
A Collaboration Model for Community-Based
Software Development with Social Machines

Dave Murray-Rust∗, Ognjen Scekic†, Hong-Linh Truong†, Dave Robertson∗ and Schahram Dustdar†
∗ Centre for Intelligent Systems and Applications,

School of Informatics, University of Edinburgh, UK
Email: d.murray-rust | dr @inf.ed.ac.uk

† Distributed Systems Group, Vienna University of Technology, Austria
Email: oscekic | truong | dustdar @dsg.tuwien.ac.at

Abstract—Today’s crowdsourcing systems are predominantly
used for processing independent tasks with simplistic coordina-
tion. As such, they offer limited support for handling complex,
intellectually and organizationally challenging labour types, such
as software development. In order to support crowdsourcing of
the software development processes, the system needs to enact
coordination mechanisms which integrate human creativity with
machine support. While workflows can be used to handle highly-
structured and predictable labour processes, they are less suitable
for software development methodologies where unpredictability is
an unavoidable part the process. This is especially true in phases
of requirement elicitation and feature development, when both
the client and development communities change with time. In
this paper we present models and techniques for coordination
of human workers in crowdsourced software development envi-
ronments. The techniques augment the existing Social Compute
Unit (SCU) concept—a general framework for management
of ad-hoc human worker teams—with versatile coordination
protocols expressed in the Lightweight Social Calculus (LSC).
This approach allows us to combine coordination and quality
constraints with dynamic assessments of software-user’s desires,
while dynamically choosing appropriate software development
coordination models.

I. INTRODUCTION

Most social computing systems today are based around
patterns of work that can be predictably modelled before
execution, such as translation, bug discovery, image tagging
[1, 2]. However, there are many cases where where a traditional
workflow approach is too rigid to address the dynamic an
unpredictable nature of the tasks at hand, and more flexible
crowd working systems must be developed [3]. One example of
such dynamic systems is the field of social machines—systems
where computers carry out the bookkeeping so that humans can
concentrate on the creative work [4]. This viewpoint can be
used to model and produce a diverse class of systems, span-
ning task-oriented (Wikipedia) to generic (Twitter); scientific
or humanitarian (GalaxyZoo, Ushahidi) to social (Instagram)
[5, 6]. In these systems, interactions between computational
intelligence and human creativity are deeply woven into the
system, making it difficult to draw a clear line between the
human and digital parts, separate their analysis and manage
coordination.

Creating a social machine requires understanding of in-
dividual and group human behaviour alongside technical ex-
pertise, and a view of the system as an interconnected whole
containing both human and computational elements. Further-

more, social machines must respond to the exigencies of
unfolding situations, requiring human creativity in the face
of unpredictability In such cases it is important not to over-
regulate participating humans, but to let them play an active
role in shaping the collaboration during runtime. This includes
leveraging human creativity and embracing the uncertainty that
comes with it. On the other hand, it is often necessary to
impose certain coordination and quality constraints for these
collaborations in order to manage them. The constraints delimit
the decision space within which the humans are allowed to
self-organize.

Recently, a number of human computation frameworks
supporting complex collaboration patterns were proposed (Sec-
tion V). They mostly build upon conventional crowdsourcing
platforms offering a process management layer capable of
enacting complex workflows. While these systems represent
important steps on the road to building complex social ma-
chines, in cases where unpredictability is inherent to the labour
process and we cannot know all of the system requirements in
advance, a different approach is needed.

In this paper we present models and techniques for coor-
dination of human workers (software users and developers) in
crowdsourced software development environments. They sup-
port dynamic bootstrapping and adaptation of social machines:
using one social machine to generate/alter another one, thus
allowing for flexible, community-driven development.This is a
fundamental novelty, allowing more human influence on the
execution of a computation.

The introduced concept augments the Social Compute Unit
(SCU, Section II-B)—a general framework for management of
ad-hoc human worker teams—with versatile coordination pro-
tocols encoded in Lightweight Social Coordination Calculus
(LSC, Section II-C). This combination allows us to design
and model social machines oriented towards crowdsourcing
software development. Coordination protocols provide high
level organisation of activities around development (includ-
ing planning and user assessment/feedback), while a set of
coordination and quality constraints guide the assignment of
workers to tasks. This allows the system as a whole to strike
a balance between imposed constraints and creative freedom
in the software development cycle. Concretely, this means that
the proposed model is able to take into account the feedback
from the user population and subsequently alter the process of
the development of software artefacts. Although we focus on
collaborative software development, the solution we present is

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257245

generally applicable to a class of similar problems; in partic-
ular, situations where a social machine is being developed—
and hence the developers must react to the changing needs and
behaviour of the community—using another social machine to
crowdsource the development.

The remainder of the paper is structured as follows: In the
continuation of the section we present the motivating scenario
of community-influenced, collaborative software development.
In Section II we first analyse how the presented scenario can
be modelled in terms of social machines. We then introduce
background concepts which we use to build our model: Feature
Oriented Software Development (FOSD), the Social Compute
Unit (SCU) and the Lightweight Social Calculus (LSC). In
Section III we present the coordination model for the social
machine employing the previously introduced background
concepts. In Section IV a proof-of-concept implementation
is presented and evaluated through simulation. Section VI
concludes the paper.

