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Abstract—How to maximize influence through social networks
is a key challenge behind many important applications in real
life. For instance, marketers are interested in how to use limited
resource to promote a new product as widely recognized by
consumers. In recent years, researchers have conducted numerous
studies to conquer this intriguing problem in single network
scenario. In terms of the scale of achieved influence, the best
solution is a greedy algorithm based on time-consuming Monte
Carlo (MC) simulation. However, it is not scalable to large-scale
social networks or the scenario of targeting multiple networks. We
propose an innovative Transfer Influence Learning (TIL) method
based on the study on three real networks, as well as statistics on
network features of results generated by the greedy algorithm.
The proposed method uses supervised learning technique to
efficiently maximize influence across multiple networks. Once
having the result of the greedy algorithm in one network, the
TIL algorithm can avoid using MC simulation completely on
other networks, which enables the algorithm to run very fast.
The experiments show that the proposed TIL algorithm is able
to generate a diffusion with closed scale comparing to the
result of the greedy algorithm within a much faster time, while
outperforms some other state-of-art heuristic algorithms.

Keywords—Data Mining, Social Network, Viral Marketing, Su-
pervised Learning

I. INTRODUCTION

Viral marketing is an efficient marketing strategy that aims
to use limited budget to reach out as many customers as
possible. The success of viral marketing mainly depends on the
word-of-mouth effect through social networks initiated by the
customers who favor the products. Therefore, the key problem
is how to identify the most influential users as seeds and
convince them to promote the product. Such problem is defined
as the Influence Maximization Problem [13], [17].

In order to systematically study the Influence Maximization
Problem, David Kempe et al. proposed general diffusion
models, Linear Threshold (LT) Model and Independent Cas-
cade (IC) Model, to describe how a piece of information is
disseminated through social networks. Under the assumption
of the IC or LT model, the Influence Maximization Problem
can be formulated as a constrained maximization problem:
given an integer, say k, how to pick k seeds so that the
expected number of influenced users can be maximized at
the end of influence propagation process. Therefore, some
researchers also refer this problem as k-seeds Maximization
Problem [21]. The Influence Maximization Problem is proved
to be NP-hard under both LT and IC models, and the objective

Fig. 1: Transfer Influence Learning (TIL) Framework

function (expected number of influenced users) is submodular.
As a result, in terms of the scale of achieved influence, the
state-of-art solution is a greedy algorithm proposed in [17],
which guarantees a constant factor lower bound. At every step,
the algorithm adds the node who generates the largest expected
marginal gain of influenced users into the seed set, until the
number of seeds reaches the constraint (k). Unfortunately,
under both LT and IC models, calculating the expected number
of influenced users by using an arbitrary seed set is proved
to be #P-hard [6], [8]. As a result, the greedy algorithm
proposed in [17] needs to use Monte Carlo (MC) simulation to
approximate this number, which largely limits its scalability.

Previously, researchers proposed numerous improved so-
lutions to compensate the disadvantage of the greedy algo-
rithm [6]–[8], [16], [20]. These algorithms can efficiently
shorten the running time of the greedy algorithm by reducing
the number of calls on MC simulation [16], [20] or shrinking
the length of influence path to get an approximated result [7].
However, they still cannot avoid using MC simulation entirely.
This makes the algorithms still implausible on the situation
when we have multiple disjoint networks on which we want
to maximize the influence. In real life, we may often en-
counter the situation of targeting at multiple networks: a real

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257260



2

social network is usually huge (hundreds of millions of nodes
and millions of edges) and the marketing budget is limited.
Therefore, instead of applying viral marketing to the entire
network directly, many companies prefer to first partite it into
subgraphs based on users’ relationship then target at some
selected subgraphs. In this case, applying some state-of-the-art
algorithms on these subgraphs one by one seems not efficient
anymore. Unlike previous solutions, this paper designs an
innovative framework, Transfer Influence Learning (TIL), to
utilize the results of the greedy algorithm on one network to
maximize the influence on other networks. After we run the
greedy algorithm on one network, the proposed framework is
able to completely avoid MC simulations on other networks,
which guarantees its efficiency in the setting of multiple target
networks. To put it simple, the algorithm trains a classifier
based on the results of the greedy algorithm and use it to
directly decide whether a node should be selected. Fig. 1
is a sketch of the designed framework. Since the study of
classification algorithms is very mature, the true challenge
in the proposed framework is to choose appropriate node
features. First, unlike other classification task is able to use any
information of a node, we are limited to only network-structure
related features, since the Influence Maximization Problem is
a graph based optimization problem. In addition, the feature
values should be transformed to a network-independent form
in order to guarantee the trained classifier works universally on
different networks. At last, previous works have demonstrated
that some single features, such as degree centrality, is able to
empower efficient heuristic algorithms [6], [17]. We need to
ensure the selected features are able to combine the results of
the greedy algorithms well to generate lager-scale diffusions
comparing to heuristic algorithms.

