
Programmer-Controlled Application-Level Multicast 
 

Prasun Dewan 

Department of Computer Science 

University of North Carolina 

Chapel Hill, NC USA 

dewan@cs.unc.edu 

 
Abstract—Group communication abstractions provide 

application-level multicasting to communicate information 

among distributed processes. A variety of such abstractions have 

been provided to implement synchronous collaborative 

applications but they do not allow control over the multicast of 

information to the selected group of processes.  We have 

developed a new abstraction that overcomes this limitation.  It 

defines a two-level grouping of distributed processes, with one 

level defining the users interacting with a specific collaborative 

application, and the other defining the set of collaborative 

applications a set of users is sharing simultaneously to perform 

some collaborative task. It allows information to be sent directly 

to the receiving processes or through a centralized relayer. In 

either case, programmer-choosable and replaceable send and 

receive filters provide consistency guarantees. The abstraction 

provides message passing rather than remote procedure calls, 

and supports asynchronous sending and receiving of messages. It 

is designed to support both centralized and replicated 

architectures. The abstraction has been implemented on top of 

the Java Remote Method Invocation layer and has been used to 

implement a broad range of collaboration functions.  

Keywords-group communication; collaboration toolkits; 

multicast; collaboration awareness; consistency; sessions 

I. INTRODUCTION 

Distributed applications are tedious and difficult to 
implement as programmers must learn and use either (a) low-
level connection details such as establishment, reading and 
writing of stream abstractions, or (b) complex concepts such as 
proxies, remote interfaces, remote exceptions, and thread 
semantics of remote method invocation.  In either case, they 
must be aware of the end points of the parties with which they 
communicate, and send information to each of them 
individually. Domain-specific abstractions can ameliorate this 
situation. In this paper, we focus on the domain of distributed 
synchronous collaboration. 

A variety of abstractions have been developed in the past 
for this domain. As with other kinds of abstractions, they must 
balance automation with flexibility – in general, the more tasks 
abstractions perform for programmers, the less flexibility they 
offer. Abstractions in this domain have focused on both goals, 
with abstractions supporting collaboration-awareness and 
parameterization [1] designed for automation, and those 
offering group communication abstractions designed for 
flexibility. We focus on group communication abstractions. 

Our specific reason for addressing group communication is 
to build an experimental research and teaching tested for 

understanding and improving on the state-of-the art in 
collaboration concepts. There has been some early pioneering 
work in such abstractions but it has not evolved significantly 
for about two decades, and more important, from our point of 
view, not designed to meet our goal. Previous abstractions 
support direct communication among processes without 
enabling any consistency guarantees such as causality, jitter 
management, or replica consistency. We have developed a new 
group abstraction to address these limitations. This paper, 
describes its design, illustrates its uses, and discusses its 
implementation and our experience with the implementation. 

Section 2 discusses the related work on which our 
abstraction is based. Section 3 presents the design or API of the 
abstraction, and shows how it can be used in a wide variety of 
contexts. Section 4 overviews its implementation and use. 
Section 5 presents conclusions and directions for future 
research. 

II. RELATED WORK 

A distributed collaborative application must implement a 
whole range of functions [2] including: session management, 
coupling, awareness, access control, and concurrency control.   
Implementation of each of these functions involves 
communication among distributed processes, which, as 
mentioned in the introduction, is non-trivial. Therefore, three 
forms of abstractions have been offered to ameliorate this 
problem, which fall at different places in the automation-
flexibility spectrum. 

Collaboration transparency: These abstractions 
automatically convert collaboration-transparent single-user 
programs to collaborative versions [1]. 

Parameterized: These define a parameterized design space 
for one or more collaboration functions, and allow application 
programs to control sharing policies by specifying values for 
these parameters [1].  

Group communication: These allow processes to (a) join 
and leave collaborative sessions, and (b) “multicast” messages 
to groups of processes in the session without worrying about or 
even knowing about the existence of individual members in 
these groups.  This is application-level rather than network-
level multicast, as in the underlying network, a separate 
message is sent to each destination. 

 Recall that our goal was to create a test-bed that can be 
used to implement novel collaboration functions and provide 
students with an implementation-oriented understanding of 

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257266



existing and novel collaboration functions. Thus, of these three 
kinds of abstractions, the last seem to be the most appropriate; 
so let us focus in some depth on them. 

The first such abstraction was implemented in the mid-
eighties as part of the influential Xerox Colab collaboration 
environment [15]. For each user in a collaborative session, it 
created a separate replica of a program. The program was 
implemented as an extension of an interpretive object-oriented 
programming language that allowed certain methods to be 
declared as broadcast methods. Invoking a broadcast method 
on a replica had the side effect of invoking the same method on 
all other replicas of the application.  The actual task of sending 
messages to remote processes was handled by this group 
abstraction, making the application program more or less 
collaboration- unaware. 

Two successor systems, GroupKit [3] and Suite [4], show 
that it is useful to make the abstraction more flexible. These 
were developed contemporaneously and independently in the 
early to mid-nineties, before the advent of Java, and were based 
on TCL and C, respectively. 

GroupKit, like Colab, was designed for the replicated 
architecture, and supported group invocation of procedures.  
However, it offered more flexibility in three important ways. 
First, it allowed a replica to know when a replica of some other 
user joined or left the collaborative session, supplying the 
identity of the user, which could be used to provide customized 
session awareness to users. Second, it allowed a group call to 
be made not only on all replicas, but also all replicas except the 
one making the call. Third, the decision about the set of 
replicas on which a call was invoked was made at runtime by 
the caller rather than at program writing time by the callee.   

Suite was designed for an architecture in which the model 
or semantics code was centralized and the user-interface code, 
called dialogue manager, was system-provided and replicated.  
This architecture allowed Suite to offer collaboration 
transparency, parameterized collaboration functions, and group 
communication in a single system. Here we focus on group 
communication.  