A. Motivating Scenario

Developing software for a large user base with diverging
interests can be challenging. As an illustrative example, let
us consider the problem of developing a forum-like scientific
platform—a scholarly social machine—to facilitate multidisci-
plinary cross-collaboration and sharing of results. This includes
functionality such as: paper previews, comments, in-place
formulae and data rendering, citation previews and bookmark-
ing. While these are functionalities beneficial to all scientists,
preferences for particular formats and services will likely differ
among different sub-communities. For example, chemists and
mathematicians will have different domain-specific require-
ments from the platform. Some examples are:

• Computer scientists need code syntax highlighting,
LaTeX rendering, embedding of IEEExplore and ACM
DL citations. If any of these features is missing, the
software is not useful to the community. However,
they do not particularly care about chemistry-specific
features.

• Chemists often use InChi strings to represent chem-
ical formulae. If the software supports InChi, then
chemists would also want support for compound
lookup on PubChem, and visualisation with pyMol.
Without these features, the platform does not help
them particularly. On the other hand, syntax highlight-
ing and IEEExplore integration is not important.

• Individual scientists may be bothered by (lack of)
certain features. For example, users may dislike being
forced to use a LinkedIn account to log in, due
to possibility of a third party accessing unpublished
scientific findings.

Some of these features are orthogonal—code syntax high-
lighting and LaTeX rendering are both useful in their own
right—while some are synergistic: a chemist might require
both parsing InChi strings and PubChem lookup in order to
carry out their particular workflow.

The complexity of developing such software lies in catering
to the heterogeneous user needs, requiring numerous trade-offs

Development Social Machine Target Social Machine

Forum PlatformCoordination Protocols

deploy

monitor

i ii

Fig. 1. Two connected social machines: i) the development social machine,
where crowdsourced workers follow coordination protocols to create a soft-
ware artefact; ii) the target social machine, where a community of practice
forms around the software artefact created by i).

when deciding which features to implement. Furthermore, dif-
ferent sub-communities tend to change preferences regarding
required or newly developed features during the development
process which need to be taken into account. Finally, certain
members of the scientific community (i.e., targeted users) may
decide to take part in the development process themselves.

II. MODELLING COMMUNITY-BASED SOFTWARE
DEVELOPMENT

The previously presented scenario is representative of many
social machines, where a dynamic community forms around
a particular (software) artefact. The population is likely to
change, and feedback between the human participants and
technological infrastructure can lead to changes in the purpose
and direction of technological development.

This means that there are two social machines: i) the target
social machine which includes the forum software and its com-
munity of users and ii) the development social machine, which
is the software developers and their coordination architecture
(Figure 1). We use the term utility to denote some metric for
the benefits which a user (in the target social machine) derives
from participation. While in principle this metric could include
a multitude of components, within this paper we narrow our
focus to treat utility as measuring how well the software’s
feature set matches the user’s requirements.

The aim of the development social machine is to increase
the overall utility of the user population, by creating features
which match community needs and desires. The developers
do not know ahead of time the true preferences of individuals,
or the constitution of the community, and hence the effects
of software changes on community behaviour are difficult to
predict ahead of time.

Since crowd-labour is increasingly used for the develop-
ment of software, we assume it is necessary to use development
methodologies which split work into tasks that are amenable to
crowdsourcing. This means that tasks have to be disassembled
into simpler subtasks, and mapped to appropriate developers.
The latter is itself a complex problem, as it also includes taking
care of inter-task implementation dependencies. Hence, the
development social machine must be able to i) assess user
desires and preferences; ii) identify and prioritize features for
development; iii) coordinate the development and deployment
of these features; iv) organise these tasks over time with respect
to a dynamically changing population and limited resources.

Expansion Prioritisation Development

Target
Social Machine

Development
Social Machine

Deploy

Expand
Select

Implement

Observe

interact

Coordination
Protocols

Software
Artefact

Development
Artefact

i

ii

Fig. 2. Interaction between the development and target social machines,
including development steps, developer interaction, user observation and
community interaction.

Possible Potential
Potential
Util=4.35

Impl.

Expand Evaluate Implement

Fig. 3. States and operations on a single node in the feature tree. Potential
nodes are expanded into Possible nodes, which can be evaluated against user
preferences, before being implemented.

These operations and their relation to the user population are
outlined in Figure 2

A. Feature Trees for Artefact Development

A requirement of our model is the representation of the
current state of the artefact under development—the devel-
opment artefact in Figure 2. Since our example is based on
software development, we use the Feature-Oriented Software
Development (FOSD) paradigm, where software artefacts are
represented as trees of features: “prominent or distinctive
user-visible aspect, quality, or characteristic[s] of a software
system” [7]. This representation is used so that development
can be decomposed into small sets of related tasks that can be
handled relatively independently, to aid collaborative creation
of software artefacts.

Based on the requirements and possibilities in the scenario
outlined in Section I-A, the feature tree in Figure 4 can
be constructed1. Here, broad classes of functionality, such
as visual embedding of graphical objects are represented as

1The tree was created using FeatureIDE. Details of assumed semantics can
be found at http://www.iti.cs.uni-magdeburg.de/iti_db/research/featureide/

branches of the tree, with specific instances such as pyMol
viewers forming sub-branches and leaves.

Feature trees can be used to represent the current state of
software development; by labelling each node with a state, the
team knows whether or not functionality for that feature has
been implemented, and whether the conditions for implement-
ing that functionality have been met. This forms a coordination
artefact used by the development social machine, to organise
construction and monitoring of the software artefact used in the
target social machine. As shown in Figure 2, once features in
the tree are implemented, the software artefact can be deployed
to the user population.