Based on three real coauthor networks, we fully analyze 12
most common network-structure related features of a node and
their correlation to the results of the greedy algorithm. We have
also explored the heuristic algorithms empowered by these
features. After feature selection, we combine 4 of them with
a logistic regression classifier in the proposed TIL framework.
Later experiments have shown the TIL is able to generate a
close-scale diffusion to the greedy algorithm, and significantly
outperforms any other heuristic solution. The experiments also
show that the TIL is considerably scalable in a multiple
network scenario comparing to the greedy algorithm. We
summarize our major contributions as follows:
• As far as we know, this paper is the first article to study

the problem of using supervised learning to efficiently
maximize influence across multiple networks.

• We propose a new framework, Transfer Influence
Learning (TIL), which uses supervised learning based
on the result of the greedy algorithm on one network to
guide the seed selection on other networks.

• We fully analyzed 12 basic heuristic algorithms by using
different network features. Moreover, based on statistics,
we further made a simple, yet efficient improvement
for basic heuristics. The same insight is also applied to
the proposed TIL method. The improved heuristics and
several other previous algorithms are served as baselines
to evaluate the proposed algorithm.

• Based on experiments on real-world networks, we have
illustrated that the proposed algorithm is able to run in
constant time like heuristic algorithms yet still generate
a similar sized diffusion like the greedy algorithm.

The rest of paper is organized as follows: Section II in-
troduces related work, which covers necessary backgrounds,
as well as previous works of other researchers. Section III
introduces the datasets we have used, as well as statistical
discoveries on network features which support the proposed
algorithm. Section IV discusses the performance of 12 different
heuristic algorithms and the improvement of them. These
heuristics are used as baselines to evaluate the proposed ap-
proach. Section V introduces the proposed Transfer Influence
Learning framework and the experimental evaluation of it. At
last, Section VI is the conclusion of this article.

II. RELATED WORK

Influence Maximization Problem is first studied by Domin-
gos et al. in [13] and formulated by David Kempe et al. in [17].
Previous research has made important progress in the study
of this topic, including the proposition of general diffusion
models. General diffusion models are used to simplify the
description of the influence propagation process through social
networks. Although many works attempt to design more accu-
rate diffusion models [5], [23], the most frequently used ones
nowadays are still Independent Cascade (IC) Model and Linear
Threshold (LT) Model due to their simplicity and generality.
The IC Model was first proposed in [17]. It views the influence
between nodes as independent trials with certain probabilities
to succeed. To be more specific, once a node accepts a piece
of information (called active node), it is given one chance
to activate each of its inactive neighbors (nodes who have
not accepted the information). When the trial is successful,
the activated neighbor will further attempt to activate its own
inactive neighbors, in which case causes a cascade spreading
the information. The probabilities to succeed are modeled as
parameters and only depend on each pair of users.

