoupled from the authorization
policy, which provides a greater modularity and a highly
maintainable authorization framework. Further, the temporal
constraints have been thoroughly investigated for the RBAC
models and some seminal work is the GTRBAC model and
its variants [28]. However the same is not true for distributed
and collaborative ABAC models. The temporal constraints
can be broadly categorized in three broad categories; quan-
titative, qualitative, and periodic constraints. The XACML
policy language considers the limited qualitative constraints
without catering for delays and durations.

III. MOTIVATING EXAMPLE

Our motivating example is based on one scenario coming
from our industrial partners’ and issued from the OpenPaaS
project. We take the case study of a large enterprise, called
EnterpriseL, comprising of many different departments such
as sales, marketing and HR. As with any organization, it is
prone to information silos. The different departments have
developed their own culture and inter-department communi-
cation and collaboration is becoming difficult. The problem
has also lead to difficulties in implementing security at
EnterpriseL as heterogenous and localized authentication
and authorization mechanisms exist not only across but even
within departments.

The sheer size of the organization has an affect on
the operational costs as well and the recent rise in the
cloud computing offerings is the silver lining. The higher
management has decided to shift to a (private) cloud to
improve flexibility and reduce costs. It would also pro-
vide an opportunity to mitigate the problems caused by
information silos and promote collaboration both within
different departments of EnterpriseL but also with the other
partner companies. The cloud based approach would allow
to externalize the application level authorization policies to
a central cloud based authorization provider (AzP), Figure 1.
This would result in better management and ease in the spec-
ification of policies. However, the authorization challenges
are still there. The enterprise needs fine-grained attribute
based authorization policies that can be based on trust,
temporal aspects and their combinations. These challenges
remain and have amplified once they have moved to the
cloud and traditional RBAC or XACML based approaches
are proving limited as it comes at the price of performance,
lack of flexibility and expressiveness, verbosity and lack of
semantics.

We assume following information about some users.
James is a trustworthy senior employee, belongs to Auditing
department at EnterpriseL. Bob is a junior employee and
has recently joined, belongs to Auditing department at En-
terpriseL. Natalie is a senior manager at EnterpriseL. The
first requirement relates to the performance aspects and is
as below:

DepartmentA
Applications
DepartmentB
Applications
Figure 1. Motivating example - Cloud level authorization

P1: The approach should be efficient and provide timely
decisions, probably by intelligent caching schemes and/or
using an architecture to optimize bandwidth constraints
and attributes availability.

Then, the second class of authorization challenges we have
focused in this work deal with the trust based authorization
decisions. For the motivating example, we assume the case
of internal auditing process and James and Bob from the Au-
diting department are working on it. We consider following
requirements:

TRI1: The auditing process involves access to a highly
classified resource (AuditResource). James, being the se-
nior trustworthy employee can access the resource and
Bob is denied access.

TR2: Once Bob completes the probation period, he can
be given access without modifying policies.

TR3: Natalie wants to access the AuditResource, she is
denied access unless the report is published. The access
is then given without modifying policies.

Further we have some temporal constraints as well that relate
to quantitative, qualitative and periodicity aspect. The tem-
poral constraints can also be based on trust related aspects.
The requirements for the motivating example include:

TE1: Permit decisions lasts for 5 minutes. Denied
rules/policies cannot be reevaluated for next 2 minutes.
TE2: At any given time only one user can be permitted
to access a resource.

TE3: Some events happen periodically, such as the user
context or some policy is evaluated every 2 minutes to
cater for dynamic environments.

These requirements are difficult to handle using traditional
approaches as they lack expressiveness and flexibility. The
proposed approaches are either limited in expressiveness to
model different types of constraints and more importantly
their combinations, lack formal semantics to be verified and
reasoned upon or have significant effect on the performance
of the system. To best of our knowledge, their exists no
approach that attempt to address these challenges in an
unified and integrated way.

IV. PROPOSED APPROACH

The proposed approach for cloud based authorization
provides both a formal policy specification language and
an architecture to evaluate the policies. The specification
language is based on Event-Calculus (EC) modeling for-
malism. The need for formal language is guided by the
fact that we need to both model complex policies including
temporal, security, cardinality and other constraints such
as the reliability of the attributes being used to make the
decision. A formal approach helps to elicit the decision,
eliminating ambiguities. Further, policies can be defined at
different levels and it may be required to combine them and
find inconsistencies.

In terms of a cloud-based authorization approach, the need
to specify the policies is indeed important but to evaluate
them in an efficient way is equally important. We have thus
proposed an architecture to evaluate the policies in the cloud.
We have also targeted the challenges specific to a cloud
setup such as the availability and reliability of attributes
and the need to make the decision making process simpler
without the cloud based authorization implementation to
gather attributes for the policy evaluation.