Software development can be modelled as modifications to
the feature tree: the re-labelling of nodes as new functionality
is conceived of and implemented (before being deployed to
the target artefact). In this paper, we use a simple state model
(Figure 3), where each node is either: i) Implemented—code
has already been created for this feature, and it is available
to users; ii) Potential—the feature has been conceptualised
and designed, but no code exists yet; iii) Possible—part of the
universe of possible features, but one which is not currently
under consideration for implementation2 .

Based on this representation, development can contain the
following steps, or development primitives, which map to
operations of the feature tree:

1) Expansion of the tree converts nodes from possible to
potential by finding new features to implement. This
might be through expert designers, co-creation or direct
user solicitation.

2) Evaluation of community needs and their relation to
individual features results in labelling nodes with some
indication of how well the community will react. There
are many ways to do this, including surveying the partic-
ipants; public consultations; focus groups; monitoring of
behaviour; and social media analysis.

3) Prioritisation of features to implement, which may be
driven by the result of evaluations, voting by the popula-
tion, investor demands, expert opinion etc. This decision
may depend on which type of costs the controllers of the
artefact would like to optimise (e.g., economic, temporal,
social).

4) Implementation of the selected features, whether in-
house, or crowdsourced, using some particular software
design methodology. When implementing features, the
constraints contained in the feature tree must be observed
(e.g., mandatory features, alternative features).

Within our model, these tasks are carried out by assembling
teams of crowd professionals—SCUs (Section II-B), capable
of executing complex workflows. The formation of SCUs
and coordination of their actions are carried out through the
Coordination Model (CM), introduced in Section III, which
allows flexible workflows that adapt to emerging situations.

B. Social Compute Unit (SCU)

An SCU [8] is a loosely-coupled virtual team of socially-
connected experts with skills in the relevant domain. The SCU

2The possible state is largely a convenience for simulation.

Fig. 4. An example feature tree for a scientific forum software system.

is created upon request to solve a given task. It uses the
crowdsourcing power of its members and their professional
connectedness toward addressing the problem which triggered
its creation and is dissolved upon problem resolution. The SCU
is a programmable entity. This means that its various properties
and functionalities (team assembly, task decomposition, run-
time collaboration patterns, coordination, task aggregation) can
be ‘programmed’ to support different types of human/machine
collaborative efforts. For example, in [9] the authors show how
the SCU can support well-defined business-processes, such
as workflow patterns for IT incident management. However,
SCU can also be used to perform looser collaboration patterns
leaving space for human improvisation and creativity [10].

In this paper we use SCUs within the development social
machine to execute tasks in the software development cycle,
such as implementing a concrete software feature. Concretely,
we build upon the particular SCU model presented in [11]
and use it in the context of the encompassing social machine’s
coordination model. Whenever a development primitive (from
Section II-A) needs to be executed, a request with input
parameters is sent to the SCU provisioning engine to form a
team of developers/experts suitable for that particular primitive
(task). The provisioning engine returns the closest-to-optimal
matching subset of available developers, representing a SCU
for that task.

The full list of available input parameters and descriptions

of the team formation algorithms are available in [11]. In
this paper, however, we vary only the parameter named job
description set (J), while assuming default values for the
remaining parameters. J contains job descriptions for each
subtask: J = {j1, j2, · · · , jk}. A job description is a set
of tuples ji = {(t1, q1), (t2, q2), · · · , (tm, qm)}, where tl
is a skill type (e.g., ‘java developer’, ‘test engineer’) and
ql = {‘fair′, ‘good′, ‘verygood′} is a fuzzy quality descriptor.
The job description (tl, ql) specifies which skills a worker
needs to possess in order to perform the subtask l successfully.

C. Lightweight Social Calculus (LSC)

LSC is an extension of LCC [12], which has been used
to represent interaction in many systems [13]. LCC is a
declarative, executable specification which can be commu-
nicated between agents at runtime; it is designed to give
enough structure to manage fully distributed interactions by
coordinating message passing and the roles which actors
play, while leaving space for the actors to make their own
decisions. LSC augments LCC with extensions designed to
make it more amenable to mixed human-machine interactions;
in practice, this means having language elements which cover
user input, external computation or database lookup and storing
knowledge and state.

An LSC protocol consists of a set of clauses; the head of
each clause is a role specification, and the body a description of

a(invitee(C), A) ::
 dinner(Time,Place) <= a(confirmer, C)
 then
 confirm(yes) => a(confirmer, C) <-- ok(Time,Place)
 or
 confirm(no) => a(confirmer, C)
 then
 a(invitee(C), A) .

Role: description and agent idMessage in:
content <=
sender role

Sequencing

Choice

Resume invitee role Implication: if RHS can be
satisfied, substitute and execute LHS

Message out:
content =>

receiver role

Body

Fig. 5. Example LSC clause from the meal organisation interaction model
(slightly modified for clarity). An agent playing the role of invitee will
wait for a message from a confirmer specifying the time and place for
dinner; the values in the message for Time and Place are substituted in, and
the agent then decides if it will_attend, and sends back the appropriate
message. It then resumes the role of invitee in case of alternate suggestions.

what an agent should do when playing that role (see example
in Figure 5). The body contains message sending (M ⇒
a(role, ID)) and receiving (M ⇐ a(role, ID)), sequencing
and choice (then and or), implication (action← condition),
the assumption of new roles (a(role, ID)) and any extra
computation or conditions necessary.