Unfortunately, the Influence Maximization Problem is
proved to be NP-hard under the LT and IC model. In terms of
the scale of final influenced users, the best known approach to
solve it is the greedy algorithm proposed in [17]. The greedy
algorithm utilizes the monotonocity and submodularity of the
objective function of the Influence Maximization Problem,
which guarantees that the result has a constant factor lower
bound of around 63% (proved by Cornuejols et al. in [9],
[22]). However, the original greedy algorithm is not scalable
to multiple-network scenario, since it needs to use Monte
Carlo (MC) simulation to approximate the expected number of
influenced nodes for any seed set. Naturally, many researchers
have attempted to develop faster algorithms. For example,
CELF [20] uses a priority queue to restore the computed
marginal gains of each node. At each time, CELF only needs
to update a few nodes at the top before making the correct de-
cision on the next seed to select. This idea largely reduces the
number of calls on MC simulation while still achieve the same
scale of diffusion as the original greedy algorithm. Another im-
provement of CELF is called CELF++ [16], which can further
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reduce the number of MC simulation calls. Other related works
include the approaches proposed by Wei Chen et al. in [6]–[8].
For example, MIA [6] uses reduced subnetworks of the original
network by ignoring pathes with insignificant probabilities.
The result calculated by MC simulation on these subnetworks
is much cost-effective and can be used to approximate the
result of the original network. However, in order to reach the
balance between performance and efficiency, the parameter
of this approach needs to be adjusted accordingly, which
may be network-dependent. The major differences between
the proposed Transfer Influence Learning (TIL) algorithm in
this paper and previous work lie in the following aspects: (1)
instead of one target network, TIL addresses the problem of
maximizing influence across multiple networks; (2) we treat
the Influence Maximization Problem as a classification task
and use trained classifiers to directly select nodes based on
their features. This allows the proposed algorithm to utilize the
result of the greedy algorithm on one network and completely
avoid using MC simulation on other networks. Therefore, the
proposed TIL algorithm is very competible with respect to the
running time. Our experimental evaluation demonstrates that
the TIL algorithm also generates seeds which can initiate a
wide spread of the information.

III. DESCRIPTION OF DATASETS

A. Network Generation and Preprocess
In this paper, our work is mainly based on networks gener-

ated from a 1GB dataset, which is retrieved from DBLP1. The
dataset contains 1,397,240 articles published in the computer
science area until the year of 2011. More particularly, the
dataset includes important information related to each paper,
such as the names of authors, published date and etc.

To begin with, we construct a coauthor network based on all
these papers. After we remove those authors who do not have
any coauthor relationship (no connection at all), we obtain
a refined network containing 866,055 nodes and 4,944,850
edges. Since our research is based on the Independent Cascade
(IC) model, we also record the coauthor times of each pair of
authors in order to calculate edge weights in the network. More
specifically, as defined by [17], for any two connected authors,
say u and v, the weight of their edge (wu,v) is assigned as
follows, where t is the coauthor times of two authors, and p
is a small probability:

wu,v = 1− (1− p)t (1)

Similar to the original definition of the IC model, we apply a
uniform probability to the value of p. For our network, p = 5%
is used in Eq. (1). In the second step, since our problem setting
is maximizing influence on multiple disjoint networks, we use
a fast clustering algorithm, Graclus [10]–[12], to further partite
the original network into 100 small subnetworks. The majority
of the content in this paper is based on three networks with
similar sizes from the obtained 100 subnetworks: network 1
contains 12,651 nodes with 38,163 edges connecting them. The
number of nodes for network 2 and 3 are 10,945 and 11,402,

1http://www.informatik.uni-trier.de/∼ley/db/

respectively, and the number of edges are 32,961 and 32,004,
respectively.

B. Node Features Generation
The features associated with each node in the network are

all derived from the network structure itself and generated
by Gephi2. Moreover, in order to guarantee that the proposed
algorithm is universally applicable to all networks, instead of
directly using the absolute values of the features, we transform
all the values to network-independent format, such as the cor-
responding rank in the network. As a result, we have selected
12 most common features that are constantly used in the study
of social networks. The reason why we choose such 12 features
is that they almost thoroughly represent the structure-related
characteristics of a node, and they are usually precomputed
and stored before any specific data mining task. Moreover,
generating these features is much less time-consuming than
directly running the greedy algorithm on the network. We list
and introduce all of them as follows:

1. Degree Centrality. Degree centrality is the number of
edges that a node has. In this paper, since the networks
we have are all undirected, there is no difference be-
tween in-degree and out-degree. However, it is easy to
extend the content in the paper to a directed network
scenario by introducing two types of degrees.

2. Weighted Degree. Unlike degree centrality, weighted
degree also takes the weight of each edge into consid-
eration. To be more specific, weighted degree of a node
u is defined as

∑
v wu,v , where v is a neighbor of u.

3. Eccentricity. Eccentricity of a node is the greatest
geodesic distance between this node to any other node,
where geodesic distance between two nodes is the length
of the shortest path connecting them. Therefore, with a
smaller eccentricity value, the node may be easier to
reach other nodes.

4. Closeness Centrality. Similar to the definition of ec-
centricity, the closeness centrality of a node is also
calculated from its geodesic distance to any other nodes.
However, instead of using the greatest value like eccen-
tricity, closeness centrality takes the average value of the
geodesic distance from the node to others.