Identity
Provide (IdP) I~
w s Service
2 -] Provider (Cloud)
N
Request \L
3
Enhanced
1 User Agent 2 4

=== Authorization
Provide (AzP)
4 ~
[5
Authorization
Policy

v

*“> DECReasoner

Figure 2. The proposed framework

A high level view of the proposed framework is shown
in Figure 2. Once an authorization/access request to some
resource is received by the cloud based service provider
(SP), the user first needs to be authenticated by IdP to make
the request. Once authenticated, the SP forwards the request
along with the associated attributes to the Authorization
Provider (AzP). The decision is taken by using the policy
AzP maintains and reasoning about it using a constraints
solver, called DECReasoner that can reason about event-
calculus based models.

V. POLICIES SPECIFICATION

In this section we will discuss the proposed approach
for the specification of security polices. On a higher level,
the proposed policy model has three basic constructs, the
Rules, Policies and the PolicySets. The rules are at the core

of the policy specification and each role has a Target, an
Effect, a Condition and the associated Trust-level . The rule
Effect may only be evaluated if the Trust-level is acceptable
however, we will detail trust related aspects in next section.
Individual rules can be combined to form a Policy and as
each of the associated rules may evaluate (give decision)
differently, a collection of rule combining algorithms are
used (such as Permit Overrides for instance). The set of
rule combining algorithms can be based on temporal and
trust related aspects. Further, a PolicySet is a container for
policies and has policy combining algorithms. The basic
constructs to model the authorization policies have been
intentionally chosen to have the same names as the ones
used in XACML specification. This would allow us to easily
transform an XACML based policy to the proposed model.
However the differences exist as our approach is expressive
to model temporal and trust based aspects.

The rest of this section is organized as follows. We
first provide a brief background about event-calculus and
then discuss the event-calculus based model for specifying
different constructs without incorporating trust and temporal
aspects, which would be detailed in the next section.

A. Event-calculus

Event-calculus (EC) is a logic programming formalism
[29] for representing events and their effects. It comprises
the following elements: A is the set of events (or actions), F
is the set of fluents, 7 is the set of time points, and X is a
set of objects related to the particular context. In EC, events
are the core concept that triggers changes to the world. A
fluent is anything whose value is subject to change over
time. EC uses predicates to specify actions and their effects.
Some basic event calculus predicates used for modeling the
proposed framework are:

o Initiates(e, f,t) - fluent f holds after timepoint ¢ if event
e happens at .

o Happens(e,t) specifies that event e happens at timepoint ¢.

o HoldsAt(f,t) is true iff fluent f holds at timepoint ¢.

The event calculus models are presented using the discrete
event calculus language [30] and we will only present the
simplified models that represent the core aspects, intention-
ally leaving out the supporting axioms. All the variables
(such as rule, time,. ..) are universally quantified and in case
of existential quantification, it is represented with variable
name within curly brackets, {variablename}. In order to
simplify representation and to provide a generic approach
that is not only limited to the motivating example, we would
organize EC models in generic patterns. These patterns are
discussed in a bottom-up manner where individual simple
patterns are enriched and combined to model complex
requirements. Further, this pattern based will allow us to
implement tools to generate EC based models automatically.

B. Rules specification

The rules are at the core of the authorization policies
and each rule has a Target, an Effect and the associated
Conditions.

1) Rule target specification: The rule Target element
specifies the attributes which are used to match if a particular
rule applies to the input request. The proposed target spec-
ification approach is generic as it treats all the information
needed as to be composed of name-value attributes. For
instance, the Resource, the Action, the Role/Name of the
user and other such information is considered as attributes
having names and values. It thus allows for adding the new
attributes for target specification if needed. We start our
EC based modeling approach by discussing how the Target
computation can be achieved using event-calculus. We take
a simple requirement from the motivating example (7R1)
about a rule called, RuleJames, which applies (has target)
when the user James wants to have write access for an audit
file, called AuditResource. We briefly discuss the pattern
based approach in the model below:

Model 1 (Rule target specification)
;This part is a generic pattern.
sort rule sort atname, atvalue
predicate AtHasValue (atname, atvalue)
event Match(rule), Mismatch(rule) fluent RuleTargetHolds(rule)

Initiates (Match(rule), RuleTargetHolds(rule), time).

Terminates (Mismatch(rule), RuleTargetHolds(rule), time).
!HoldsAt(RuleTargetHolds(rule),0).

HoldsAt(RuleTargetHolds(rule),1) | !HoldsAt(RuleTargetHolds(rule),1).

;This part is specific to a particular rule being specified.

rule RuleJames

atname Subject, Object, Action, Context

Happens(Match(rule),time) & AtHasValue(Subject, atvaluel) &
AtHasValue(Object, atvalue2) & AtHasValue(Action, atvalue3) —
atvaluel = James & atvalue? = AuditResource & atvalue3 = Write.
s...similar axiom for Mismatch event

atvalue James, AuditResource, Write
AtHasValue(Subject/Object/Action,James/AuditResource/Write).

