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Abstract—As cloud computing becomes popular, the secu-
rity and privacy issues emerge as important hindrances to
more widespread adoption of cloud computing. In particular,
outsourcing sensitive data to untrusted cloud service providers
creates important security and regulatory compliance challenges.
Encryption of the outsourced data has been introduced as an
alternative to protect privacy and security. In the context of
searchable symmetric encryption, many solutions have been
proposed to perform efficient search on the encrypted outsourced
data. Some of them achieve protecting privacy of outsourced data,
but may disclose the access patterns (i.e., they disclose which
data items are retrieved based on the query execution). Recently,
it has been shown that such access pattern disclosures could
be exploited even further to infer sensitive information about
underlying data, even if the data is stored in encrypted form.
To address the access pattern disclosures, oblivious RAM and
heuristic based techniques are proposed. However, the overhead
of oblivious RAM based solutions is too high in many cases, and
the security and scalability of heuristic based techniques have not
been carefully analyzed yet. In this paper, we provide the first
framework to analyze and compare the security and efficiency
of such heuristics (e.g., caching, fake data access, and data
duplication). In addition, we provide extensive empirical analysis
that yields important insights into how to use such heuristics
effectively in practice; and we discuss how such heuristics can be
combined to improve security and efficiency.

I. Introduction

The rapid development of cloud computing has enabled us
to outsource our data perpetually and cost effectively. Now, it
is easier to process enormous amount of data by leveraging
the huge computation power provided by the cloud comput-
ing. The data owners can also focus on their business logic
without worrying about the underlying infrastructure. Still, the
cloud computing paradigm is not flawless. Since the data is
stored in an untrusted environment, security and privacy have
emerged as arguably the most significant concerns that hinder
widespread adoption of cloud computing [1]. Any disclosure
of the sensitive information (e.g., health records, personal
emails) in outsourced data may potentially cause problems
ranging from monetary loss to business interruption. Hence,
it is essential to protect outsourced sensitive data from any
adversarial purposes.

Encryption of the outsourced data has been proposed as
a solution to mitigate privacy and security concerns in cloud

computing. However, generic encryption based solutions pre-
vent data owners from processing outsourced data efficiently.
To address this problem, searchable encryption solutions [2]–
[9] have been introduced.

Available searchable encryption schemes offer distinct pri-
vacy and scalability guarantees. Among such schemes, the rel-
atively efficient ones disclose access pattern (i.e., they disclose
which data items are retrieved as a result of a query) [4]–[6],
[8], [10], and others are too costly to be cost efficient for cloud
environment [3]. Although disclosing access pattern seems
innocuous, recently it has been shown that access patterns can
be used to infer sensitive information related to outsourced
data [11]. In addition, some experts raised concerns about
disclosure of “activity pattern” that could be exploited to create
side-channels and inference attacks [1].

One of the solutions that could be used to hide access
pattern is Oblivious RAM [12]. Oblivious RAM provides
perfect privacy by completely hiding the access pattern, but it
has a logarithmic overhead for each data access. Therefore, it
is usually not applicable to cloud environments due to its huge
additional cost for large datasets. Because of inapplicability of
Oblivious RAM solutions to many scenarios, some heuristics
have been proposed to hide access patterns such as caching
and fake data access [13]–[15]. To our knowledge, these
heuristics have not been analyzed with respect to the security
and scalability that they provide in a cloud setting. In this
paper, we provide a comprehensive framework to analyze and
compare such heuristics with respect to security and efficiency.
Then, we show how to parameterize such heuristics to achieve
desired efficiency versus security trade-off. Additionally, we
show that individual heuristic based access pattern obfuscation
techniques do not provide effective security guarantees. To
address this shortcoming, we propose the hybrid policies that
combine multiple heuristic based obfuscation techniques (i.e.,
caching, fake data access, and redundant data storage) to
provide better security and efficiency trade-offs.