5. Betweenness Centrality. According to Wikipedia3, be-
tweenness centrality “is equal to the number of shortest
paths from all vertices to all others that pass through
that node”. We generated this feature by Gephi, which
uses the algorithm introduced in [2].

6. Authority Score. Authority score is the result generated
by HITS algorithm [18]. During the calculation, we set
the stopping threshold of HITS algorithm to be 10−6

for all networks. We do not include the hub score into
our study because of two reasons: (1) in an undirected
network, authority score and hub score are exactly the
same; (2) authority score is the metric that measures the
“reputation” of a node, which is more likely to be the
characteristic of an “influencer”.

2http://gephi.org/
3http://www.wikipedia.com
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7. PageRank Score. Similar to the HITS algorithm,
PageRank [3] also provides the ranking information of
the “importance” of nodes. We set the stopping threshold
of PageRank to be 10−6 and set the probability that a
surfer will randomly restart its walking to be 0.85.

8. Modularity Class Size. For each network, we apply a
modular community detection algorithm [1] to further
discover the inner community structure of the network.
Modularity class size is the number of nodes in the same
community that an individual is clustered into. The value
of resolution is set to be 1.0.

9. Component Size. We find different Weakly Connected
Components (WCCs) in each network. Of course, since
our networks are all undirected, WCC is simply just
connected component. Component size is a feature
recording the number of nodes in the same connected
component that a node belongs to.

10. Clustering Coefficient. According to [14], “the cluster-
ing coefficient of a node A is defined as the probability
that two randomly selected friends of A are friends with
each other”. In this paper, we use the method proposed
in [19] to compute this metric.

11. Number of Triangles. Triadic closure is a very im-
portant principle in social science and related research
fields. A node’s number of triangles feature is the num-
ber of triangles of which vertices contain the node. This
is an indicator of whether the neighborhood of a node
is saturated, as well as the neighborhood’s compactness.

12. Eigenvector Centrality. Eigenvector centrality is also
a frequently used measurement that evaluates a node’s
influence. We set the number of iterations to be 10,000
in Gephi to generate this feature.

As we stated before, after we obtain the absolute value
of each feature, we need to transform them to network-
independent format. The reason to do this is that if we apply
a classification algorithm to learn the connection between
node features and the result of the greedy algorithm, such
transformation will guarantee that the learned rules are still
applicable on a different network. For example, if we use
absolute feature values, an obtained decision tree classifier
may have an inner node of whether the degree is greater than
a certain value, say 3. Although the value of 3 is a good
threshold to divide users in one network, it may be meaningless
to another one, since all the nodes in that network may have
a degree greater than 3. In this case, the trained classifier
becomes useless. Compare to the absolute values, network-
independent format such as the rank of a value in the entire
network seems to be able to overcome such problem. Thus, for
the feature 1∼7 and 10∼12, we replace the numerical values
by the percentages they rank in a descending order (a.k.a.
rank

#nodes ). In other words, the greater a value is, the higher it
ranks in the network, and the transformed value, therefore,
tends to be smaller. As for the feature 8 and 9, on the other
hand, the absolute values are replaced by the percentage of the
coverage of the community/component to the whole network.
We dealt with these two features differently due to the nature
of them (sizes of sub-networks). As a result, if a node stays
in a community/component with larger size, the transformed

result tends to be larger as well.

C. Statistics of Seed Sets of the Greedy Algorithm

In order to demonstrate the possibility of using supervised
learning to perform efficient seed selection, we use statistical
methods to display the connection between a node’s features
and whether it will be selected by the greedy algorithm of the
Influence Maximization Problem. Intuitively, one may think
that such connection is insignificant, since at each step, the
greedy algorithm involves a more complicated consecutive
selection process: it maximizes the expected marginal gain
with respect to the current seed set. Such idea is very different
from that simply using the features of a node to decide
whether it should be selected as a seed. However, we think
the existence of such connection is already powerful enough to
support a brand new seed selection algorithm. Many previous
works have shown that simple heuristics [17] or heuristics
with slight improvement [7], albeit not as good as the greedy
algorithm, may still generate a diffusion with the scale closed
to the greedy algorithm. Such results are indirect evidence
that hints the greedy algorithm may prefer nodes with “good”
characteristics. Such selected nodes may overlap the seeds
generated by heuristic algorithms. Therefore, the combination
of node features and the result of the greedy algorithm may
generate an efficient method to guide future seed selection.