In the EC model shown above, there are two parts. One is
the generic pattern that can be added to any EC model for
target specification and the other is the instantiation of that
model for any specific target specification and corresponding
request. In the model, we first define some sorts, rule,
atname and atvalue. We can consider sorts as types of which
individual variables can be instantiated. The sort rule would
be used to represent rules and atname and atvalue would be
used to model attribute names and value respectively. We
then define a predicate AtHasValue which specifies name-
value pairs for attributes. Then, we define fluent, events and
corresponding Initiates and Terminates axioms. The fluent
RuleTargetHolds would be used as a goal and it does not
hold at time-point 0. Then we define an event called Match
and corresponding Initiates axiom that specifies that if the
event happens at time ¢, that fluent will continue to hold
from time point 7+/. We additionally define another event,
Mismatch, and corresponding Terminates axiom whose ef-

fect is opposite to the Initiates axiom. This completes the
generic part for the model.

In the second part, we instantiate the generic model for
a specific rule and request. We name the rule (by creating
instance of sort rule) as RuleJames. Similarly we define a set
of attributes, such as Subject, Object and others. Then we
define a conditional axiom that the event Match can only
happen if the attribute name value pairs match (and same
for Mismtach event). Finally we define attribute values, that
would be based on input request received and would change
for each request. If we invoke the DECReasoner event-
calculus reasoner on the event-calculus based specification,
it returns a solution as shown below. The model shows that
as the request (the one we intentionally specified) has the
name value attributes that match with the rule target, this
means the rule 7arget holds. In simpler words the current
request applies to this rule. If we change any of the attributes
like the Action is Read or Subject is Bob, the DECReasoner
will provide a model which shows that the event mismatch
would happen and the rule in question does not apply to it.

Solution 1 (Rule target result from DECReasoner)

18 variables and 51 clauses, relsat solver
model 1:

0 Happens(Match(RuleJames), 0).
1+RuleTargetHolds(RuleJames).

We can modify the Target specification model as shown
above, by separating the generic part into individual files that
can be included in this or any other model for target speci-
fication. The improved model is shown below. We separate
sorts, and the core models in individual files and the model
includes these files. In reference to the requirement identified
for the motivating example, (TR1/TR3), we can similarly
specify rule targets for for Bob and Natalie.We however,
postpone trust related discussion to the next section.

Model 2 (Rule target specification - A pattern-based approach)

load includes/rules/sorts.e

load includes/rules/targets/core.e

load includes/inputs.e

;These generic patterns can be included in any model for target specification,
inputs.e models the request.

rule RuleJames

Happens(Match(rule),time) & AtHasValue(Subject, atvaluel) &
AtHasValue(Object, atvalue2) & AtHasValue(Action, atvalue3) —
atvaluel = James & atvalue2 = AuditResource & atvalue3 = Write.
HoldsAt(RuleTargetHolds(rule),1) | !HoldsAt(RuleTargetHolds(rule),1).

2) Rule condition and effect: Once the target of the rule
holds then the rule would be evaluated based on other
information like the rule Condition and Effect. The rule
Effect is to either Permit or Deny the rule, indeed once
the Target or associated Condition hold. The rule effect
can also be Indeterminate but to keep models simple, we
intentionally do not consider the case. The rule Condition
can be considered as a set of predicates that specify what

conditions we need to check for the rule.

The choice of expressive event-calculus based formalism
allows us to define highly fine grained and extensive con-
ditions that are not only based on the functional constraints
but also on non functional constraints. The rule conditions
can be based on constraints such as Separation of Duties
(SoD), retention and integrity check and others. They can
also include cardinality constraints, relations and temporal
aspects. Further, the use of EC allows us to combine different
non-functional constraints such as SoD constraints that are
valid for some particular time interval. To this end, we have
defined a fluent RuleConditionHolds, that specifies if the rule
Condition holds or not.

3) Rule specification and evaluation: Once we have eval-
uated the rule Target and Condition, we can then evaluate
the actual rule. A rule is considered to be permitted (or
denied based on rule Effect) if the rule Target and rule
Condition holds, the argument would however change with
the incorporation of trust as we will discuss in next section.
If the rule Target does not hold, the rule is considered
NotApplicable and so is the case when the rule Target
does hold but the associated Condition does not hold. In
terms of EC model the basic idea is that once we have
evaluated rule target, using Model 3 and as represented
by the fluent RuleTargetHolds, and evaluated Conditions,
RuleConditionHolds, we can evaluate the rule based on
their evaluation results. We present the EC model for rules
specification below.

Model 3 (Rules specification - A pattern-based approach)

load includes/rules/core.e
;We use the complete Model 2, and add the rules pattern.

sWe also update goal from the Model 2.

HoldsAt(RuleTargetHolds(rule),1) | !HoldsAt(RuleTargetHolds(rule),1).
HoldsAt(RulelsPermitted(rule),2) | HoldsAt(RulelsDenied(rule),2) | Hold-
sAt(RulelsNotApplicable(rule),2).