Each agent’s interaction starts with a clause from a pro-
tocol, which is then repeatedly re-written in response to
incoming events: incoming messages are matched against
expected messages, role definitions are replaced with the body
of matching clauses, values are substituted for variables and
so on. As the interaction progresses, this state tree keeps a
complete history of the agents actions and communications.
This supports the creation of multi-agent institutions [14]
where interaction is guided by shared protocols and a substrate
which keeps track of state.

LSC is formal enough that it can be computationally
manipulated, for example to synthesise new protocols [15].
It shares features with workflow languages—while providing
more flexibility—and can be derived from e.g. BPEL4WS
to create completely decentralised business workflows [16].
LSC has also been used in the creation of social machines
by binding formal interaction models into natural interaction
streams [17].

Within our model, LSC is used to model the development
social machine, by specifying the interactions among develop-
ers, and between developers and the feature tree representing
the state of the software artefact. It provides a means to create
a formal representation of software development processes,
allowing for computational coordination of their enactment,
while providing more flexibility than a workflow would allow.
LSC provides a bridge between low level operations—e.g.
implementing a particular node—and high level concepts such
as “agile methodologies”. By formalising the coordination
protocols and making them first class objects, it is possible
to share, modify, discover and rate individual protocols; by
separating the protocol from the domain of application, it is
possible to apply the same methodology to new domains. The
flexibility of the language allows for sub-protocols to be chosen
dynamically, so that development can be adapted in response
to changing needs. Over time the system can build up a view
of when each protocol is appropriate, and be able to assist with
selection of protocols for novel situations.

III. COORDINATION MODEL

The coordination model represents the artefact regulating
the interactions among social machines. It contains the follow-
ing submodels, regulating different interaction aspects:

• Data Submodel: A formal data model used to rep-
resent the data that is processed and exchanged by
social machines. It serves both as input and output for
the social machine. In our example, the data model is
represented by the feature tree representing the forum
software. For the development social machine it serves
to indicate the features to develop and dependencies;
but also to track the progress of the development cycle.
The resulting tree is then subsequently also used as the
input of the target social machine for calculating the
overall population utility, as well as to mark elicited
features for future development cycles.

• Quality-of-Service Submodel: In essence, the de-
velopment social machine is providing a software-
development service to the target social machine.
Therefore, we need a set of metrics to express the
requested and measure the obtained quality of this
service. In this paper, we adopt the metrics already
provided by the SCU [11] to formulate requested QoS.

• Interaction Submodel: The coordination submodel
contains a collection of LSC-encoded protocols man-
aging interactions between social machines and their
workers. The coordination submodel contains multiple
possible protocols. A metalevel protocol is used to
make real-time selection and enactment of an ap-
propriate subset of concrete protocols, based on the
current state of the coordination model, input from
stakeholders or the current behaviour of the commu-
nity interacting with the artefact. Selection could also
include discovery of new protocols to use (e.g., as new
development methodologies are introduced) as well as
analysis of the historic performance of existing pro-
tocols in similar situations. The use of metaprotocols
is crucial in order for the development social machine
to be responsive to community requirements, and for
it to adjust development trajectories accordingly.

Figure 6 illustrates the usage of the coordination model
artefact for the scenario introduced in Section I-A. An it-
eration in the software development cycle starts by having
an active LSC protocol send a request to the SCU Pro-
visioning Engine (Figure 6, 1). The request contains the
necessary QoS input parameters (described in Section II-B)
for creation of multiple SCUs. Based on these parameters the
SCU Provisioning Engine selects appropriate workers from the
crowd of professionals (2), assembles and returns the SCUs.
The newly created SCUs are passed the feature tree with
nodes selected for implementation (3), finally constituting
a functional development social machine. The development
social machine starts performing the designated actions on the
feature tree (4). The active LSC protocol from the interaction
submodel takes care that the actions performed by different
SCUs are properly ordered and repeated if necessary (e.g.,
due to failure, or insufficient quality). After the SCUs finish
executing, the resulting feature tree is passed to the target
social machine (5).

Feature Tree

SCU QoS Constraints

LSC Protocols

coordination model
for community-based

software development scenario

F0

F1 F2

Feature trees:

SCU Input parameters:

LSC protocols:

Required Skill Sets

Skill Types
Fuzzy

Skill Levels

Jobs
(Actions)

‘Good’
‘Fair’

‘Java’
‘jQuery’

Job #1

a(agile_process(ExpQ,ImplQ,Count), Ag) ::
 a(agile(ExpQ,ImplQ),Ag) then
 (null <- Count = 0
or a(agile_process(ExpQ,ImplQ,Cn),Ag) <- Cn is Count - 1
).

Metaprotocols and inter-SCU protocols, e.g.:

Other optimizable metrics:
– connectedness
– maximum response time
– cost limit

– possible
– selected
– implemented

SCU Provisioning &
Monitoring Engine

F0

F1 F2

SCU

crowd
– expand
– evaluate
– priori tise
– implement

1

2

3

4

5

SCUs

Community

 futil ()

metaprotocol

monitor

select protocols

development
social machine

target
social machine

QoS input
params

selected
feature

tree nodes

modified
feature

tree

6

7

Fig. 6. Using the Coordination Model to support the community-based, collaborative software development scenario.