  The model could make a call in all remote dialogue 
manager connected to it.  It could also make the call in a 
programmer-chosen group of dialogue managers. When a 
dialogue manager joined a session, the model was informed of 
its identity, which could be used to define arbitrary groups of 
dialogue managers. Finally, a call made by the model in a 
callback invoked by a dialogue manager could be invoked on 
two additional predefined groups: all dialogue managers except 
the one that made the callback, and the dialogue manager that 
made the callback.  The groups defined by Suite are difficult to 
compare to those defined in GroupKit and Colab as they are 
designed for a centralized architecture. As we shall see later, it 
is possible to create a single system supporting both replicated 
and centralized architectures in which the groups defined by all 
three systems are included. 

III.  REQUIREMENTS 

Together, the three multicasting primitives surveyed above 
define a design space of group abstractions in which the four 

main dimensions consist of the architecture, the groups of 
processes in which a call is made, and whether the group is 
decided at program writing time or at runtime, and the 
awareness a process has about other processes in the session. 
Based on these choices, GroupKit is more flexible than Colab 
as it supports caller control over multicasting, an additional 
multicast group, and awareness of users in the session. In 
comparison to Suite, it does not impose a centralized 
architecture. On the other hand, it imposes a replicated 
architecture as it assumes each communicating process 
implements the same set of methods so that a method can be 
called in all of these sites.  Thus, none of these systems 
supports both the centralized and replicated architectures. Both 
kinds of architecture are useful, as explained in [5]. There has 
been work in supporting multiple architectures [5] in one 
system and even adapting the architecture automatically [6], 
but this work has been done in the context of collaboration-
transparency, which as mentioned above, gives programmers 
no flexibility. 

Another important flexibility limitation of existing group 
communication systems is that they allow no control over the 
multicast of a message to a group. In particular, they do not 
allow programmers to (a) determine if a message is sent to a 
remote process directly or through one or more intermediary 
processes, and (b) re-order or change messages at the sending 
and or receiving sites to provide consistency guarantees. 

The first property may not seem like a practical limitation. 
In synchronous collaboration, one can expect direct 
communication to offer better (remote) response times as the 
number of processes through which a message passes is 
minimized. For this reason, to the best of our knowledge, all 
three systems offer direct communication. However, there are 
at least three reasons for putting intermediaries.  

Response times: Recently, Junuzovic and Dewan [7] have 
shown that in certain situations, multicasting a message 
through intermediaries can, in fact, improve remote response 
times, especially in today’s world of wireless communication 
and  mobile computing.  To illustrate, imagine a user on a 
mobile computer on a congested wireless connection making a 
presentation to a large number of users. In this scenario, 
response times will be smaller if the mobile computer sends a 
single message to a more powerful computer on a faster 
network and the latter relays it to all of the users viewing the 
presentation.  

Firewalls: Often user processes are behind firewalls, which 
prevent them from communicating with each other directly.  

Lock-less Consistency: Certain lock-less consistency 
algorithms such as atomic broadcast and operation 
transformation algorithms – in particular the Jupiter operation-
transformation algorithm [19] used in GoogleDocs - require 
messages to be relayed through a server. 

This does not mean that communication should always be 
relayed. When none of these conditions apply, communication 
should indeed be direct to support faster response times. Thus 
both forms of communications should be supported. Junuzovic 
and Dewan [6] have shown it is possible for the system to 
automatically choose the routing of messages based on 

This research was sponsored in part by NSF 



response times. However, programmer-control is still necessary 
to determine if application-specific consistency requirements 
require relayed communication.  

Application-specific consistency requirements also 
motivate programmer-control over reordering and modification 
of messages. In direct communication, messages may need to 
be reordered to ensure causality [8]. In both direct and relayed 
communication, messages may need to be changed to support 
operation transformation [9].  

Though the importance of these consistency requirements 
has been known since the first paper on operation 
transformation in the mid-eighties [10], designers of group 
toolkits have ignored them. We conjecture that the reason is 
that these requirements have been motivated mainly for 
collaborative text editors. To the best of our knowledge, no 
general-purpose toolkit has targeted such editors, and no other 
application has implemented (lock-less) consistency 
Collaborative editors have been implemented mostly by 
extending existing editors such as Emacs [11] or Word [9] in 
an editor-specific way without trying to use general purpose 
language-based abstractions. One exception is the Google Docs 
editing tool, whose origin is the Writely edtor, which was 
apparently built ground-up to support collaboration. However, 
to the best of our knowledge, this was a standalone project and 
thus did not use or create general-purpose collaboration 
abstractions. 

Given this history and analysis, is it worth addressing (lock-
less) consistency in general-purpose abstractions? The answer, 
we believe is, yes, for four reasons.  First, an abstraction cannot 
be called general purpose if it precludes even a single important 
class of applications. Second, text editors are provided as part 
of a whole suite of collaborative applications, and it is 
important for these applications to reuse as much code as 
possible. For example, it is important for Google Talk and 
Google Docs to share code for multicasting messages so that 
changes to optimize this code are made once for each 
application. Third, from a teaching or research perspective, it is 
not so important to have the practical goal of extending existing 
single-user text-editors - creating such editors ground-up using 
a collaboration toolkit is a viable alternative. Finally, a text 
editor is not the only popular application requiring consistency. 
Arguably, IM, which is part of most collaborative sessions, 
could also benefit from causality and/or operation 
transformation, because misinterpretation of concurrent 
messages as serial can cause problems even in two-person IM. 
Enabling support for consistency in a general-purpose 
abstraction will allow a greater variety of applications to offer 
it. Consistency management is still an active area of research 
[9], especially as operation transformation algorithms do not 
come with proofs in which the community believes. Thus, it is 
important to allow these algorithms to be transparently 
substituted with possibly programmer-defined ones.  

Support for programmer-defined consistency algorithms 
implies also that there should be a way to test these algorithms, 
which in turn implies a way to transparently delay delivery to 
different sites with which a process communicates. Current 
group abstractions do not provide such control. 