In order to test our conjecture, we decide to use statistical
analysis based on the three coauthor networks to display
such connection. We first use the greedy algorithm with MC
simulations (developed by Amit Goyal et al. in [15]) on three
networks to generate 100 seeds. We label the seeds “1” (pos-
itive class) and non-seeds “0” (negative class), respectively.
Then, we draw the probability mass functions on different
features for the two classes. Because of the space limit of the
paper, we only display the figures generated from the network
1 in Fig. 2. The statistics on other networks are similar. The
X axis in Fig. 2 is the value of each transformed feature. The
Y axis is the percentage of seeds/non-seeds having a certain
value of the feature.

As we can see in Fig. 2, the probability mass functions of
many features are very different for seeds and non-seeds. For
most features using ranking percentage transformation, seeds
tend to have smaller values than non-seeds. Such observation
is very notable in features such as degree, weighted degree,
PageRank score and etc. The peaks of seeds usually accumu-
late on small values, while peaks appear on large values for
non-seeds. In other words, the seed chosen by the greedy algo-
rithm tends to have higher degree/weighted degree/PageRank
score and etc. than a non-seed. Therefore, it is not surprising to
see some heuristic algorithms using centralities such as degree
or PageRank may also generate considerably good diffusion
comparing to the greedy algorithm. The exception of ranking
percentage transformed features is the clustering coefficient.
Our statistical results support that the greedy algorithm prefers
nodes with lower ranks on the clustering coefficient, which
means smaller absolute values. One possible explanation to
such phenomenon is that a node with smaller value of cluster-
ing coefficient is more likely to have higher degrees, and thus
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Fig. 2: Feature Statistics of Seeds and Non-Seeds

it has the potential to influence more nodes. However, with the
increase of degrees, the probability for every pair of neighbors
being friends decreases intuitively, which results in the value
of the clustering coefficient to be smaller.

The statistics on most ranking percentage transformed fea-
tures are consistent with our understanding of the nature of
the features. For example, nodes with higher degrees also
have the potential to influence more nodes, so it is more
likely to be selected by the greedy algorithm. However, the
statistics on eccentricity and closeness are surprisingly against
the intuition. The results demonstrate that the greedy algorithm
prefers nodes with higher ranked eccentricity and closeness,
which are the nodes having large values of eccentricity and

closeness. This phenomenon is not easy to understand, since
intuitively, a node with shorter (average or maximal) distance
to other nodes is closer to the “center” of the network.
Thus, such node should also be preferable for the greedy
algorithm. However, the truth is not like this. In our opinion,
we believe unlike degree centrality, distance centrality is not
very indicative of a node’s influence, since the influence
to other nodes decreases exponentially with the increase of
distance. Therefore, although a node may have a small value
of eccentricity or closeness, it still can not assure that it will
have a great influence on those nodes which are only two or
three hops away. This may also be the reason why previous
studies like [17] have shown that distance-based heuristics are
usually not as promising as degree-based heuristics.

For features using the coverage percentage transformation
(modularity class and component size), seeds generated by
the greedy algorithm usually have larger values than non-
seeds, which means the greedy algorithm also prefers to select
nodes that belong to a large modularity class/component.
This phenomenon is easy to understand, since such nodes
have the potential to influence more other nodes in the same
class/component. Generally speaking, the statistical observa-
tion is consistent in all three networks. In the next section, we
will introduce heuristic solutions to Influence Maximization
based on extracted features and use experiments to evaluate
them. The improved version of such heuristics are served as
one of the baselines to evaluate the proposed method.

IV. HEURISTIC ALGORITHMS

A. Basic Heuristics
Based on different features we have extracted in the previous

section, we develop basic heuristic algorithms by simply
using the order of nodes according to the transformed feature
values. Whether to use the descending or ascending order
to select seeds is usually straightforward according to the
definition of the feature. For instance, there is no doubt
that we should prefer nodes with higher degrees and greater
authority scores (a.k.a. smaller values after ranking percentage
transformation). Moreover, the statistics of the seeds of the
greedy algorithm also support these judgements. The only
exceptions are eccentricity and closeness centrality. Intuitively,
we should prefer lower ranked nodes, since they have smaller
values of eccentricity or closeness. However, the statistics on
seeds of the greedy algorithm suggest us to take the opposite
way. As a result, we compare these two algorithms first and
found out that the heuristic based on our intuition is slightly
better. As a result, we decide to use the descending order of
the transformed values for eccentricity and closeness (a.k.a.
choose smaller absolute values).