The modified tree is then evaluated by a function assessing
the population utility (6). As explained earlier, this is a
measure of target community’s satisfaction with the imple-
mented features. Based on the this value, and the new requests
from the community, the metaprotocol can decide whether
new development iterations are necessary, and if yes, which
protocols to use (7). Depending on the new priorities, a
different protocol can be chosen to control the development
social machine in the new iteration. For example, for the
evaluate action, new candidate features may be identified by a
single SCU of experts, or by having multiple SCUs suggesting
new features and then deciding by majority voting. Or, in case
of a failure, we may decide to repeat the task with the same
SCU, or escalate to a more reliable (and thus a more expensive)
one.

In the following sections, we present a proof-of-concept
implementation of this coordination model. We evaluate the
implemented prototype by simulating a population and running
a number of LSC protocols to showcase its functionality.

IV. IMPLEMENTATION AND EVALUATION

A. Prototype Implementation

In order to demonstrate the operation of the coordination
model, we have implemented a simulation prototype which
covers a subset of the conceptual model’s possible functional-
ity. In the simulation, a pool of crowd workers participate in

improving the scientific forum software introduced in Section
I-A. The (simulated) workers are managed by a system running
various LSC protocols, representing different approaches to
software development. This includes all of the task selection
and implementation activities from Section II, as well as the
team selection work discussed in Section II-B.

The implementation uses the scalsc LSC library, with
extensions to model feature trees, labour and team selection,
and user populations3. Concretely, this comprises:

1) A population of simple software agents representing com-
munity members; this is simulated as a heterogeneous
group of individuals, each with their own preferences
about which features the community software should
contain. The preferences are represented as scores for the
presence of conjunctions or disjunctions of implemented
feature-tree nodes. A typology approach is used, where
archetypal users are defined for two classes (chemists
and mathematicians), differing in their preferences for
functionality. These users are sampled with multiplicative
noise (N (1, 0.1)) added to their preference scores to
provide limited heterogeneity.

2) A feature tree representing the current state of the soft-
ware, as defined in Section III, following the example in
Figure 4;

3Complete source code and installation instructions can be found at
https://bitbucket.org/mo_seph/social-institutions

3) A simplified, idealised SCU model, where teams are
formed in response to quality constraints, and perform
tasks on the feature tree. In this simplified model, we as-
sume that one worker is returned per task, with a skill set
that exactly matches the quality constraints [11]. Workers
have scores for four skills: implementation, evaluation,
prioritisation, design, each of which ranges from 0..1.

4) A labour model, relating worker qualities to the time, cost
and quality of carrying out primitive tree operations. This
model has been designed to represent the issues at hand
in a stylised manner, while having a reduced parameter
set to help understand the model’s behaviour. Operations
are assigned a basic cost Co, which is then multiplied by
the cost of the worker who is carrying it out; worker cost
is the sum of the worker’s skill levels (S) raised to an
exponent k = 0.5, so the complete cost of a worker w
operation o is: C(w, o) = Co

∑
sk (for s ∈ S). Details

of operator cost, time and implementation specifics are in
Table I4.

In order to effect changes to the feature tree, a set of LSC-
based intra-unit- and meta-protocols are used to construct SCU
according to quality metrics, and schedule them to carry out
operations. Listing 1 shows an example high-level LSC pro-
tocol coordinating an agile development process: form_scu
triggers the SCU formation, based on a set of required skills
and the action to enact, while do_task controls the execu-
tion of the selected actions5. These protocols can be written
as standard LSC [12], with a small set of extra predicates
for forming teams and manipulating trees: form_scu and
do_task mentioned above, as well as current_tree and
highest_priority, which are demonstrated in Listing 1.

B. Scenarios

In order to illustrate the operation of the prototype, we run
it under two contrasting scenarios, with three different LSC-
based workflows imposed through appropriate LSC protocols.
In the first scenario—StablePopulation, a population of 1000
members of the chemistry community (chemists) is simu-
lated throughout the entire simulation runtime. In the second
scenario—DynamicPopulation the initial population of 1000
chemists is replaced by 200 chemists and 800 mathematicians
at timestep 20. This is a crude and stylised approach to
representing a shift in user population, where the platform is
adopted by a different user community, but it allows us to
illustrate the prototype implementation’s behaviour.

The coordination models we use are loosely based on
current or past practice in software development:

• The traditional model starts with a large public con-
sultation, where most of the tree is explored and
assessed before any implementation takes place. Ac-
tual feature implementation is then carried out by
teams (i.e., SCUs) of average-skilled programmers,
who have three attempts to implement any given node.

4We acknowledge that the simulation will be sensitive to the parameter
values chosen (especially k); the results we present are intended only to give
an indication of capabilities, so no formal sensitivity analysis has been carried
out.

5Further details on the prototype implementation, as well as the source code
can be found at https://bitbucket.org/mo_seph/social-institutions

• The escalation model begins with the same initial
public consultation, but is followed by a development
process where initially an average (and cheap) devel-
oper attempts to implement each node. If that fails, a
high quality, but more expensive, developer is found
and brought in to finish the job. This is an example of a
simple metaprotocol, allowing alternative development
pathways to be chosen at runtime.

• The agile model defines a a tight loop of evaluation
and implementation, to allow development to respond
to a changing set of user requirements.