The organization of the paper is as follows: Section II
reviews related work. Section III introduces the searchable
encryption model. Section IV analyzes the heuristics. Section
V presents the empirical evaluations and Section VI concludes
the paper.
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II. RelatedWork

Searchable encryption has been a popular research topic,
where many protocols and security definitions have been
proposed over the years. The proposed protocols can be put
into two main categories: the protocols allowing practical
search and protocols hiding access pattern. The first practical
searchable encryption protocol was proposed by Song et al.
[8], where the documents and the search index are encrypted
with a symmetric key. This protocol is called Searchable Sym-
metric Encryption (SSE). Later, Goh formalized the security
requirements of SSE in [6] and introduced Z-IDX index, which
is secure against adaptive chosen keyword attack (IND-CKA).
Simultaneously, Chang et al. introduced another security def-
inition for SSE based on simulations in [4], which is slightly
stronger than the definition in [6]. The concept of SSE model
was extended to involve multiple users by Park et al. in [16].
Curtmola et al. expanded the security definition of SSE to
secure against adaptive adversaries in multiple users setup in
[5]. Golle et al. enabled the secure conjunctive keyword search
with a scheme based on decisional Diffie-Hellman assumption
in [7]. Later, for conjunctive search, a more efficient scheme
was proposed in [9]. Moreover, a public key scheme was
proposed by Boneh and Waters in [3] with conjunctive, subset,
and range queries over encrypted data. Although all these SSE
schemes are practical in a cloud setting, they do not hide the
access pattern [5]. As demonstrated in [11], the access patterns
can be combined with some background information to infer
sensitive information about the underlying data.

Oblivious RAM model was first presented by Goldreich
and Ostrovsky in [12] in which the users can securely search
over encrypted data without revealing their access patterns.
Although the model has been improved by many studies
[17]–[19], it incurs a logarithmic overhead in the number of
outsourced data for each single data retrieval, which makes it
very costly for big data. Moreover, Boneh et al. [20] proposed
a searchable encryption model that hides access patterns based
on public key encryption. Although these schemes provide
provable security against access pattern attacks, they are im-
practical in the cloud setting. In addition to these schemes,
di Vimercati et al. proposed a B+-tree based shuffle index in
[13] while incurring O(log(n)) additional accesses for each
data retrieval, where n is the dataset size. Furthermore, some
heuristics (i.e., caching, fake data access) have been proposed
to hide access patterns without sacrificing efficiency in [13]–
[15]. To our knowledge, this is the first paper that analyzes
the security and efficiency of heuristic based access pattern
obfuscation techniques.

III. Model

A typical searchable encryption scenario may be described
as follows: Alice has a set of documents D = {d1, d2, . . . , dn}
containing a set of keywords Q = {q1, q2, . . . , qm}. She wants
to outsource D into a public cloud, provided by Bob, while
preserving the efficient search capabilities over outsourced data.
To this end, she creates an encrypted index M, and sends it to
Bob along with the encrypted documents. The encrypted index
is an m × n binary matrix, where the keywords correspond to
the rows and the document ids correspond to the columns.
In other words, Mi j is set to 1 if qi exists in d j, and Mi j
is 0 otherwise. To retrieve the set of documents that contain

q ∈ Q, Alice generates a trapdoor from q and sends it to
Bob. When a search is made, Bob checks M, and returns the
matching encrypted document ids to Alice. She decrypts them
and retrieves the documents from Bob. Note that this model is
general enough to simulate an arbitrary searchable encryption
model as discussed in [11].

Encrypted Index M

enck(doc1)

enck(doc2)

enck(docn)

Storage

1.trapdoor(q)

2. enck(di …dj)

3. deck(enck(di …dj))

4. fetch(di …dj)

5. enck(doci) …enck(docj)

.

.

.

.

.

.

.

.

.

q1

q2

qm

.

.

.

dnd2d1 . . .

001 . . .

100 . . .

010 . . .