To sum up, for features in the network-independent format,
on the one hand, we use the ascending order of the transformed
values to select seeds for all features except for five of them:
modularity class size, component size, clustering coefficient,
eccentricity and closeness. On the other hand, for these five
features, the heuristic algorithm should prefer to choose seeds
in the descending order. In the evaluation, for each feature,
we use the heuristics to select 1∼100 seeds and calculate
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Fig. 3: Performance of Heuristic Solutions on DBLP
Networks

the expected values of the number of influenced users by
using them as seeds. The expected number of influenced
users is computed by using 10,000 iterations of simulation
of the influence process under the IC model. Fig. 3 shows
the comparison of the 12 basic heuristics on three coauthor
networks.

Through comparison, we can see that the difference between
the degree and weighted degree centrality is not significant,
which means whether to consider the weight of each edge
does not change the result too much. By further examining
the overlap of seeds selected by these two heuristics, we
found out that 67% of their seeds are the same for network

1. This percentage for network 2 and 3 are 71% and 75%,
respectively. Such observation suggests that a high degree node
usually may also have a high weighted degree. In addition,
we found out that the seeds of eccentricity and closeness
heuristics overlap completely in all three networks, and the
same situation also happens in heuristics using modularity and
component size. Such results tell us for a seed set whose size is
much smaller than the network, there is a high probability that
some heuristics are the same. Although random picking nodes
when there are multiple candidates having the same rank may
differentiate two heuristics, our further experiment shows that
this does not change the algorithm’s performance too much.
Moreover, we discover that PageRank heuristic is constantly
better than others in all three networks, which is consistent
with the findings in [6].

B. Improved Heuristics

Through examining the neighborhood overlap [14] between
each two seeds selected by the greedy algorithm, we found out
that 98.04% of all seed pairs in the network 1 do not share
any common neighbors. For the network 2 and network 3,
these percentage numbers are even larger (98.3% and 98.61%,
respectively). Therefore, a natural thought to obtain a seed
set with better quality is that at each step of increasing the
seed set, we should not select nodes which have a large
overlap on neighbors with any node in the current seed set.
The similar idea empowers the Degree Discount Algorithm
proposed in [7]. However, unlike [7] only has degree heuristic,
we have 12 different heuristics, which is not easy to compute
an optimal “discount” for each of them. As a result, in order
to obtain better heuristic algorithms, we impose a stronger
restriction on the 12 different heuristics, where we do not
allow any two selected seeds to have any common neighbor. In
other words, for each heuristic algorithm, we still select seeds
according to the order of feature values. The only difference is
that after we add a new seed, in the future selection, we will
not consider those nodes which share common neighbors with
it. This rule is also adopted in the proposed Transfer Influence
Learning (TIL) algorithm to obtain better seed set, which is
going to be introduced in the next section.

Our experiments show that such improvement on heuristics
is not equally effective for every heuristic. The improvement
on most heuristics can increase the expected number of the
influenced nodes less than 10 for a seed set of size 100.
However, for the component size, eigenvector and number of
triangles, the enhancement is more obvious. The improvement
on these 3 heuristics on network 1 is shown in Fig. 4, and
the results on other networks are similar. To our surprise, the
effect of this refinement step on the heuristic using component
size is much larger than the heuristic using modular class
size. We should notice that before such refinement, these two
algorithms are identical to each other in the previous section.
Such difference suggests that the coverage of the connected
component, to which a node belongs, may better illustrate the
node’s influence than the coverage of modularity class.

In the next section, we will introduce the method which
combines the result of the greedy algorithm and heuristic
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Fig. 4: Improvements for Heuristics: Black curves with plus
markers are the basic heuristics. Red curves are the improved
heuristics. Blue curves are the results of the greedy algorithm.

features to obtain an efficient approach for the Influence
Maximization Problem when targeting on multiple networks.