C. Results and Discussion

Figure 7 shows the simulation outcomes when running the
described scenarios and workflows. Under the Stable scenario,
the agile workflow initially performs best, as development
starts immediately. Over time, however, the escalation work-
flow achieves higher utility with fewer nodes due to a greater
understanding of the complete feature tree. The traditional
workflow is limited by the speed of its average-skilled devel-
opers, but utility does increase gradually. Under the Dynamic
scenario, the initial behaviour is similar. However, when the
population changes at timestep 20, the agile workflow is better
able to adapt to the change, and create nodes which better
represent the desires of the new population.

This demonstrates the utility of developing software using
a flexible coordination model. When the user community
changes, the coordination model can respond dynamically, by
prioritising different features for implementation. The utility
curve in the Dynamic scenario post population-change rises
most sharply for the agile workflow, indicating its ability to
responsively re-plan.

In contrast to conventional workflows, the LSC protocols
are dynamic, and can be changed or “plugged in” during
runtime. For example, the outcomes of a public consultation—
as simulated here— can be used to influence the choice of
protocols to be used subsequently, affecting the way that work
is coordinated. This allows for a larger human influence on the
execution of complex work processes.

The difference between the utility curves under the tra-
ditional and escalation workflows demonstrates the effects
of bringing QoS constraints into the development protocol.
The traditional workflow tends to be cheaper per unit time,
using only low quality developers. However, the escalation
workflow creates more nodes per unit cost, by being able to
form SCUs with highly skilled workers when necessary to
carry out difficult jobs. This also results in more nodes created
per unit time, so the population utility rises more rapidly.

This demonstrates how a dynamic protocol can be respon-
sive to population changes, and how integrating QoS con-
straints allows system designers to tailor development towards
different goals. Taken together, these capabilities allow for
dynamic, flexible protocols which can draw on a pool of cloud
workers to create software artefacts in response to community
needs.

Simulation modelling is used in the computational social
sciences to explore theoretical ideas in the context of synthetic

TABLE I. MODEL OF PRIMITIVE TREE OPERATIONS, SHOWING BASE COSTS, ASSUMPTIONS MADE AND IMPLEMENTATION DETAILS. ereal IS THE TRUE
POPULATION UTILITY FOR A FEATURE TREE, AND sx IS THE TEAM’S SKILL IN x.

Operation Assumptions Implementation Cost, Time

Expand Only children of potential nodes are considered. A better design process will create nodes
which better match the population’s need

Order nodes by erealN (1, (1− sdesign)) and
select the first.

2, 0.5

Evaluate A better evaluation process will be closer to the true value population’s need Label nodes with
eest = erealN (1, (1− seval)).

0.5, 0.5

Prioritise Better prioritisers order nodes more closely to their true evaluation order with respect to
population’s need

Order nodes by eestN (1, (1− sprioritise))
and label with index.

0.01, 0.01

Implement Select highest priority node; better implementers have more chance of success. Pimpl = simplementation 1, 1

Listing 1. Example protocol used to coordinate “agile” development. An SCU is first formed to identify the next best node to implement. Then, another SCU
is formed to implement that node. This sequence is then run in a tight loop to carry out responsive development.

a(agile(ExpQ,ImplQ),A) :: %Agent role for doing "agile" development
%Create an SCU to expand the next best node

form_scu(expand(1), [expansion(ExpQ)], ExpAssign) then
current_tree(InTree) then %Get the current tree
do_task(ExpAssign, InTree, ExpTree) then %Carry out the expansion
highest_priority(ExpTree,Next) then %Find the best node to implement

%Form an SCU to implent it
form_scu(implement, [implementation(ImplQ)], ImplAssign) then
do_task(ImplAssign, ExpTree, Result) . %Carry out the implementation

Dynamic, Utility Dynamic, Cost Dynamic, Nodes Dynamic, NodeAvg

Stable, Utility Stable, Cost Stable, Nodes Stable, NodeAvg
0

5

10

15

20

0

20

40

60

80

10

20

0

500

1000

0

5

10

15

20

25

0

25

50

75

10

20

0

500

1000

1500

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time

Process

Agile
Escalation
Traditional

Fig. 7. Simulation outcomes for the two scenarios and three workflows. Faint lines represent individual runs (n = 30 in each condition), and solid lines are
smoothed ensemble averages. Utility is the average utility of the feature tree across the population; Cost is the financial cost of developing the community-
software; Nodes is the number of features (nodes) implemented; and NodeAvg is the average utility provided by each feature (an indication of the quality of
community fit). The dotted vertical lines indicate the time where the Dynamic scenario undergoes a step change in the population composition.

populations, particularly where real studies would be impracti-
cal [18, 19]. Recently, this has been applied to crowdsourcing,
in order to generalise results which otherwise would be tied
to a particular situation [20]. However, simulation has the
potential to play another role in this area, as developing a
computational model of population behaviour can be used
to “close the loop” and aid in the design of effective social
machines [21].

The simulations presented here represent a highly simpli-
fied version of our conceptual model where intelligent com-
putational machinery underpins human creative activity in the
development of software artefacts for dynamic communities.
The use of flexible process languages such as LSC means
that the inter-unit protocols used here could be augmented
to embody more refined development methodologies, with
complex patterns of coordination where necessary. Similarly, at
the metaprotocol level, there is space for a dynamic adjustment
of the protocols and parameters chosen, in order to balance
community and stakeholder demands against time and cost
constraints. Since LSC is a first class protocol, the interactions
specified can be exchanged, rated, discovered and modified
both computationally or through human intervention. This can
help create a better understanding of which methodologies
work in which situations. At the intra-unit level, intelligent
protocols could be used to more flexibly assign workers
to sub-tasks, reacting to developing situations and changing
requirements.