Client

Fig. 1. Model

Fig. 1 shows the three entities of the overall structure of
searchable encryption: A client, the binary matrix M, and the
storage. We assume that the client is a trusted entity, while M,
the storage and the network are untrusted. Thus, an adversary
is assumed to observe all information stored in or transmitted
through the untrusted components. To prevent attacks, it is
important to determine the information that an adversary can
have. The plaintext of the outsourced documents and trapdoors
cannot be learned by the adversary if a secure pseudo-random
permutation is adopted. Yet, the adversary can still gather
statistical information about the access patterns of the queries
and documents. Let P(q) denote the probability of querying
the particular keyword q ∈ Q, and P(d) denote the probability
of retrieving the particular document d ∈ D. Then, P(d|q)
denotes the probability that the retrieved document is d ∈ D
when q ∈ Q is the searched keyword. It is clear that P(q) and
P(d) can be monitored by adversary that has intruded M and
the storage, respectively. Then, P(d|q) can also be inferred by
means of simultaneous observation of M and the storage. Note
that once P(d|q) is inferred, the decrypted matrix of M can also
be obtained. A recent attack by Islam et al. [11] shows that the
adversary knowledge P(d|q) and some background knowledge
are enough to infer most of the information in the underlying
data. Note that by using current searchable encryption models,
it is not possible to hide P(q) unless a probabilistic encrypted
index is employed. Yet, as discussed in [12], P(d) and P(d|q)
can be hidden if P(d) and P(q) are independent.

Definition 3.1: (Oblivious Search) A search in a searchable
encryption model is oblivious if and only if the probability
distributions P(d) and P(q) are independent, where ∀d ∈ D
and ∀q ∈ Q

Definition 3.2: (Search Indistinguishability) The docu-
ments are indistinguishable if each document’s retrieval prob-
ability is equal for a given arbitrary search query.

∀di, dk ∈ D and ∀q ∈ Q, P(di | q) = P(dk | q), where di , dk

Definition 3.2 leads us to two results:



Lemma 3.1: Given an arbitrary keyword search satisfying
search indistinguishability, each document’s retrieval probabil-
ity is uniform and equal to 1

n .

Proof:

1 =
∑
di∈D

P(di | q) = n P(di | q) by definition 3.2

1
n
= P(di | q)

Lemma 3.2: If all keyword searches satisfy search indistin-
guishability, each document’s retrieval probability is uniform
and equal to 1

n .

Proof:

1 =
∑
q∈Q

P(q) =
∑
q∈Q

∑
d∈D

P(q, d)

=
∑
q∈Q

∑
d∈D

P(d | q)P(q) =
∑
q∈Q

P(q)
∑
d∈D

P(d | q)

=
∑
q∈Q

P(q)nP(d | q) = n
∑
q∈Q

P(d | q)P(q) by definition 3.2

1
n
= P(d)

Theorem 3.3: If all keyword searches satisfy the search
indistinguishability (Def. 3.2), the search is oblivious by defi-
nition 3.1.

Proof: By lemma 3.1 and 3.2, ∀q ∈ Q and ∀d ∈ D, P(q)
and P(d) are independent.

P(d | q) = P(d) =
1
n

Given an arbitrary search keyword q j, let x j denote the
number of documents where q j exists, and 1 ≤ x j ≤ n. Then,
the following holds:

∀di ∈ D and ∀q j ∈ Q,

P(di | q j) =

 1
x j

q j ∈ di

0 q j < di
,where P(q j) , 0 and where 1 ≤ x j ≤ n

Let P′(di|q j) denote the probability that the retrieved document
is di ∈ D if the query q j ∈ Q is searched in an oblivious
manner (see def. 3.2). We claim that the total variation distance
between P(di | q j) and P′(di | q j) can be used to measure the
indistinguishability of the model.

By lemma 3.1, ∀di ∈ D and ∀q j ∈ Q, P′(di | q j) =
1
n

Definition 3.3: (Total variation distance of probability
measures [21]) Let µ and η be two probability measures over
a finite set Ω. The total variation distance between µ and η is
the largest possible L1 − distance between the two probability
measures:

||µ − η||TV = sup
x∈Ω
|µ(x) − η(x)|

=
1
2

∑
x∈Ω
|µ(x) − η(x)| (1)

Definition 3.4: (ϵ − distance) An encrypted search sat-
isfies ϵ − distance if the maximum L1 distance between
P(di|q j) and P′(di|q j) is less than a constant ϵ for all documents

in D and all keywords in Q. Then, the total variation distance
(Def. 3.3) can be used to measure the ϵ − distance.