V. TRANSFER INFLUENCE LEARNING (TIL) FRAMEWORK

On the one hand, the advantage of the greedy algorithm
to solve the Influence Maximization Problem is that it can
generate a large-scale diffusion, but the disadvantage is that it
wastes too much time on MC simulation. On the other hand,
heuristic algorithms using node features have the advantage of
extremely fast running time, yet the generated diffusion is not
as good as the greedy algorithm. In this section, we introduce

Network 1 Network 2 Network 3
Feature #1 Weighted Degree Weighted Degree Weighted Degree
Feature #2 PageRank Score Authority Score Authority Score
Feature #3 Degree Degree Degree
Feature #4 Authority Score PageRank Score PageRank Score
Feature #5 Clustering Coefficient # Triangles Clustering Coefficient
Feature #6 Betweenness Betweenness # Triangles

TABLE I: Most Important Features in Networks (Ordered by
the Importance)

a new method that uses supervised learning technique to train
classifiers based on the features of nodes and the result of the
greedy algorithm. The trained model can efficiently learn the
hidden patterns of the greedy algorithm’s preference, and thus
can be used to guide the seed selection in other networks. The
proposed Transfer Influence Learning (TIL) method is built
according to the result of the greedy algorithm, yet it only
uses the nodes’ features to guide future seed selection. As a
result, it provides a tradeoff between the efficiency of heuristic
algorithms and the effectiveness of the greedy algorithm.

A. Model Description
Feature Selection. For the purpose of simplifying the model,

we are not using all 12 features for supervised learning.
Therefore, we apply feature selection techniques to find in-
formative features in the classification task, which should also
be universally acceptable for all networks. We use the feature
evaluation based on information gain to find most important
features for the three networks. Table I lists the top 6 important
features for each network. The ones in bold are the common
features that exist in all three networks. We can see that the
results of the evaluation of different features do not change
too much for different networks, and the top 4 features are the
same for all networks. Therefore, these 4 features might fulfill
the requirement to be used in the supervised learning task.

Resampling Imbalanced Datasets. Another problem we
need to deal with is the imbalanced training set. As we
introduced before, since the greedy algorithm takes a long
time to compute, for each network, we only generated 100
seeds. As a result, the positive class (a.k.a. seeds) contains very
few samples comparing to the negative class. We apply resam-
pling techniques to create a balanced dataset before applying
any classification algorithm. We use random downsampling
to reduce the major class and oversampling to increase the
minor class until both of them reach the size of half of the
original dataset. We also tried more complicated resampling
approaches, such as SMOTE [4]. However, the advantage of
using advanced resampling is not very significant. Moreover,
considering that advanced resampling approaches usually take
a long time to obtain the results, we think it is not cost-efficient
to use them. Our experimental evaluation demonstrates that the
simple sampling method is already good enough to obtain an
efficient seed selection algorithm.

Training Classifiers and Seed Selection. For the selected
four features, we decide to use the logistic regression algorithm
to train classifiers. This is not only because of the excellent
performance and generality of this discriminative model, but
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also it can output a numerical score for each testing instance
that represents how “confident” the classification result is. We
sort all nodes in descending order of their scores generated
by the classifier to obtain a candidate list. The order of this
list is exactly the order how we select seeds. Of course, as we
discussed before, when we add the current top ranked node into
the seed set, we remove all other nodes sharing common neigh-
bor(s) with it from the candidate list. We continue to select
seeds until the size of seed set meets the problem constraint.
Notice that here we accept one of the fundamental assumptions
of the Influence Maximization Problem: the targeting network
has much more nodes than the seeds, which assures that after
removing nodes having common neighbor(s), the candidate list
is still non-empty. Algorithm 1 presents the TIL framework.

Algorithm 1 Transfer Influence Learning (TIL) Framework

Input:
G1: The social network from which the model is learnt.
S1: The seed set of the greedy algorithm on G1.
G2: The social network we want to maximize influence.
k: The size of the required seed set in G2

Output: S2: Seed set for G2 whose size is k.
1: Create a balanced training set T from G1 and S1.
2: Apply a classification algorithm on T and obtain the

classifier C.
3: Feed nodes in G2 to C and sort them according to the

outputs of C. Let the obtained list be L.
4: S2=∅
5: while (|S2| < k) do
6: S2 = S2 ∪ {x|x is the top node in L}
7: Remove all nodes who share common neighbor(s) with

x out of L
8: end while
9: return S2

B. Evaluation on Three Coauthor Networks

In order to evaluate the efficiency of Algorithm 1, we use
each coauthor network and its 100 seeds selected by the greedy
algorithm to train the model and use it to select seeds on each
of the other two networks. In order to be precise, for each
comparison algorithm, we run it for 50 times on each network
and the reported results are the average values.