In the model above, we use the complete Model 3
(with modifying the goal), and add another pattern, in-
cludes/rules/core.e, that would handle all the aspects related
to rule computation in a generic way. The pattern is shown
below. We first define some EC fluents which will be used
to signify if the rule is applicable and if its effect is permit.
Some other fluents will be used to signify that if the rule is
permitted, denied or is not applicable. Then we specify an
event called ApproveRule and corresponding initiates axiom.
The next axiom restricts the event to only happen, if the rule
target and condition are valid and its effect is to permit. We
have similar events and axioms for Deny and Not applicable
events which are not shown due to space limitations.

Model 4 (Rules specification pattern - /rules/core.e)

fluent RuleTarget/ConditionHolds(rule),RuleEffectlsPermit(rule)
Sfluent RulelsPermitted/Denied/NotApplicable(rule)

event ApproveRule(rule)

Initiates(ApproveRule(rule), RulelsPermitted(rule), time).
Happens(ApproveRule(rule),time)— HoldsAt(RuleTargetHolds(rule),time) & Holds
At(RuleConditionHolds(rule),time)&HoldsAt(RuleEffectlsPermit(rule),time).
;Similar events/axioms for DenyRule and RuleDoesntApply.

;Not shown due to space limitations.

!HoldsAt(RulelsPermitted/Denied/NotApplicable(rule),0).

If we invoke the DECreasoner, for the above event-
calculus based specification, it returns a solution as shown in
the model below. The solution shows that as the fluents that
signify the rule condition, target and effect were all valid
at time point 0, the event to permit the rule can happen
at time point 0, resulting in the fluent RulelsPermitted to
hold at time point 1. However, if the rule condition fails or
the effect of the rule is to deny the request then the fluent
RulelsDenied will hold at time point 1.

Solution 2 (Rules evaluation using DECReasoner)

0
RuleConditionHolds/EffectlsPermit/TargetHolds(RuleJames).
Happens(ApproveRule(RuleJames), 0).

1 +RulelsPermitted(RuleJames).

4) Policy/PolicySets specification and evaluation: Indi-
vidual rules that a user defines about a resource can be
grouped to form a Policy and individual policies can be
grouped in PolicySets. We would limit our discussion to
Policy specification but the same approach applies to the
specification and evaluation of PolicySets. We earlier dis-
cussed rules including, RuleJames and RuleBob. They can
be combined in a policy, if needed. The EC model below
shows how we can group individual rules in a Policy.

Model 5 (Policies specification - A pattern based approach)

load includes/rules/defined/RuleBob.e & RuleJames.e
load includes/policy/sorts.e & core.e & inputs.e
;These are policy/rule specific patterns. Some others are not shown.

policy ResourcePolicy

PolicyHasRule(ResourcePolicy, RuleJames).

PolicyHasRule(ResourcePolicy, RuleBob).

HoldsAt(PolicylsPermitted(policy),3) | HoldsAt(PolicylsDenied(policy),3) |
HoldsAt(PolicylsNotApplicable(policy),3).

The model above includes the patterns for different aspect
related to rules specification and the actual rules as well,
some patters such as inputs.e are not shown. The basic
idea is that for each rule, once evaluated we will have
evaluation results in the form of fluents. We can reason
about those fluents to evaluate the policy result. The core
pattern for policies is shown below. We have defined a policy
that combines the two rules about the resource in question.
One important aspect to consider here is that how different
rules combine with each other. We can have a number
of combining algorithms (such as permit-overrides, deny-

overrides and others). We can further have a PolicySet that
is the combination of individual policies and corresponding
policy combining algorithms. Space limitations restrict us to
detail the models further.

Model 6 (Policies core pattern - includes/policy/core.e)
predicate PolicyHasRule(policy, rule)
Sfluent PolicyTargetHolds(policy), PolicylsPermitted/Denied/NotApplicable(policy)
event ApprovePolicy(policy)
Initiates(ApprovePolicy(policy), PolicylsPermitted(policy), time).

sRule-combining algorithm. In this case permit-overrides others not shown.
Happens(ApprovePolicy(policy),time)— {rule}PolicyHasRule(policy,rule) & Holds
At(PolicyTargetHolds(policy), time) & HoldsAt(RulelsPermitted(rule), time).
!HoldsAt(PolicylsPermitted/Denied/NotApplicable(ResourcePolicy),0).

VI. TRUST BASED AUTHORIZATION POLICY

The event-calculus models shown in the previous section
handle different aspects related to the policy specification
and evaluation. We intentionally tried to present the simple
models without incorporating the trust, temporal aspects or
their combinations.