sup
di∈D,q j∈Q

|P(di |q j) − P′(di |q j)| ≤ ϵ (2)

The ϵ − distance of an arbitrary searchable encryption model
is as follow:

||P(di | q j) − P′(di |q j)||TV = (3)

sup
q j∈Q
{ 1

2

∑
di∈D
|P(di | q j) − P′(di |q j)| } =

sup
q j∈Q
{ 1

2

∑
q j∈di ,di∈D

|P(di |q j) − P′(di |q j)| +
1
2

∑
q j<di ,di∈D

|P(di |q j) − P′(di |q j)| } =

sup
1≤x j≤n

{ 1
2

x j(
1
x j
− 1

n
) +

1
2

(n − x j)
1
n
} =

sup
1≤x j≤n

{ 1 −
x j

n
} = 1 − 1

n
=≈ 1 (4)

Smaller values of ϵ ∈ [0, 1] implies less access pattern
disclosure. Furthermore, when a model satisfies ϵ = 0, it
completely hides the access pattern.

IV. Heuristics

The ϵ−distance given in Eq. 3 can be reduced by adopting
some heuristics such as caching, fake document access and
document duplication. In this section, we analyze the perfor-
mance of these techniques with respect to their ϵ − distance
and costs.

A. Caching

In the context of searchable encryption, caching is the
process of storing a subset of the entire data in a local storage,
so that a faster response is provided whenever the requested
data is in the cache. It helps to reduce the overall monetary
cost [22], by reducing the network traffic between the client
and the storage. Moreover, as shown in Prop. 4.1, it has an
improving effect on the security guarantees of the model. We
will analyze two basic cache policies, the random and locality
caching, with respect to ϵ−distance metric and cache hit rates.

1) Random Caching: In random caching policy, the client
chooses uniformly random k documents to be stored in the
cache for each query.

Proposition 4.1: When searchable encryption model em-
ploys random caching policy, ϵ − distance of the model is
decreased approximately by k

2n .

Proof: Let HR(d) denote the probability that the document
d is in the cache, which is also called the cache hit rate. Then,
HR(d) can be written as follows:

∀d ∈ D, HR(d) =
k−1∑
i=0

1
n − i

≥
k−1∑
i=0

1
n
=

k
n
, where k < n

When random caching is employed by the model, let
Pcache(di | q j) denote the probability that a retrieved document
is di given the keyword q j, and x j,c denote the expected number
of documents retrieved for the keyword search q j. Then, the
following holds:

∀di ∈ D and ∀q j ∈ Q, x j,c = x j(1 − HR(di))

Pcache(di | q j) =

 1
x j

q j ∈ di

0 q j < di



Then, the ϵ − distance of model after random caching can be
written as follows:

||Pcache(di | q j) − P′(di | q j)||TV =

sup
q j∈Q
{ 1

2

∑
di∈D
|Pcache(di |q j) − P′(di |q j)| } =

sup
q j∈Q
{ 1

2

∑
q j∈di , di∈D

(Pcache(di |q j) − P′(di |q j))

+
1
2

∑
q j<di , di∈D

(P′(di |q j) − Pcache(di |q j)) } =

sup
q j∈Q
{ 1

2
{ x j,c(

1
x j
− 1

n
) + (n − x j,c)(

1
n
− 0) } } =

sup
1≤x j≤n

{ 1 −
x j

n
− k

2n
+

x jk
n2 } = 1 − 1

n
− k

2n
+

k
n2 ≈ 1 − k

2n

The cost of random caching policy is to store k data items
in the client and to process at most k additional document
accesses for each query. Because, if the documents chosen for
caching have not already been fetched by the previous query,
they will be retrieved from the storage.

2) Locality Caching: The locality caching policy is in-
troduced to maximize the cache hit rate by exploiting the
locality of data. To this end, the client keeps track of the
document access frequencies and stores the most frequently
accessed ones in the local computer. The locality principle of
the data [23] ensures better cache hit rate than the random
selection. Yet, its effect on ϵ − distance is limited. Because,
all data items cannot find a chance to be cached, but only the
frequently accessed ones do. When the cache eventually finds
an equilibrium state, it holds the same data items for each
query.