As mentioned above, all group communication abstractions 
must allow processes to join and leave sessions so that 
multicast groups can be defined based on session membership. 
However, current systems consider all sessions to be equally 
related, that is, define a flat hierarchy of sessions. As a result, 
they do not directly capture modern collaborative environments 
in which multiple applications such as an IM, text-editing and 
whiteboard tools are used together by a group of users in a 
single logical collaborative session. Such environments require 
a more complex, multi-level session membership and 
notification semantics. 

These, then, are the reasons motivating our project. Our 
goal is to offer the automation of previous multicast primitive 
while increasing their flexibility. Table 1 evaluates the current 
systems against automation and flexibility requirements 
identified above, and shows that none of the existing 
abstractions meet all of these requirements. It is our goal to 
develop an abstraction that meets all of them. 

Table 1 System vs. Multicast Requirements 

 Colab GroupKit Suite GroupMessages 

Direct and 
Relayed 

communication 

No No No Yes 

Caller Control  
of Message 
Destination 

No Yes Yes Yes 

Centralized 
Architecture 

No No Yes Yes 

Replicated 
Architecture 

Yes Yes No Yes 

Transparent 
Message 
Delay, 

Reordering and 
Change 

No No No Yes 

Multi-
Application 

Sessions 

No No No Yes 

IV.  DESIGN AND RUNNING-EXAMPLE  

We have designed and implemented a Java-based system, 
called GroupMessages, to meet this goal. In this section, we 
describe its design and applications using a running example. 
We develop the example, incrementally, starting with a single-
user program.   

A. Model-Based Single-User Program 

The single-user program provides a console-based user-
interface to echo input lines. It also provides command to view 
the history of entered input lines and to quit the interactive 
session, as shown in Figure 1. 

This version does not use any of the multicasting 
primitives. However, for it to be extended to support multi-user 
interaction, it has to be decomposed in a fashion that allows its 



behavior to be extended. Ideally, to offer extensibility, a 
program should be implemented using appropriate design 
patterns. One design pattern that applies to all interactive 
programs is model-view-controller [12], which separates 
semantics, input, and output of interactive applications into 
model, view, and controller objects, respectively.  Sometimes 
input and output are so coupled that it is sufficient to 
implement a coarser-grained version of this pattern in which 
the view and controller are combined into a single object, 
which we call an interactor  

 

Figure 1 Single-User Echoer  

This is the pattern used in this application (Figure 2).  A 
History model object maintains a list of input lines, and allows 
other objects to add elements in the list and read the entire list. 
In response to the add operation, it notifies its observers of this 
event by calling the elementAdded() operation in them, which 
in this example, consists of an EchoerInteractor object.  This 
object reads input lines, asks the model to add them, and reacts 
to a notification from the model by echoing each added line on 
the screen As we see below, this architecture will allow us to 
reuse the model and interactor types without adding any 
collaboration awareness to them, thereby providing vindication 
for keeping the semantics and user-interface in separate 
modules. The user-interface of the application is kept simple 
so that we can focus on the collaborative aspects of the 
extended application. 

 

Figure 2 Single-User Architecture 

B. Basic Collaborative User-Interface 

The collaborative extension of this application is essentially 
a console-based group IM application, as shown in Figure 3.  

 

Figure 3 Echoer to Group IM 

Here we see three users, Alice, Bob, and Cathy, using the 
application. The IM application is a strict extension of  the 
single-user echoer that allows users to see input lines not only 
entered by them but also their collaborators, and adds to the 
history both local  and remote input. Each user is aware of the 
identity of the user who entered an input line. A consequence 
of the awareness is that a user who inputs a line sees a different 
view of it than the others. This feature has been added to 
illustrate some of the complications that arise when using 

multicasting primitives in replicated and centralized 
architectures. 

Thus, we see that this version of our example offers three of 
the collaboration functions mentioned earlier, session 
management, coupling and awareness. These functions, of 
course, are implemented using GroupMessages.   Let us first 
consider session management. 

C. Two-Level Session Management 

Like GroupKit and Suite, GroupMessages allows processes 
to ecplicitly create, join, and leave sessions, and be notified 
when these operations are invoked by processes of other users. 
As in previous systems, a central process is used to support 
sessions, which we call the session server. Application code 
interacts with the session server and local multicasting code 
through a local object called the communicator.  Figure 4 
shows the basic architecture visible to the programmers. They 
know that a session server exists as they must provide its 
location. However, all functions of our abstraction are provided 
through the communicator. The communicator itself is 
partitioned into several internal components, which the 
message producers and consumers in the application can 
ignore. However, as we see later, two of these components are 
visible to consistency management modules in the application. 

 

Figure 4 Architecture Visible to the Programmer 

Our abstraction accommodates multi-application sessions. 
A session is not simply a set of users. Instead, it consists of a 
set of application sessions and users, and each application 
session consists of a set of users (Figure 5).  

 

Figure 5 Multi-Level Session Structure 

Thus, like other systems, our abstraction allows users to be 
(dynamically) added to sessions. In addition, it allows 
applications to be added to sessions, and users to be added to 
applications. Adding an application to a session creates an 
application session, which corresponds to a session in other 
systems. Adding users to an application session allows them to 
use the application to collaborate with other users in the 
application session. Adding users to a session allows them to 
be informed of other users and applications in the (overall) 
session without participating in any joint activity. They can 



react to this information by joining one or more application 
sessions in the (overall) session. In Figure 5, Alice, Bob and 
Cathy are all in the IM application session, while only Bob and 
Cathy are in the Editor application session. All three users are 
in the overall session, and thus, have the option of joining any 
application session in it. Currently, it is not possible for users to 
join an application session without also joining the overall 
session. 