V. RELATED WORK

Social machines share common ground with other collec-
tive intelligence applications such as human computation and
social computing (diagram in [5, p.2]). Many crowdsourcing
systems can be seen as social machines. Of the existing com-
mercial platforms, of particular relevance here are Topcoder6

and ODesk7, which use different mechanisms to organise
diverse participants around software development. As crowd-
sourcing platforms are becoming widely used as research tools,
a number of solutions appeared providing overlay abstractions
offering more advanced workflow management and allowing
users to perform more complex tasks/computations.

TurKit [22] is a library layered on top of Amazon’s Me-
chanical Turk offering an execution model (crash-and-rerun)
which re-offers the same microtasks to the crowd until they
are performed satisfactorily. The entire synchronisation, task
splitting and aggregation is left entirely to the programmer. The
inter-worker synchronisation is out of programmer’s reach. The
only constraint that a programmer can specify is to explicitly
prohibit certain workers to participate in the computations.

Jabberwocky’s [23] ManReduce collaboration model re-
quires users to break down the task into appropriate map and
reduce steps which can then be performed by a machine or
by a set of humans workers. A number of map steps can be
performed in sequence, followed by possibly multiple reduce
steps. Human computations stops the execution until it is
performed. While automating the coordination and execution
management, Jabberwocky is limited to the MapReduce-like
class of problems.

6http://www.topcoder.com/
7https://www.odesk.com/

AutoMan [24] integrates the functionality of crowdsourced
multiple-choice question answering into Scala programming
language. The authors focus on automated management of an-
swering quality. The answering follows a hardcoded workflow.
Synchronisation and aggregation are centrally handled by the
AutoMan library. The solution is of limited scope, targeting
the designated labour type.

CrowdLang [25] brings in a number of novelties in com-
parison with the other systems, primarily with respect to the
collaboration synthesis and synchronisation. It enables users
to (visually) specify a hybrid machine-human workflow, by
combining a number of generic collaborative patterns (e.g.,
iterative, contest, collection, divide-and-conquer), and to gener-
ate a number of similar workflows by differently recombining
the constituent patterns, in order to generate a more efficient
workflow. The use of human workflows also enables indirect
encoding of inter-task dependencies.

To the best of out knowledge, at the moment of writing,
CrowdLang and SCU are the only two systems offering
execution of complex human-machine workflows. However, as
explained before, both systems need to know the possible (sub-
) workflows in advance. The coordination model presented in
this paper complements the functionality offered by systems
such as these two, by providing a higher-level coordination
management layer.

VI. CONCLUSION

In this paper we introduced a novel coordination model
for teams of workers performing creative or engineering tasks
in complex collaborations. The coordination model augments
the existing Social Compute Unit (SCU) concept with co-
ordination protocols expressed using the Lightweight Social
Calculus (LSC). The approach allows combining coordination
and quality constraints with dynamic assessments of user-base
requirements. In contrast to existing systems, our model does
not impose strict workflows, but rather allows for the runtime
protocol adaptations, potentially including human interven-
tions. We evaluated our approach by implementing a prototype
version of the coordination model for the exemplifying case-
study and simulated its behaviour on a heterogeneous pop-
ulation of users, running different scenarios to demonstrate
its effectiveness in delivering end-user utility, and illustrated
responses to a dynamically changing population.

In summary, we have given a conceptual model for com-
bining process models with crowdsourced teams to create
software artefacts in support of dynamic communities. This
formalisation paves the way for increased intelligence to be
brought into crowdsourced software development, creating a
more responsive, community-centred process.

ACKNOWLEDGEMENT

This work is partially supported by the EU FP7 Smart-
Society project under grant 600854 and the EPSRC SociaM

project under grant EP/J017728/1.

REFERENCES

[1] O. Tokarchuk, R. Cuel, and M. Zamarian, “Analyzing crowd labor and
designing incentives for humans in the loop,” IEEE Internet Computing,
vol. 16, no. 5, pp. 45–51, 2012.

[2] A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing
systems on the World-Wide Web,” Communications of the ACM,
vol. 54, no. 4, p. 86, Apr. 2011. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1924421.1924442

[3] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw,
J. Zimmerman, M. Lease, and J. Horton, “The future of crowd
work,” in Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, ser. CSCW ’13. New York, NY,
USA: ACM, 2013, pp. 1301–1318. [Online]. Available: http:
//doi.acm.org/10.1145/2441776.2441923

[4] T. Berners-Lee and M. Fischetti, Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide Web by Its Inventor. Harper
Information, 2000.

[5] N. R. Shadbolt, D. A. Smith, E. Simperl, M. V. Kleek, Y. Yang, and
W. Hall, “Towards a classification framework for social machines,”
in SOCM2013: The Theory and Practice of Social Machines.
Association for Computing Machinery, 2013. [Online]. Available:
http://eprints.soton.ac.uk/350513/

[6] P. Smart, E. Simperl, and N. Shadbolt, “A Taxonomic Framework
for Social Machines,” in Social Collective Intelligence: Combining
the Powers of Humans and Machines to Build a Smarter Society,
D. Miorandi, V. Maltese, M. Rovatsos, A. Nijholt, and J. Stewart, Eds.
Springer Berlin, In Press.