The cost of locality caching policy is to store k data items
in the cache. It does not need to process additional document
accesses like random caching, because the documents can be
chosen from among the documents that are already fetched for
previous queries.

B. Random Fake Access

The random fake access is a heuristic, where the documents
are retrieved with a uniform random probability α. More
formally, given an arbitrary query q, let α be the probability
of fake access to di ∈ D when P(di|q) = 0.

Proposition 4.2: If searchable encryption employs random
fake access policy with a probability α, ϵ − distance of the
model is decreased approximately by

√
α.

Proof: When the random fake access policy is employed
by the model, let P f ake(di | q j) denote the probability that a
retrieved document is di given a keyword q j, and x j, f denote
the expected number of retrieved documents by q j. Then, the
following holds:

∀di ∈ D and ∀q j ∈ Q, x j, f = x j + (n − x j)α

P f ake(di | q j) =

 1
x j, f

q j ∈ di
α

x j, f
q j < di

After the random fake access policy is employed, the ϵ −
distance of model can be written as follows:

||P f ake(di | q j) − P′(di | q j)||TV = (5)

sup
q j∈Q
{ 1

2

∑
di∈D
|P f ake(di |q j) − P′(di |q j)| } =

sup
q j∈Q
{ 1

2

∑
q j∈di , di∈D

(P f ake(di |q j) − P′(di |q j)) (6)

+
1
2

∑
q j<di , di∈D

(P′(di |q j) − P f ake(di |q j)) } =

sup
q j∈Q
{ 1

2
{ x j, f (

1
x j, f
− 1

n
) + (n − x j, f )(

1
n
− α

x j, f
) } } =

sup
q j∈Q
{ 1 − α

2
−

x j

n
(1 − α) − nα

2(nα + x j(1 − α))
} ⇒ (7)

∂

∂x j

(
1 − α

2
−

x j

n
(1 − α) − nα

2(nα + x j(1 − α))

)
⇒

x j =
n(

√
α
2 − α)

1 − α , where α < 1⇒

||P f ake(di | q j) − P′(di | q j)||TV ≤ 1 +
α

2
−
√

2α ≈ 1 −
√
α

Note that the Eq. 5 can be calculated by taking derivative
with respect to x j.

The estimated cost of random fake access policy is to
process α(n− x j) additional accesses when q j is queried. Note
that, as the number of documents increases, the cost of random
fake access policy increases as well.

C. Document Duplication

Document duplication is another heuristic we analyze,
where multiple copies of documents are stored redundantly
in the storage. When a keyword search needs a document, one
of the copies of the document is retrieved randomly. Since the
selection process is uniformly at random, P(di|q j) decreases
with respect to the number of copies.

Proposition 4.3: In searchable encryption model, if c
copies are stored for each document di ∈ D, ϵ − distance of
the model decreases with respect to c.

Proof:

Let Φ denote a function for the duplication process, where
Φ : D → Dc, and D′ denote the set of documents, where
D′ = ∪

di∈DΦ(di) and |Φ(di)| = c

The document d ∈ Φ(di) is selected uniformly at random
when a searched keyword q j exists in d. Let Pdup(di | q j) denote
the probability that a retrieved document is one of c copies of
document di, given the keyword q j, when the model employs
the document duplication policy. Then, the following holds:

∀di ∈ D′ and ∀q j ∈ Q,

Pdup(di | q j) =

 1
x jc

q j ∈ di

0 q j < di

When document duplication is employed, the ϵ − distance of
model can be written as follows:



||Pdup(di | q j) − P′(di | q j)||TV =

sup
q j∈Q
{ 1

2

∑
di∈D
|Pdup(di |q j) − P′(di |q j)| } =

sup
q j∈Q
{ 1

2

∑
q j∈di , di∈D

(Pdup(di |q j) − P′(di |q j))+

1
2

∑
q j<di , di∈D

(P′(di |q j) − Pdup(di |q j)) } =

sup
q j∈Q
{ 1

2
{ x j(

1
x jc
− 1

cn
) + (n − x j)(

1
cn
− 0) } } =

1
c

sup1≤x j≤n{ 1 −
x j

n
} = 1

c
( 1 − 1

n
) , where 1 ≤ c

The cost of document duplication policy is to store extra
(c − 1)n documents, c > 1, in the storage.