A single static call is provided for creating communicators 
and creating and joining sessions and applications: 

  static Communicator getCommunicator(  

        String aServerHost, String aSessionName,  

        String aClientName, String anApplicationName,  

        String aRoutingKind) 
Here aServerHost is the name of the host on which the 

central session server resides, aSessionName is the name of the 
(overall) session, aClientName is the name of the client making 
this call, anApplicationName is the name of an application 
(session), and aRoutingKind denotes whether multicasts 
through the communicator will be routed through a relayer at 
the session server. If anApplicationName is null, then the client 
will be added to the overall session. Otherwise, it will be added 
to both the application session and the overall session. Of 
course, if it is already part of a session or application, then it is 
not added again. If the named session or application does not 
exist, then it will be created. By combining the creation of 
sessions and applications with addition of members to them, 
we allow all replicas in a replicated application to execute the 
same code and be started in any order. Otherwise, one of them 
must have special code to create a session and this code must 
be started before others. The client name is an identifier that 
distinguishes the caller from other members of a session and 
application. It can be any string chosen by the programmer. As 
we see below, our abstraction supports communication with 
specific clients. This name is used in such communication. 

For each application and session combination, a separate 
communicator is created. Our design expects each user process 
to be associated with either the overall session or a single 
application in that session. Thus, we expect each process to 
create a single communicator, though the design and 
implementation support multiple communicators if a single 
process wishes to play the role of multiple logical applications. 

Like GroupKit, our system allows processes to receive 
notifications about successful session creation and joins, 
including the ones they initiated, by implementing listener 
methods with the following signature 

 public void clientJoined (String aClientName,   

      String anApplicationName, String aSessionName,  

boolean isNewSession, boolean isNewApplication, 

 Collection<String> allClients); 
It is the dual of the getCommunicator() call described 

above,  providing the listener with information about a 
successful join. The two Boolean flags indicate if the 
application and session are newly created. allClients is the 
collection of all previous clients in the session. When a client 
joins the session, this method is invoked for each existing client 
and application combination. It is also executed once for each 

subsequent join. To allow clients to register listeners before 
they join sessions, a communicator does not automatically join 
the specified session when it is created.  It does so when the 
client makes a special non-blocking join() call. This call uses 
the parameters provided at communicator creation time to send 
an appropriate message to the session server. A communicator 
also provides a call to leave application/overall sessions, and a 
notification method to receive information about leaves. Let us 
use the running example to illustrate the nature of these session 
functions.   

Client Alice creates the following communicator to initiate 
an application-less joining of session SESSION_NAME: 

 communicator =  getCommunicator(SERVER_HOST,   

           SESSION_NAME,        ALICE, null,  

           Communicator.RELAYED); 

 
It then registers a session listener that implements the 

following method for join notifications: 

public void clientJoined (String aClientName,  

String anApplicationName, String aSessionName, 

boolean aNewSession, boolean aNewApplication, 

Collection<String> previousClients) {  

if (aNewApplication && anApplicationName != null &&     

     IM.equals(anApplicationName)) 

        joinSession(anApplicationName, aSessionName); 

} 
Here, joinSession() is an internal application method that 

forks a new process that joins the IM session. Finally, it 
invokes the join() call.  Assuming Alice is the first member of 
the session, at this point Alice’s clientJoined() method  will be 
invoked informing it of the successful execution of the non-
blocking join() call. This method does nothing as the 
application name is null.   

Later, client Bob creates a communicator for the IM 
application: 

 getCommunicator(SERVER_HOST,  SESSION_NAME,  

        BOB, IM, Communicator.RELAYED); 

 
Next it registers a session listener that defines the following 

join notification method: 

public void clientJoined (String aClientName,  

String anApplicationName, String aSessionName, 

boolean aNewSession, boolean aNewApplication, 

Collection<String> previousClients) {  

      displayMessage(aClientName, anApplicationName); 

} 
When the join call is successfully invoked on the sessiom 

manager, Alice’s clientJoined() method is invoked for Bob; and 
Bob’s clientJoined() method is invoked twice, first for the 
existing member, Alice, and then for the new member, Bob. 
Bob’s method simply prints a message, while Alice’s method 
forks the process that joins the application session. 

If the actions were reversed and Bob joined the IM session 
before Alice joined the application-less session, the behavior 
would be more or less the same. Alice’s clientJoined() method 
would still be called for the existing application session.  The 



only difference is that displayMessage() method in Bob would 
be called first for Bob and then for Alice. Thus, the semantics 
are resilient to race conditions arising from uncoordinated 
join() calls being made by different clients. 

Session management functions provides the basis for 
defining the groups used in multicasting calls. Let us consider 
these calls next. 

D. Message-Based Multicasting 

Concurrent systems are often classified as message-based 
or procedure-based depending on whether they communicate 
information by sending messages or invoking procedures. As 
Lauer and Needham [13] point out, these systems are 
equivalent in expressibility though one might be easier to 
program in certain situations.  

All three group communication abstractions surveyed here 
are procedure-based in that they multicast (remote) procedure 
calls. In contrast, GroupMessages, as the name indicates, is 
message-based, because high-level, efficient and consistent 
multicasting would have required us to implement our own 
remote procedure call for Java. Directly using the standard 
library for Java, RMI, creates several problems: 

Transparent syntax: In RMI, a remote method declaration 
and call has the same syntax as a local method declaration and 
call, respectively, though the caller has to address new kinds of 
exceptions. The callee is completely unaware of whether it was 
invoked remotely or locally, and thus does not know the 
identity of the caller. To implement awareness, access control, 
and concurrency control, it is useful to have this information. 
For instance, in any IM application, a user is aware of the 
identity of the person who sent a message. To support such 
awareness, the callers must explicitly send their identities using 
procedure parameters, even though the underlying system has 
this information. 