In this paper we would not focus on the computation
of trust but rather assume that it has been established,
measured, associated or agreed upon. Our focus on trust-
related aspects of this work is how to define efficient
and expressive authorization policies that can incorporate
trust, once it is already there. We can define a Trust-Level
(TL) to be computed based a 4 tuple < S,0,A,C >,
where S denotes the trust level for the Subject (for instance
the user making the authorization request), O signifies the
critical nature of the Object (the resource in question for
the authorization decision) and A signifies the nature of the
action the subject wants to perform at the object. Finally the
context C' defines the environment in which the trust based
decision is being taken. The environment may represent the
conditions in which the decision is being taken and can be
based on temporal and geographical attributes. For instance,
during weekends or after working hours, or related to the
location of the request. We will collectively term the trust for
a Subject, the criticality measure for the Object, the severity
level of the Action and the reliability of environment as the
Trust Level (TL). We represent the TL with a number and
its value ranges from 1 to 3 with the value 1 signifying
the attribute to be not trusted, 2 signifying the attribute to
be partially trusted while the value 3 means the attribute is
fully trusted. The TL range for the Context can be from 0
to 2, where the O value signifying normal conditions.

When a user requests for a resource, the trust-level is
computed based on the < O, A,C > tuple and a value is
computed. The critical nature of the resource and the action
user wants to perform on the resource highlight the severity
or criticality of the user action on resource. The criticality of
the user action on specified resource is magnified based on
the context in which the request has been made. For instance
if the user wants to write on a critical resource, after working

hours, weekend or a non-secure location, the criticality of
user action on resource would indeed be amplified. Once a
trust-level for the request has been computed based on the
< O,A,C > tuple, it is compared with the trust-level the
subject has (T'L,s,-) and in case the subject has appropriate
trust level, the decision can be computed.

More formally, let AT be the set that donates the set of
attributes, AT = {at, aty, ats...at, } in a particular context
C. In our case we consider the two attributes as Object and
Action. Further, let WT be the set of weights assigned to the
attributes, WT = {wtq, wty, wts...wt,} where wt; is the
weight assigned to attribute at;. In our case, all attributes
have the same weight, i.e 1. The trust decision can be
modeled as below:

" TLgy, wt;) + TL,
Decision = T L, > {(Zl—l £ -wti) + -‘)

Z;’L:I wt;

The formula above is intended to be flexible to handle a
number of cases. For instance the weights of the attributes
can be different to highlight one attribute, for instance giving
preference to Object rather than the Action. However, the
formula can be modified and even replace to handle any
specific requirements. The use of a pattern based approach
allows to easily achieve that. One important thing to note
here is that the trust level does not overwrite other security
policies but rather complement it. If the user request is
trusted, he is still bound to the actually policies and rules for
the resource. In relation to the proposed modeling approach
and basic constructs defined in the last section for policy
specification, we can modify the rule element. A rule has
a Target, Condition, Effect and is evaluated based on the
trust level computed for subject action on the resource in
the context. If the trust level holds, the rule can be evaluate
and otherwise, its effect can be deny.

We now present the event calculus model for trust based
authorization decisions. We use the Rule specification model
(Model 3) as shown earlier and and we need following
modifications to the model.

1. We need to updated the rules evaluation pattern

(rules/core.e) to approve (deny) the rule, if the required

trust level (does not) hold. We can simply update the

axioms as one shown below:

Happens(ApproveRule(rule), time) — HoldsAt(RuleTargetHolds(rule), time) &
HoldsAt(RuleConditionHolds(rule), time) & HoldsAt(RuleEffectlsPermit(rule),
time) & HoldsAt(TrustHolds(rule), time).

2. We need to add the core patterns for
trust,rules/trust/core.e and rules/trust/formula.e. They are
explained below and contain core predicates and formula
for computation trust approval.

3. We need to add a new sort trlevel: integer and speci-
fyrange trlevel 1 3, to signify the trust level of attributes.
4. We need to update the input.e file to represent the
trust related attributes with the input request, AttribTr-

level(Subject/Object/Action, 1<value<3). For Context,
0<value<2.

We now present the core patterns for trust, as mentioned
in the point 2 above. The pattern rules/trust/core.e contains
all the events, fluent and corresponding axioms for trust
specification and evaluation, as shown below:

Model 7 (Trust-based authorization - rules/trust/core.e)

predicate AttribTrlevel (attribute, trlevel)
predicate RequestTrlevel(trlevel)

event TEvalSuccess(rule) event TEvalFailure(rule)
fluent TrustHolds(rule)

Initiates (TEvalSuccess(rule), TrustHolds(rule), time).
Terminates (TEvalFailure(rule), TrustHolds(rule), time).
!HoldsAt(TrustHolds(rule),0).

In the model above, we first defined some predicates that
are used to associate the attributes with their trust level.
Then we define events, fluent and associated Initiates and
Terminates axioms, which signify if the trust level for the
rule holds or not. We need to also include the pattern
rules/trust/formula.e that contains the actual formula used
for calculating if the trust holds or not, as shown in Equation
1. The event calculus model is shown below:

Model 8 (Trust-based authorization - rules/trust/formula.e)

AttribTrlevel(Object, trievell) & AttribTrlevel(Action, trlevel2) & Attrib
Trlevel(Context, trlevel3) — RequestTrlevel((trlevell+trlevel2+trlevel3)/3).

Happens(TEvalSuccess(rule),time) & AttribTrlevel(Subject, trievell) &
RequestTrlevel(trlevel2) — trlevell >=trlevel2.