Table I summarizes the ϵ−distance and cost of introduced
policies.

Policy ϵ − distance cost
Random Caching 1 − k

2n k (data access/query)
Locality Caching 1 − 1

n 0
Random Fake Access 1 −

√
α α(n − x j) (data access/query)

Document Duplication 1
c (1 − 1

n ) (c − 1)n (redundant document storage)
TABLE I. Heuristic Comparison

D. Hybrid Policies

The heuristics introduced above can be combined to
achieve lower ϵ − distance values while dividing the total cost
into different policies. In theory, any combination of these three
heuristics can be used, but we analyze two of these hybrid
policies below, in terms of the gain with respect to ϵ−distance
and incurred costs.

1) Hybrid Policy I: Random Caching + Random Fake
Access: In hybrid policy I, the random caching (Sec. IV-A1)
is utilized along with the random fake access (Sec. IV-B).
Suppose that the client can store k out of n documents in
the local storage and uses the random fake access policy with
probability α.

Proposition 4.4: If a searchable encryption model employs
hybrid policy I with k documents in the cache and fake
access probability α, ϵ − distance of the model is decreased
approximately by k

2n +
√
α.

Proof: When the model employs the hybrid policy I, let
PhybridI (di | q j) denote the probability that a retrieved document
is di given the keyword q j, and x j,h denote the expected number
of retrieved documents by q j. Then, the following holds:

∀di ∈ D and ∀q j ∈ Q, x j,h = x j −
x jk
n
+ (n − x j)α

PhybridI (di | q j) =


1− k

n
x j,h

q j ∈ di
α

x j,h
q j < di

When hybrid policy I is employed, the ϵ − distance of an
arbitrary query q j can be written as follows:

||PhybridI (di | q j) − P′(di | q j)||TV = (8)

sup
q j∈Q
{ 1

2

∑
di∈D
|PhybridI (di |q j) − P′(di |q j)| } =

sup
q j∈Q
{ 1

2

∑
q j∈di , di∈D

(PhybridI (di |q j) − P′(di |q j))+ (9)

1
2

∑
q j<di , di∈D

(P′(di |q j) − PhybridI (di |q j)) } =

sup
q j∈Q
{ 1

2
{ x j,h(

1 − k
n

x j,h
− 1

n
) + (n − x j,h)(

1
n
− α

x j,h
) } } =

sup
q j∈Q
{ 1 − k

2n
− α

2
−

x j

n
(1 − k

n
− α) − nα

2(nα + x j(1 − k
n − α))

} ⇒ (10)

0 =
∂

∂x j

1 − k
2n
− α

2
−

x j

n
(1 − k

n
− α) − nα

2(nα + x j(1 − k
n − α))

⇒
x j =

n(
√
α
2 − α)

1 − k
n − α

, where α < 1⇒

||P f ake(di | q j) − P′(di | q j)||TV ≤ 1 − k
2n
+
α

2
−
√

2α ≈ 1 − k
2n
−
√
α

Note that Eq. 8 can be calculated by taking derivative with
respect to x j.

If αn > k, the client can choose k documents for caching from
the documents, retrieved by the random fake access policy in
the previous query. Therefore, the additional document access
cost of random caching is eliminated. Total cost of the policy
is to store k documents in the local machine and process αn
fake document accesses.

2) Hybrid Policy II: Random Caching + Random Fake Ac-
cess + Document Duplication: In hybrid policy II, document
duplication is added to hybrid policy I. Suppose that the client
can store k out of n documents in her local machine, it employs
the random fake access policy with the probability α and
document duplication policy with c copies.

Proposition 4.5: If a searchable encryption model employs
hybrid policy II with k documents in the cache, fake access
probability α and c copies in the storage, ϵ − distance of the
model is decreased with respect to k, α and c.