Synchronous call: Consistent with its goal of compatibility 
with local calls, RMI supports synchronous calls, which blocks 
the caller until the call completes.  Experience has shown that 
these semantics visibly slow down response times when the 
input rate is fast– in particular when a tele-pointer is moved 
[14]. The reason is that a sending site must wait for input to 
reach the remote site and an acknowledgement to return before 
it can send another input. The problem is aggravated by 
increasing the message hops; in particular sending the message 
through a relayer. To achieve concurrency, it is possible to 
create multiple threads that make synchronous calls – a 
standard technique in procedure-based systems [13]. However, 
this adds to the programmer-effort. Moreover, creating multiple 
threads can tax or exhaust system resources. In particular, in 
the telepointer case, it is unreasonable to create a thread per 
move. Thus, the number of outstanding calls would be limited 
by the size of thread pool used to send the data. Finally, 
concurrent invocations of a remote method by different threads 
can lead to consistency problems. To illustrate, assume that in 
our running example, a user enters two input strings. If these 
are sent by two different threads, then because of scheduling 
uncertainties, the second string may reach the destination 
before the first one. Perhaps for this reason, some 
implementations do not allow a method to be invoked 

concurrently by threads in the same site, which leads to the 
high latency problem mentioned above. 

Concurrent remote calls by different sites: In RMI, remote 
invocations of the same method by different sites execute in 
different server threads. These calls may need be serialized for 
consistency reasons. This means that the programmer must be 
careful to use Java’a (high-level) synchronization mechanisms 
to provide such serialization 

Deadlocks: Synchronous remote invocation and 
synchronized concurrent remote calls block threads at the 
invoking and invoked sites, respectively, which in turn can lead 
to deadlocks. For example, if a synchronized history object in a 
slave site makes a remote call to a synchronized serialized 
history object in a master site, and the latter invokes a method 
back in the slave history to provide a serialized update to the 
history, then we have a deadlock. This means that programmers 
must take special steps to avoid such deadlocks. 

Single-site proxy: RMI proxies are created at the callee sites 
and distributed from there to calling sites. They are bound to 
the creating site. To support multicast RPC, we would have had 
to change RMI to create proxies at the caller site that forwards 
calls to multiple programmer--controlled server sites.  

Semantics of group function calls: In RMI, a remote 
method can return a value. Supporting remote function calls 
requires us to determine what value should be returned by a 
multicast function call. 

These problems are not unique to RMI and also arise if we 
were to, for instance, use the RPC layer of .NET. These are 
typical of RPC support for compiled object-oriented languages. 

None of the previous multicasting systems change the 
syntax of call invocation to provide caller awareness. GroupKit 
does not face the other issues as it is built on top of TCL, which 
is a scripting interpretive system in which remote void 
asynchronous procedure calls are made by sending textual 
representations of the calls, which are simply forwarded 
asynchronously by GroupKit libraries. Colab is also built on 
top of an interpretive language (Object Oriented Lisp), and 
requires (pre)compiler support for labeling methods. The paper 
on Colab [15] does not address the issues above – in particular 
it does not indicate if the remote calls are synchronous, and 
what happens to results of broadcast functions. Presumably, as 
the functions are guaranteed to execute locally, the local results 
are returned.  The issue of multicast proxies can be handled by 
appropriate (pre) compiler support. Suite provides multicasting 
of only predefined void procedures provided by a dialogue 
manager, which are handled by calling asynchronous remote 
procedures provide by the Suite RPC layer [16]. 

GroupMessages uses non-blocking message-based 
multicasting to address these issues. All outgoing and incoming 
messages go through the system, which can then control 
synchrony and threading issues.  A client is guaranteed that all 
outgoing messages to an application session are serialized, as 
well as all of its incoming notifications. Moreover, a relayer 
guarantees that for a particular application session, messages 
leave in the same order in which they arrive.  



As RMI is built on top of sockets, a message-based 
abstraction, it arguably provides a higher-level abstraction than 
sockets. However, GroupMessages does not have most of the 
disadvantages of sockets, as programmers do not have to 
create, bind, and connect sockets or implement threads to read 
and write from them. It does, however, have the fundamental 
disadvantage of message-based communication – a program 
that wishes to make a logical procedure call on a remote site 
must convert or marshal these parameters into a message at the 
caller, and unmarshal the message back into parameters at the 
callee site [17]. 

Like recent Google APIs, GroupMessages does not offer an 
explicit call to receive a message. It uses the observer pattern to 
not only inform interested parties about session notifications 
but also received data.  As a result, programming of 
synchronous communication is more difficult and must be done 
using non message passing abstractions such as semaphores 
and monitors. Our decision is a consequence of the fact that 
GroupMessages is designed for synchronous collaborative 
applications in which response times are degraded by blocking.  

E. Multcast Groups 

The most fundamental multicasting call provided by 
GroupMessasges is toOthers(), which allows a client that has 
joined an application session to send an arbitrary data object to 
all other members of the session. To illustrate, let us continue 
with our example by outlining how our echoing code was 
converted into a replicated implementation of the IM user-
interface. Figure 6 shows the architecture of this application 

 

Figure 6 Replicated IM Architecture 

The echo model and interactor objects of Figure 2 are 
replaced by extensions for the replicated IM. When the user 
inputs a line, the IMInteactor calls replicatedAdd() in the model 
object. This method calls the observableAdd() method of its 
superclass, marshals the name and parameters of the add 
operation into a ListEdit message object, and uses toOthers() to 
multicast this message to other replicas in the application 
session: 

    public void replicatedAdd(ElementType anInput) { 

 int anIndex = size(); 

 super.observableAdd(anIndex, anInput);  

 ListEdit listEdit = new   AListEdit( 

          OperationName.ADD, anIndex, anInput);  

 communicator.toOthers(listEdit); 

    } 
This message is delivered to a remote replica by calling the 

objectReceived() listener method: 

public void objectReceived(Object msg, String clientName) { 

    if (msg instanceof ListEdit) 

          processListEdit((ListEdit<String>) msg, clientName); 

 } 

As we see in the code above, this method has the name of 
the calling client even though it was not explicitly provided by 
the caller. This method calls processListEdit(), which 
unmarshals the message object into parameters of the add 
operation, and uses these parameters together with the 
additional caller name to update the local history and display 
the input string along with the inputter’s name. The received 
message does not trigger a call to replicatedAdd() to prevent an 
infinite cycle of adds. 