The points 3 and 4 require us to update the input.e file to
represent the trust related attributes with the input request.
This file contains the actual trust level for attributes, as
known to the system or as computed based on request.
These values can be dynamic and can be either fetched from
database or computed on the fly, scope of the paper restricts
us to detail this aspect further.

In relation to the motivating example, the complete rule
specification (with trust and other aspects) for the rule named
RuleBob is shown below.

Model 9 (Trust-based authorization - RuleBob.e)

load includes/rules/sorts.e & rules/core.e & trust/core.e & /trust/formula.e &
targets/core.e & load includes/inputs.e

rule RuleBob

Happens(Match(rule),time) & AtHasValue(Subject, atvaluel) &
AtHasValue(Object, atvalue2) & AtHasValue(Action, atvalue3) —
atvaluel = James & atvalue2 = AuditResource & atvalue3 = Write.
;Similar axiom for Mismatch event.

HoldsAt(RuleEffectlsPermit(RuleBob),0).
load includes/rules/rulesgoal.e

The contents of the authorization request message, as
modeled in the input.e are as follows.

Model 10 (Trust-based authorization - inputs.e)

atname Subject, Object, Action, Context

atvalue Bob, AuditResource, Write
AtHasValue(Subject,Bob)/(Object,AuditResource)/(Action, Write).
AttribTrlevel(Subject,2).

AttribTrlevel(Object,3). AttribTrlevel(Action,2).AttribTrlevel(Context,0).

If we invoke the DECReasoner for the above rule, it
returns a solution as shown below. The solution shows that
the request message matches (target holds) the rule but the
trust level of the use is not sufficient according to Equation
1, (2<3), the decision is to deny access. Then for the
motivating example, TR2 requires to allow access once the
probation period is over for the Bob. Once that happens,
the trust level of Bob would increase and will automatically
allowed access, according to Equation 1, (3>3). Same is the
case for the requirement, TR3 , once the AuditResource is
finalised its critical nature would decrease and Natalie would
be provided access.

Solution 3 (Trust-based authorization - RuleBob.e)
0: Happens(Match(RuleBob), 0).
1: +RuleTargetHolds(RuleBob). Happens(TEvalFailure(RuleBob), 1).
2: Happens(DenyRule(RuleBob), 2).
3: +RulelsDenied(RuleBob).

VII. TEMPORAL ASPECTS

Time is intrinsic in every aspect of human life and has
to be catered to model any related aspect. The need to thus
model the temporal aspects (or constraints as we will term
them) in modeling the information security perspectives is
evident. Further, to model the temporal constraints we need
an approach that can cater for time-point, intervals and their
combinations to handle the periodic events. The choice of
event-calculus as a modeling formalism is evident as EC
integrates an explicit time structure and that is not the case
with similar formal approaches such as situation-calculus. In
this section we would first the classes of temporal constraints
and their EC based models. Then we would discuss how the
policy and rule combing algorithms can be based on the
temporal aspects.

A. Constraints

The temporal constraints can be broadly categorized in
three categories; quantitative, qualitative, and periodic con-
straints. The quantitative constraints consider the time in a
metric sense and basic operations such as additions, subtrac-
tions, comparisons and others on the time variables can be
applied. For instance, in terms of authorization constraints,
consider the rule that a person can access a resource on
some specific date between 9AM to SPM (or between dates).
The quantitative constraints can also include the duration
constraints, such as once a request is granted, it lasts for next
5 hours and also the delays between different events can be
specified. The qualitative constraints relate to the particular
relative position of different entities. For instance, in terms

of authorization constraints, consider the requirement that
the a set of rules should only be evaluated at the same time,
or one before/after another, or their evaluation should finish
at the same time and others. Finally the periodic constraints
can be both qualitative and quantitative and they are based
on periodicity/repetition of events.

For the quantitative constraints representation, we
consider the temporal requirement TE1, for the motivating
example. Once a policy is permitted, the decision lasts for 5
minutes and once it is denied it cannot be reevaluated in next
2 minutes. The EC axioms below handle these requirements:

Happens(ApproveRule(rule),timel) & (Happens(ApproveRule(rule),time2) |
Happens(DenyRule(rule), time2) | Happens(RuleDoesntApply(rule), time2)) —
time2-timel =5

Happens(DenyRule(rule),timel) & (Happens(ApproveRule(rule),time2) | Hap-
pens(DenyRule(rule), time2) | Happens(RuleDoesntApply(rule), time2)) —
time2-timel>=2

For the qualitative temporal constraints, two broad ap-
proaches are to specify the constraints either based on the
intervals or base them on the time points. Interval based
temporal constraints can be based upon the Allen’s Interval
Algebra, which is a calculus for temporal reasoning and was
introduced by James F. Allen in 1983. The calculus defines
possible relations between time intervals and provides a
composition table that can be used as a basis for reasoning
about temporal descriptions of events*. All the base relations
for the Allen’s interval algebra can be mapped and applied to
the proposed approach, a detailed discussion can be found
in [31]. The qualitative constraints can also be based on
time-points as proposed in the points algebra [32], which
is computationally less expensive as compared to Allen’s
Interval algebra as the base relations are only <,= and >.
As the notion of time-points are intrinsic in EC models and
they can be compared using a set of operators, it can easily
model the points algebra as well but due to space limitations,
we would not detail them.