Proof: Let PhybridII (di | q j) denote the probability that a
retrieved document is di, given the keyword q j, when the model
employs the hybrid policy II. Then, the following holds:

∀di ∈ D′ and ∀q j ∈ Q, PhybridII (di | q j) =


1− k

n
x j,hc q j ∈ di
α

xh
j c

q j < di

When hybrid policy II is employed, the ϵ − distance of an
arbitrary query q j can be written as follows:



||PhybridII (di | q j) − P′(di | q j)||TV = (11)

sup
q j∈Q
{ 1

2

∑
di∈D
|PhybridII (di |q j) − P′(di |q j)| } =

sup
q j∈Q
{ 1

2

∑
q j∈di , di∈D

(PhybridII (di |q j) − P′(di |q j))+ (12)

1
2

∑
q j<di , di∈D

(P′(di |q j) − PhybridII (di |q j)) } =

sup
q j∈Q
{ 1

2
{ xh

j (
1 − k

n

x j,hc
− 1

nc
) + (n − x j,h)(

1
nc
− α

x j,hc
) } } =

1
c

sup
q j∈Q
{ 1 − k

2n
− α

2
−

x j

n
(1 − k

n
− α) − nα

2(nα + x j(1 − k
n − α))

} ⇒ (13)

0 =
∂

∂x j

1 − k
2n
− α

2
−

x j

n
(1 − k

n
− α) − nα

2(nα + x j(1 − k
n − α))

⇒ (14)

x j =
n(

√
α
2 − α)

1 − k
n − α

, where α < 1

||P f ake(di | q j) − P′(di | q j)||TV ≤
1
c
{1 − k

2n
+
α

2
−
√

2α} ≈ 1
c
{1 − k

2n
−
√
α}

Note that Eq. 11 can be calculated by taking derivative with
respect to x j.

Since the document duplication policy increases the size
of corpus by c times, the number of fake data accesses also
increases by c times. Therefore, total cost of the policy is
to store k documents in the local storage, process αcn fake
document accesses, and store (c−1)n redundant documents in
the storage.

V. Experimental Analysis

In this section, we present empirical results and analyses
of the proposed heuristics on the searchable encryption model.
To our knowledge, this is the first extensive empirical study of
access pattern obfuscation techniques such as caching,fake data
access and data duplication. The analysis presents comparison
of proposed heuristics, with respect to scalability performance,
under different security constraints. Our results suggest that
hybrid approaches can lower ϵ −distance to desired values for
acceptable costs although the individually usage of heuristics
is not very effective.

A. Experiment setup

The experiment is conducted on a realistic scenario. In this
scenario, a real world dataset (ENRON) [24] is uploaded to
our free account in Dropbox file hosting service [25]. Since
Dropbox does not provide computation power, the encrypted
index is deployed into a private server that we manage. The
server is an 8 cores Intel(R) Xeon(R) D Linux machine clocked
at 2.50GHz with 32 GB RAM. Our personal desktop, which
is an Intel(R) Pentium(R) D Windows 7 machine clocked at
2.80GHz with 4.00 GB RAM, is used as the client. The client
and Dropbox are connected (via Internet) through the REST
API of Dropbox. The client and the server are connected via
the UT Dallas local area network (LAN).

The ENRON dataset [24], which is a well studied email log,
is employed as our corpus. The dataset is composed of many
folders from approximately 150 users. We randomly choose

10000 documents1 from the inbox folders as our document set
D, in which there are totally 75147 distinct keywords. Since
the documents have some email related meta data at the first
few lines, we filtered these lines from the documents. Then, the
words in the documents are stemmed for improving the search
process. At the end of this process, the documents become a
composition of stemmed words. Moreover, the documents are
split into tree structured folders because of Dropbox’s limit on
the number of files that can be stored in a folder.

Although any query distribution can be incorporated in the
experiment, we assume that more common words have more
chance to be searched. Thus, 1000 queries are generated by
randomly selecting keywords from the documents. Moreover,
120 stop words that do not make sense for a query keyword
(i.e., “the”,“to”,“a”) are omitted in the search queries.