What we have described above is a standard 
implementation of the replicated architecture [18] except that 
messages can be routed through a central server if the relayer 
routing option is used at communicator creation time.  

It is possible to use GroupMessages to also implement the 
centralized architecture [18]. In this architecture, a central 
master computer stores a master copy of all shared objects, 
which is typically cached at users’ sites to support efficient 
reading of these objects. Writes to these objects are first made 
in the central copy and then copied into the cache. Figures 7 
and 8 show the GroupMessages implementation of this 
architecture for the IM application.  

 

Figure 7 Master IM in Centralized Architecture 

 

Figure 8 Slave IM in Centralized Architecture 

When a slave interactor receives input, it does not send it 
directly to the local history. Instead, it uses a unicast call, 
toClient(), to send the new value to the central client. This call 
takes an additional parameter indicating the client name: 

void addToHistory(String newValue) {  

      communicator.toClient( 

         MasterIMModelLauncher.CLIENT_NAME, newValue); 

} 
The master adds the value to the history, and uses 

toOthers() to send a marshalled message to all slaves: 

public void centralizedAdd( 

          ElementType anInput, String aSourceName) { 

    int anIndex = size(); 

    super.add(anIndex, anInput); 

    UserEdit<ElementType> usertEdit = new AUserEdit ( 

        OperationName.ADD, anIndex, anInput, aSourceName);  

     communicator.toOthers(usertEdit); 

} 
As in the replicated architecture, the marshaled message 

contains the index and value of the add operation. In addition, 
it contains the name of the inputter, which the slave extracts to 
determine the output. The reason for sending this name in the 



centralized architecture is that the message arrives at the slave 
from the model, so the message sender parameter provided 
automatically by GroupMessages does not indicate the (slave) 
inputter name. In this implementation, each site determines the 
user-interface. This is the reason for needing the inputter name 
at each site.  

As all sites display the same user-interface, the master 
could alternatively compute this output, in which case it would 
not have to send the inputter name. However, it would have to 
send different outputs to the inputter and other users. To 
support such communication, GroupMessages offers two 
additional multicast calls, toCaller() and toNonCallers(). Code 
invoked in response to a message to client C

1
 from client C

2
, 

can invoke these two calls to send message to C
2
, and all other 

clients other than C
1
 and C

2
, respectively. These two calls are 

inspired by analogous calls provided by the centralized Suite 
system. Also motivated by Suite, GroupMessages provides the 
toClients() call, which takes as an argument an object and a list 
of client names, and multicasts the object to all clients in the 
list. Finally, it provides the toAll() call to broadcast a message 
to all clients, including the one that invoked the call. With these 
calls, GroupMessages can simulate all multicast groups defined 
by previous systems. 

In the centralized architecture above, all interactors of a 
slave model are distribution-aware as they communicate with 
the master model. This problem can be solved by making them 
make a special proxy add call on the slave model, which can 
then forward the call to the remote master model. Thus, the 
distribution-awareness is restricted to only the models. 

So far, we have shown how GroupMessages can be used to 
implement coupling and awareness in centralized and 
replicated systems. It can also be used to implement control 
functions. Before allowing a change, a client can check with an 
access/concurrency control vetoer.  Authorization and lock 
information can be shared in a centralized/replicated 
architecture using GroupMessages. 

To illustrate, let us extend the IM user interface to provide 
an access control user interface in which the 
addInputter/addAdministrator commands are used to allow a 
specific user to provide input and give another user the right to 
input, respectively (Figure 9). 

Figure 10 shows how this functionality can be added to the 
replicated IM history. A special AccessController object 
processes the addInputter and addAdminsitrator commands and 
replicates these operations on all replicas. As the same change 
is to be made in all replicas, the toAll() call is used. 

     public void replicatedAddInputter(String aNewInputer) { 

         String aUserName = communicator.getClientName(); 

         if (!canAdminister(aUserName)) {  

 showNoAdminMessageDialog( aUserName);            

              return;          

         } 

         communicator.toAll( 

              new AnInputAuthorization(aNewInputer)); 

    } 

  An extension of ReplicatedHistory, ControlledHistory, 

checks with the AccessControl object before adding an item.  

In this extension, the same session is being used to 
communicate two kinds of information, the user input and the 
authorization information, which are processed by different 
objects, the IMCoupler and AccessReceiver (Figures 6 and 10 
respectively). As GroupMessages is unaware of these two 
subchannels, it passes an incoming message to all listeners (of 
a specific application session). Thus, each listener must 
determine, using characteristic of the received object, if it 
should process the object – a disadvantage of message-based 
communication. In our example, this task is relatively simple, 
involving simply the use of the Java instanceof operation, as 
the two receivers process different types of objects. Thus, the 
access receiver ignores ListEdit objects, as shown below: 

public void objectReceived  

               (Object aMessage, String aSourceName) { 

   if (aMessage instanceof AnInputAuthorization)     

        processInputAuthorization(Mmessage); 

   else if (aMessage instanceof AnAdministratorAuthorization)  

        processAdminAuthorization(aMessage); 

 }} 

 Concurrency control can be similarly implemented by 

checking and replicating lock information. 

 

Figure 9 Access Control User Interface 

 

 

Figure 10 Access Control Architecture 

F. Send and Receive Filters 

As mentioned earlier, one of our goals was to allow delay, 
modification, and re-ordering of messages to support 
programmer-controlled consistency.  Apparently, the primitives 
described so far are sufficient, as we support message-based 
communication. Instead of forwarding messages to the 
communicator, message producers can submit them to local 
consistency modules, which can modify them by, for instance, 
time stamping them and then delaying them if necessary. 
Similarly, consistency modules can receive messages, and after 
reordering, modifying, and/or delaying them, submit them to 
the actual message consumers. 