For the specification of qualitative temporal constraints,
we take the requirement TE2 from the motivating example
that at any given time-point or time-interval, only one
access should be permitted. The following generic EC
axioms can handle this requirement.

Happens(ApproveRule(rulel),time) & rulel != rule2 — !Hap-
pens(ApproveRule(rule2),time).
Happens(ApproveRule(rulel),timel) & Happens(ApproveRule(rulel)time2) &
timel != time2 & time3 > timel & time3 < time2 — !Hap-
pens(ApproveRule(rule2),time3).

Further, we consider another class of temporal constraints
that relate to periodic nature of events. These periodic
temporal constraints can be based on both quantitative and
qualitative aspects. Again as the EC involves events that
happen at time-points, it provides an expressive approach to
model periodic constraints. The EC axioms below handle
the requirement TE3 from the motivating example that a

“http://en.wikipedia.org/wiki/Allen’s_Interval_Algebra

policy should be evaluated every 2 minutes, InvocationEvent
can be some or all of Approve/Deny/DoesNotApply events.

Happens(InvocationEvent(SomePolicy), timel) & time2-timel = 2 — Hap-
pens(InvocationEvent(SomePolicy), time2).

B. Conflict management

As our approach is event-based, events conflicts can occur.
[5] and [33] discuss this issue. In our proposal, thanks to
the Event-Calculus expressiveness, we are able to model
an ordering and we configure the events occurrences with
a simple predicate. Thus, we can avoid conflicting events.
The second aspect for conflict management is to deal with
conflicts that can arise during the rules and policies combi-
nation. The rule/policy combination algorithms specify what
to do in case of conflicts thanks to basic algorithms such as
Permit and Deny-Overrides. Such strategies exists in other
policies languages like XACML, ASL or REI. We take the
concept one step further, as a policy groups rules (and so as
a PolicySet groups policies), it is indeed possible to specify
the relational temporal constraints about rules/policies as a
rule combining algorithm.

C. Evaluation

The proposed evaluation architecture is well suited to the
cloud based AzP as it does not have to fetch the attributes
for decision making rather the attributes are provided by
the user agent. Few important points need to be addressed
here. First the AzP and IdP are independent as the IdP can
be external or AzP may need to work with more than one
IdPs.

Two test cases have been evaluated based on the EC
models for the motivating example, with temporal and trust
based constraints resulting in a complex model. First we
increase in the number of Rules within a Policy and policies
within PolicySet (up to a combination of 200 rules). Then,
we further complicated the models we combined different
number of constructs. The solution computation is very
efficient as even with the most complicated models, the time
taken is less than 2 seconds on a PC machine. The EC-
SAT encoding process also performs reasonably well and
can be further improved by using incremental encoding or
by further improving DECReasoner code.

VIII. CONCLUSION

In this paper we propose a formal Event-Calculus (EC)
based cloud-based authorization framework, called CATT,
which supports the efficient computation and specification
of authorization policies based on trust, temporal aspects
and their combinations. In contrast to traditional XML based
policy languages, our approach is formal which provides a
precise, expressive, flexible and non-ambiguous represen-
tation, and also allows for reasoning about authorization
policies (e.g. to find inconsistencies). We have organized
the EC models in a generic pattern-based approach where

individual simple patterns are enriched and combined to
model complex requirements. The proposed EC models can
be easily modified and extended to handle other aspects.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(91

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

REFERENCES

R. Poortinga-van Wijnen, B. Hulsebosch, J. Reitsma, and
M. Wegdam, “Federated authorisation and group management
in e-science.”

W. Han and C. Lei, “A survey on policy languages in network
and security management,” Computer Networks, vol. 56,
no. 1, pp. 477-489, 2012.

N. Damianou, A. Bandara, M. Sloman, and E. Lupu, “A
survey of policy specification approaches,” Department of
Computing, Imperial College of Science Technology and
Medicine, London, vol. 4, pp. 1-37, 2002.

E. T. Mueller, Commonsense reasoning. Morgan Kaufmann,
2010.

J. Lobo, R. Bhatia, and S. A. Naqvi, “A policy description
language,” in AAAI/IAAL 1999, pp. 291-298.

E. Zahoor, K. Munir, O. Perrin, and C. Godart, “A bounded
model checking approach for the verification of web services
composition,” Int. J. Web Service Res., vol. 10, no. 4, pp.
62-81, 2013.

E. Zahoor, O. Perrin, and C. Godart, “An event-based reason-
ing approach to web services monitoring,” in /CWS, 2011.

K. Gaaloul, E. Zahoor, F. Charoy, and C. Godart, “Dynamic
authorisation policies for event-based task delegation,” in
CAiSE, 2010.