To show how much efficiency on the running time that the
TIL algorithm can achieve, we have compared the average
running time of the TIL to the greedy algorithm [17] and
another state-of-art solution: CELF++ [16]. CELF++ algorithm
is able to generate almost the same result as the original greedy
algorithm, but runs much faster. Notice that for the network
from which the TIL is learnt, since we need to run the greedy
algorithm on it, the running time of the TIL method on that
network will be exactly the same to the greedy algorithm.
Therefore, the comparison focuses on the running time on
those networks at which the trained model is targeting.

When we compute the running time of the TIL algorithm,
we consider time of both training the classifier to select seeds

and generating four types of node features that are used in the
training task. For example, if we adopt the TIL from network 1
to network 2, the total time used on network 2 will be the sum
of the running time of the following three steps: (1) generating
four kinds of node features for all nodes in network 1 and 2;
(2) training a classifier from the selected seeds in network 1;
(3) use the classifier to select the seeds on network 2. We
display the running time of using each algorithm to select
1∼30 seeds on three networks in Fig. 5. We omit the running
time of heuristic algorithms in this experiments, since they
can finish in constant time for all sized seed set, which makes
them indistinguishable with the TIL in Fig. 5. As one can
see in Fig. 5, comparing to the original greedy algorithm and
CELF++, the TIL algorithm is more scalable. The size of the
seed set does not affect the efficiency of the TIL algorithm,
since the TIL selects seeds similar to heuristic algorithms.
In fact, the TIL can be done in less than 10 seconds on a
target network that has around 10,000 nodes (the size of three
coauthor networks).

Next, we use experiments to show that although the TIL runs
in constant time like heuristic algorithms, its selected seeds
can generate much wider diffusion comparing to the seeds
generated by heuristic ones. For each network, we use the
seeds selected by different algorithms to simulate the diffusion
process under the IC model. The expected number of final
active users for each algorithm takes the average of 10,000
times of simulation results. Besides the original greedy algo-
rithm and CELF++, we add two other heuristic baselines. The
first one is the best results that can be generated by improved
heuristic algorithms in the Section IV and Degree Discount
heuristic [7]. Fig. 6 demonstrate the expected numbers of
active users of 1∼50 seeds selected by different algorithms. We
choose 50 as the largest number of seeds to demonstrate the
results because after 50 seeds, all algorithms are stable, a.k.a.
adding one more seeds will only result the expected number
of active users to increase less than 2. Moreover, notice that
CELF++ and the greedy algorithm usually generate the same
group of seeds, which makes their curves identical in the plots.
Moreover, as we introduced before, these two greedy search
based algorithms actually serve as an upper bound for other
algorithms. The proposed TIL algorithm is able to generate
a close-scale diffusion to the upper bound, and significantly
outperforms the two heuristic baselines. Combining with the
running time displayed in Fig. 5, we conclude that the TIL
provides a tradeoff between the heuristic algorithm’s efficiency
and the greedy algorithm’s effectiveness.

VI. CONCLUSION

This paper confirms the possibility of using supervised
learning technique to solve the Influence Maximization Prob-
lem in the scenario of multiple target networks. Based on three
real coauthor networks, we use a statistical method to show
how the difference between seeds and non-seeds of the greedy
algorithm reflects on different node features. Without losing
generality, we have tested 12 most frequently used features
in the classification task. The statistics on them support that
the difference between seeds and non-seeds of the greedy
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Fig. 5: Running Time of the Transfer Influence Learning
Algorithm on Three Networks

algorithm can be reflected. In other words, although the greedy
algorithm uses a hill-climbing method to select seeds dynami-
cally, the statistics show that some characteristics of static node
features cause a node more probable to be selected. Before
introducing the proposed Transfer Influence Learning (TIL)
algorithm, we have examined the performance of the heuristics
of the 12 features, as well as how to improve them by a simple
technique. At last, we have introduced the proposed algorithm,
which uses a logistic regression classifier and four types of
node features to solve the Influence Maximization Problem.
Experimental evaluation has shown that the TIL is much more
efficient comparing to some state-of-art greedy algorithms
and more effective comparing to heuristic algorithms. This
indicates that the TIL is preferable to be employed to maximize
influence in a scenario of multiple homogenous target networks
with similar sizes. However, how to extend the proposed TIL
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Fig. 6: Evaluation of the Transfer Influence Learning
Algorithm on Three Networks

framework to the problem setting of heterogeneous networks
and target networks of varied sizes still remains an unexplored
and challenging task, and we intend to leave it for future work.
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