However, there are several problems with this approach. 
First, it requires the message producers and consumers to be 
consistency-aware as they must send (receive) message directly 
to (from) the communicator or through the consistency 
modules. Second the consistency modules must implement 
some of the functions of GroupMessages such as registering of 
different kinds of listeners and forwarding messages to them. 
Third, they must delay messages at the sending/receiving sites, 
which is a non-trivial task. Finally, in relayed communication, 
centralized consistency algorithms such as Jupiter [19]  require 



morphing/reordering of messages at the relaying site. The API, 
described so far, does not provide interception of these 
messages. To address these problems, GroupMessages 
provides several additional concepts.  

Assuming that consistency module implementers would 
want to control only the amount of delays and not how the 
delays are implemented, GroupMessages provides operations 
that allow programmers to set the minimum and maximum 
delays to both other clients and the relayer, and given a 
message directed at a site, delays it by a random value between 
the two limits for that site. It allows programmer-defined 
modules to intercept sent messages after they have been 
submitted to the communicator but before they have been 
delayed or sent. Similarly, it allows these modules to intercept 
received message after they have been delayed but before they 
are distributed to listeners. Finally, it allows programmers to 
intercept sent and received messages at the relayer. An 
intercepting module is free to not (immediately) forward a 
message to the next stage in the communication pipeline and/or 
modify the message. Such a module is called a filter. The next 
stage in the pipeline is called a message processor and is 
passed to the filter as a parameter of a filter setter method.  

Figure 11 shows the use of send and receive filters to 
implement causality in the IM application. After a 
ReplicatedHistory submits a ListEdit to the communicator, the 
latter (through subcomponents) wraps the edit in a 
SentMessage and passes this message to the filterMessage() 
method of the programmer-defined CausalSentMessageFilter.  
A SentMessage encapsulates not only messages generated by 
the client through explicit multicast calls but also system-
generated messages resulting from client join and leave 
requests. The filter is given all messages so that it can, for 
instance, delay all of them using programmer-defined 
algorithms. This filter checks if the message is a user message, 
and if so, extracts the wrapped message, time stamps it, 
replaces the wrapped message with the timestamped edit, and 
forwards the modified SentMessage to the next sending stage 
of the communicator: 

public void filterMessage(SentMessage aSentMessage) { 

    if (message.isUserMessage()) {    

        message.setUserMessage ( 

            causalityManager.timeStamp(message));        

    sentMessageProcessor.processMessage(                     

     aSentMessage);     

} 
The dual of this event flow occurs at the receiving replica. 

The timestamped edits are passed to CausalityReceiveFilter, 
which removes the timestamps (after possibly buffering the 
messages) and forwards the list edits to the received message 
processor, which forwards it to the programmer-defined 
receive listener,IMCoupler we saw earlier. This part of the 
processing is shown in the trace displayed in the IM console 
window of Figure 12. 

In this trace, Alice, Bob, and Cathy communicate messages 
directly to each other, and Alice’s messages to Cathy are 
delayed: 

  communicator.setMinimumDelayToPeer( 
CathyP2P.USER_NAME, DELAY_TO_CATHY); 

 

Figure 11 Client-Side Send and Receive Filters 

 

Figure 12 Causal Multicast 

Alice enters the string “The woods,” in response to which 
Bob enters “are lovely.” Because of the delay, these messages 
arrive in reverse order at the Cathy’s site and are processed in 
this order by the receive filter. The filters learns from the time 
stamp of Bob’s message that there is an earlier message, so it 
buffers the message, and when Alice’s message arrives, it 
delivers Alice and Bob’s messages, in that order, to the receive 
message processor, which, in turn gives them to the IM coupler 
in that order. 

V.  IMPELEMENTATION AND EXPERIENCE 

Message filters expose part of the send and receive 
pipelines. We briefly outline the other aspects by tracing the 
flow of a multicast call from a sender to a receiver. The sent 
message along with the kind of the multicast group to which it 
is addressed (such as other, all, and caller) are wrapped in a 
SentMessage data object. This object is then given to the sent 
message filter, which, as mentioned above, gives it to the 
message processor. The filtered message then is then put in a 
sent message bounded buffer, unblocking the caller. The 
consumer of this buffer is a system-created message-sender 
thread.  At this point the message takes two routes depending 
on whether it is to be relayed through the central server.  

In the case of a relayed message, the message-sender thread 
computes the delay to the server, sleeps for the required time, 
and makes an RMI call to the relayer to multicast the message. 
The relayer passes the message to a  central multicaster, which 
for each destination, wraps the user message along with the 
name of the source into a ReceivedMessage object, and makes 
an RMI call at the destination to hand it the message. A 
separate multicasting thread is created in the relayer for each 
application session as it is assumed that messages of different 
applications do not interfere, and thus do not have to be 
serialized. 

In the case of a direct message, the steps are similar except 
for the following differences. A local rather than central 
multicaster is used to deliver a ReceivedMessage to each 



destination. Moreover, for each destination, a separate thread is 
created to send messages to the destination, delaying them if 
necessary. Thus, messages to different destinations can be sent 
concurrently. We do not create multiple threads for sending 
messages to the same destination to prevent messages from 
being delivered out of order. As the underlying IPC layer 
(RMI) supports synchronous sends, this means that the 
acknowledgement for a message to a destination must arrive 
before the next message can be sent. Thus, synchronous IPC 
conflicts with highly synchronous collaboration (such as 
sharing telepointer moves), even with (asynchronous) threads. 

In both the relayed and direct cases, an RMI call is made at 
a receiving site to deliver the ReceivedMessage object. These 
calls put the message in a bounded buffer and unblock the RMI 
thread. A message-receiver thread is the consumer of this 
buffer. If a message arrives from the relayer, it calculates the 
amount of delay to the server, and sleeps for this amount. It 
then delivers the message to the receive-message filter, which 
gives it to the receive message processor. The final step is to 
extract the user data and sender name from the message and 
pass them as parameters to each receiver listener.  