J. S. Park, R. S. Sandhu, and G.-J. Ahn, “Role-based access
control on the web,” ACM Trans. Inf. Syst. Secur., vol. 4,
no. 1, pp. 37-71, 2001.

R. K. Thomas and R. S. Sandhu, “Task-based authorization
controls (tbac): A family of models for active and enterprise-
oriented autorization management,” in DBSec, 1997.

E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karam-
cheti, “drbac: Distributed role-based access control for dy-
namic coalition environments,” in /CDCS, 2002, pp. 411-420.

T. Wu, X. Pei, Y. Lu, C. Chen, and L. Gao, “A distributed
collaborative product design environment based on semantic
norm model and role-based access control,” J. Network and
Computer Applications, vol. 36, no. 6, pp. 1431-1440, 2013.

C. Ruan and V. Varadharajan, “Dynamic delegation frame-
work for role based access control in distributed data manage-
ment systems,” Distributed and Parallel Databases, vol. 32,
no. 2, pp. 245-269, 2014.

H. K. Lee and H. Luedemann, “lightweight decentralized
authorization model for inter-domain collaborations,” in SWS,
2007, pp. 83-89.

V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin,
R. Miller, and K. Scarfone, “Guide to attribute based access
control (abac) definition and considerations,” NIST Special
Publication, vol. 800, p. 162, 2014.

S. Abiteboul, E. Antoine, G. Miklau, J. Stoyanovich, and V. Z.

Moffitt, “Introducing access control in webdamlog,” CoRR,
vol. abs/1307.8269, 2013.

F. Cuppens and A. Miege, “Modelling contexts in the or-bac
model,” in Computer Security Applications Conference, 2003.
Proceedings. 19th Annual. 1EEE, 2003, pp. 416-425.

(18]

[19]

(20]

[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]
[29]
(30]
[31]
(32]

[33]

[34]

R. Thomas and S. Tsang, “Cdl: A language for specifying
high-level cross-domain security policies,” in Military Com-
munications Conference, 2008. MILCOM 2008. IEEE. 1EEE,
2008, pp. 1-7.

P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter,
“Enterprise privacy authorization language (epal 1.2),” Sub-
mission to W3C, 2003.

J. Bryans, “Reasoning about xacml policies using csp,” in
SWS, 2005, pp. 28-35.

T. N. Nguyen, K. T. L. Thi, A. T. Dang, H. D. S. Van,
and T. K. Dang, “Towards a flexible framework to support
a generalized extension of xacml for spatio-temporal rbac
model with reasoning ability,” in /CCSA (5), 2013.

V. Kolovski, J. A. Hendler, and B. Parsia, “Analyzing web
access control policies,” in WWW, 2007, pp. 677-686.

C. Qu and R. Buyya, “A cloud trust evaluation system using
hierarchical fuzzy inference system for service selection,” in
AINA, 2014, pp. 850-857.

A. Oksiiz, “Turning dark into white clouds - a framework
on trust building in cloud providers via websites,” in AMCIS,
2014.

F. Moyano, K. Beckers, and M. C. F. Gago, “Trust-aware
decision-making methodology for cloud sourcing,” in CAiSE,
2014, pp. 136-149.

D. Gollmann, “From access control to trust management, and
back - a petition,” in IFIPTM, 2011, pp. 1-8.

M. Firdhous, S. Hassan, and O. Ghazali, “Statistically en-
hanced multi-dimensional trust computing mechanism for
cloud computing,” I/JMCMC, vol. 5, no. 2, pp. 1-17, 2013.

J. Joshi, E. Bertino, and A. Ghafoor, “Temporal hierarchies
and inheritance semantics for gtrbac,” in SACMAT, 2002.

R. A. Kowalski and M. J. Sergot, “A logic-based calculus of
events,” New Generation Comput., vol. 4, no. 1, 1986.

E. T. Mueller, Commonsense Reasoning. CA, USA: Morgan
Kaufmann Publishers Inc., 2006.

E. Zahoor, “Gouvernance de service: aspects sécurité et
données,” Ph.D. dissertation, Université Nancy II, 2011.

M. B. Vilain and H. A. Kautz, “Constraint propagation
algorithms for temporal reasoning,” in AAAI, 1986.

J. Chomicki, J. Lobo, and S. A. Naqvi, “A logic programming
approach to conflict resolution in policy management,” in KR
2000, Principles of Knowledge Representation and Reasoning
Proceedings of the Seventh International Conference, Breck-
enridge, Colorado, USA, April 11-15, 2000., 2000, pp. 121-
132.

L. Kagal, T. Finin, and A. Joshi, “A policy language for a
pervasive computing environment,” in Policies for Distributed
Systems and Networks, 2003. Proceedings. POLICY 2003.
IEEE 4th International Workshop on. 1EEE, 2003, pp. 63—
74.