[7] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich,
“FeatureIDE : An Extensible Framework for Feature-Oriented Software
Development,” Science of Computer Programming, vol. 79, pp. 70–85,
2014.

[8] S. Dustdar and K. Bhattacharya, “The Social Compute Unit,” Internet
Computing, IEEE, vol. 15, no. 3, pp. 64–69, 2011. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5755601

[9] B. Sengupta, A. Jain, K. Bhattacharya, H.-L. Truong, and S. Dustdar,
“Collective Problem Solving Using Social Compute Units,” Internationl
Journal of Cooperative Information Systems, vol. 22, no. 4, 2013.

[10] M. Riveni, H. L. Truong, and S. Dustdar, “On the elasticity of social
compute units,” in CAiSE, ser. Lecture Notes in Computer Science,
M. Jarke, J. Mylopoulos, C. Quix, C. Rolland, Y. Manolopoulos,
H. Mouratidis, and J. Horkoff, Eds., vol. 8484. Springer, 2014, pp.
364–378.

[11] M. Z. C. Candra, H.-L. Truong, and S. Dustdar, “Provisioning Quality-
aware Social Compute Units in the Cloud,” in 11th International
Conference on Service Oriented Computing (ICSOC 2013). Berlin,
Germany, December 2-5: Springer, 2013.

[12] D. Robertson, “A lightweight coordination calculus for agent systems,”
in Declarative Agent Languages and Technologies II, ser. Lecture
Notes in Computer Science, J. Leite, A. Omicini, P. Torroni, and

p. Yolum, Eds. Springer Berlin Heidelberg, 2005, vol. 3476, pp.
183–197. [Online]. Available: http://dx.doi.org/10.1007/11493402_11

[13] ——, “Lightweight coordination calculus for agent systems:
Retrospective and prospective,” in Declarative Agent Languages
and Technologies IX, ser. Lecture Notes in Computer Science,
C. Sakama, S. Sardina, W. Vasconcelos, and M. Winikoff, Eds.
Springer Berlin Heidelberg, 2012, vol. 7169, pp. 84–89. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-29113-5_7

[14] M. d’Inverno, M. Luck, P. Noriega, J. a. Rodriguez-Aguilar, and
C. Sierra, “Communicating open systems,” Artificial Intelligence, vol.
186, pp. 38–94, Jul. 2012.

[15] J. McGinnis, D. Robertson, and C. Walton, “Protocol synthesis
with dialogue structure theory,” in Argumentation in Multi-Agent
Systems. Springer, 2006, pp. 199–216. [Online]. Available: http:
//link.springer.com/chapter/10.1007/11794578_13

[16] L. Guo, D. Robertson, and Y. Chen-Burger, “Using multi-agent
platform for pure decentralised business workflows,” Web Intelligence
and Agent Systems, vol. 6, no. 3, pp. 295–311, 2008. [Online].
Available: http://iospress.metapress.com/index/E26236758K550221.pdf

[17] D. Murray-Rust and D. Robertson, “Lscitter: Building social machines
by augmenting existing social networks with interaction models,” in
Proceedings of the Companion Publication of the 23rd International
Conference on World Wide Web Companion, ser. WWW Companion
’14. Republic and Canton of Geneva, Switzerland: International
World Wide Web Conferences Steering Committee, 2014, pp. 875–
880. [Online]. Available: http://dx.doi.org/10.1145/2567948.2578832

[18] N. Gilbert and K. Troitzsch, Simulation for the social scientist.
McGraw-Hill International, 2005.

[19] C. M. Macal and M. J. North, “Tutorial on agent-based modelling and
simulation,” Journal of Simulation, vol. 4, no. 3, pp. 151–162, 2010.

[20] A. Bozzon, P. Fraternali, L. Galli, and R. Karam, “Modeling crowd-
sourcing scenarios in socially-enabled human computation applica-
tions,” Journal on Data Semantics, pp. 1–20, 2013.

[21] E. Kamar, S. Hacker, and E. Horvitz, “Combining human and ma-
chine intelligence in large-scale crowdsourcing,” in Proceedings of the
11th International Conference on Autonomous Agents and Multiagent
Systems-Volume 1. International Foundation for Autonomous Agents
and Multiagent Systems, 2012, pp. 467–474.

[22] G. Little, “Turkit: Tools for iterative tasks on mechanical turk,” in Visual
Languages and Human-Centric Computing, 2009. VL/HCC 2009. IEEE
Symposium on, Sept 2009, pp. 252–253.

[23] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar, “The jabberwocky
programming environment for structured social computing,” in
Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology, ser. UIST ’11. New York, NY, USA:
ACM, 2011, pp. 53–64. [Online]. Available: http://doi.acm.org/10.
1145/2047196.2047203

[24] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor, “Au-
toman: A platform for integrating human-based and digital computa-
tion,” ACM SIGPLAN Not., vol. 47, no. 10, pp. 639–654, 2012.

[25] P. Minder and A. Bernstein, “Crowdlang: A programming language
for the systematic exploration of human computation systems,” in
Proc. of Social Informatics (SocInfo’12), 2012, pp. 124–137. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-35386-4_10