We have used this implementation for creating a variety of 
student assignments. These include a centralized and replicated 
implementation of shared Java widgets, and an integrated IM-
editor tool that allows users to jointly edit a text area, exchange 
messages about the editing, and use a telepointer to point at the 
messages and text area. The assignments involved causality 
and operation transformation modules for direct and relayed 
communication, respectively, and jitter filters for reducing jitter 
in telepointers. None of the previous group communication 
tools are flexible enough to implement these assignments. 
Lower-level general purpose distributed computing platforms 
such as RMI of course offer this flexibility, but programmers 
would then be responsible for the non-trivial tasks handled by 
our implementation. 

VI.  CONCLUSIONS AND FUTURE WORK 

This paper motivates a new set of requirements for 
multicast including support for caller control of message 
destinations, centralized and replicated architectures, message 
delay, ordering and change, direct and relayed communication, 
and multi-application sessions. It identifies features of remote 
procedure call that conflict with these requirements such as 
synchronous calls, transparency, concurrent remote 
invocations, single-site proxies, and remote function calls. It 
describes a design and implementation of message multicast 
that meets the requirements.  

The design has several new features including two-level 
sessions, joining a session as a relay client or direct 
communicator, automatic awareness of the message sender, 
send and receive filters, and high-level primitives for adding 
delay and jitter in both direct and relayed communication.   

The paper shows how these features can be used to 
implement (a) centralized and replicated architectures, and (b) 
coupling, awareness, control and consistency.  In all of the 
examples, the original single-user code was used unmodified, 
and additional collaboration functions (such as access control 
and consistency) were added without changing the basic code 

for coupling users. Thus, while our primitives require 
collaboration awareness in the application code, different kinds 
of awareness such as coupling, control, and consistency 
awareness can be isolated in different modules. 

While our driving problem was education and research, 
there is no reason why our design would not be useful also for 
building industrial strength applications, which arguably, do 
not offer more sophisticated synchronous collaboration 
functions than our running example. Of course, more work is 
needed to validate our hypothesis – our code is available in a 
GitHub repository for this validation. Additional research is 
also needed to integrate our research with the lower-level 
abstractions supporting RPC and higher-level abstractions 
supporting collaboration transparency. This paper provides a 
basis for investigating such support. 

ACKNOWLEDGMENT 

This research was supported in part by the NSF awards IIS 
0810861 and IIS 1250702. 

REFERENCES 

[1] Dewan, P., Tools for Implementing Multiuser User Interfaces. Trends in 

Software: Issue on User Interface Software, 1993. 1: p. 149-172. 

[2] Dewan, P., R. Choudhary, and H. Shen, An Editing-based 
Characterization of the Design Space of Collaborative Applications. 

Journal of Organizational Computing, 1994. 4(3): p. 219-240. 

[3] Roseman, M. and S. Greenberg, Building Real-Time Groupware with 
GroupKit, A Groupware Toolkit. ACM TOCHI, 1996. 3(1). 

[4] Dewan, P. and R. Choudhary, A High-Level and Flexible Framework for 

Implementing Multiuser User Interfaces. ACM TOIS, 1992. 10(4). 
[5] Chung, G. and P. Dewan. Towards Dynamic Collaboration 

Architectures. in Proc. CSCW. 2004. 
[6] Junuzovic, S. and P. Dewan. Towards Self-Optimizing Collaborative 

Systems. in Proc. CSCW. 2012. 

[7] Junuzovic, S. and P. Dewan. Multicasting in Groupware. in Proc. IEEE 
CollaborateCom Conference. 2007. 

[8] Lamport, L., Time, clocks, and the ordering of events in a distributed 

system. CACM, July 1978. 21(7): p. 558-564. 
[9] Sun, C. and C. Ellis. Operational Transformation in Real-Time Group 

Editors: Issues, Algorithms, and Achievements. in Proc. CSCW'98.  

[10] Ellis, C.A. and S.J. Gibbs. Concurrency Control in Groupware Systems. 
in Proceedings of the ACM SIGMOD '89. 

[11] Knister, M.J. and A. Prakash. DistEdit: A Distributed Toolkit for 

Supporting Multiple Group Editors. in Proceedings of CSCW'90. 
[12] Krasner, G.E. and S.T. Pope, A Cookbook for Using the Model-View-

Controller User Interface Paradigm in Smalltalk-80. Journal of Object-

Oriented Programming, August/September 1988 1(3): p. 26-49. 
[13] Lauer, H.C. and R.M. Needham, On the Duality of Operating System 

Structures. ACM Operating System Review, April 1979. 13(2): p. 3-19. 

[14] Kum, H.-C.M. and P. Dewan, Supporting Real-Time Collaboration Over 
Wide Area Networks. Proc. ACM CSCW 2000. 

[15] Stefik, M., D.G. Bobrow, G. Foster, S. Lanning, and D. Tatar, WYSIWIS 

Revised: Early Experiences with Multiuser Interfaces. ACM TOIS, April 
1987. 5(2): p. 147-167. 

[16] Dewan, P. and E. Vasilik. Supporting Objects in a Conventional 

Operating System. in Proceedings of the San Diego Winter '89 Usenix 
Conference. February 1989. 

[17] Nelson, B.J., Remote Procedure CallPh.D. Thesis and Tech Report 

CMU-CS-81-119. May 1981:  
[18] Dewan, P., Architectures for Collaborative Applications. Trends in 

Software: Computer Supported Co-operative Work, 1998. 7: p. 165-194. 

[19] Nichols, D., P. Curtis, M. Dixon, and J. Lamping. High-Latency, Low-
Bandwidth Windowing in the Jupiter Collaboration System. in UIST. 

1995. 