In the experiment, various security scenarios are explored
by assigning different ϵ − distances (i.e., 0.001, 0.01, 0.1, 0.2,
0.3) constraints. We argue that a searchable encryption model
that satisfies 0.001 − distance definition is more secure than
a model satisfying 0.3 − distance, because it is closer to the
definition 3.2 which is oblivious by theorem 3.3. Then, the cost
of hybrid policies are presented as number of fake document
accesses for each document retrieval, and the fake document
access cost of ORAM is compared with it.

B. Results

If only the random caching policy is employed in the model,
the size of cache to achieve ϵ − distance constraint can be
calculated by means of proposition 4.1:

k ≥ 2n(1 − ϵ), limϵ→0k = 2n − 2

“limϵ→0 k = 2n−2” renders the cache meaningless, because if
the client can hold all documents in the local machine, there is
no need for searchable encryption model in the cloud setting.

The locality caching cannot be used to reduce ϵ − distance
as explained in section IV-A2. However, its hit rate is superior
to random caching (see Fig.2(a)) especially when cache size is
relatively small. When 1.25% of the documents are cached, the
locality caching (HR(di) = 0.0496) is four times better than the
random caching(HR(di) = 0.0125). Therefore, a combination
of small amount of locality caching and random caching will
provide a good balance between the security and scalability
gains. For instance, if 5% locality caching is employed along
with 15% random caching, its hit rate is 0.09 higher than 20%
random caching, but the reduction in ϵ − distance is only 0.05
smaller than 20% random caching.

If only the fake document access policy is used in the
model, the amount of access probability α to succeed ϵ −
distance constraint can be calculated as follows:

α ≥ (1 − ϵ)2, limϵ→0α = 1

“limϵ→0α = 1” implies the retrieval of all documents in the
storage. This is the trivial oblivious strategy, where all data
items are scanned for a single query. Yet, it cannot be tolerated
in the cloud setting due to the overhead it introduces with a
big corpus.

1medium sized data for a searchable encryption model
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Fig. 2. Results

If only the document duplication policy is used in the
model, the number of copies c to succeed ϵ − distance
constraint can be calculated as follows:

c ≥ (1 − 1
n

)
1
ϵ
, limϵ→0c = ∞

“limϵ→0 c = ∞” makes it impossible to individually adopt
document duplication to succeed small ϵ values. Note that
keeping too much copies for each data item in the corpus can
be very expensive in the cloud [1] .

Although the heuristics cannot be employed individually to
ensure small ϵ − distance, their contribution can be significant
when combined in a hybrid approach. In Figure 2(b), the
fake data access costs of the two hybrid policies are listed.
Hybrid policy I is composed of random caching and fake
document access policies, where α = k

n . In Hybrid policy II,
document duplication is added to Hybrid policy I setting,
where α = k

n and c = 32. Then, five security premises
ϵ = {0.001, 0.01, 0.1, 0.2, 0.3} are defined, and k and α are
determined by Equations 4.4 and 4.5.

As shown in Figure 2(a), Hybrid policy II performs more
fake additional data accesses than Hybrid policy I for small
ϵ values because of the larger size of document number. Yet,
Hybrid policy II outperforms Hybrid policy I for relatively
larger ϵ values.

C. Comparison of ORAM and Hybrid Policies

Oblivious RAM has been proposed by Goldreich and
Ostrovsky [12] to completely hide access patterns. After its
first introduction, many Oblivious RAM constructions have
been proposed. Among these constructions, to our knowledge,
Williams et. al. [19] have proposed one of the most efficient
ORAM constructions available in the literature. In this proto-
col, the computational overhead is O(log n × log logn) per
request, where n is the number of data items. This overhead
contains the constant factor of 1.44c for an allowed error
probability of 2−c with other constant factors in the big O
[17]. If we assume, c = 64, then the constant 1.44c is 92
(Please see [17] for more details). Based on this analysis, the
value of the constant c can be accurately approximated to

2The current redundancy in contemporary cloud systems like Hadoop

be around 100. Now, suppose the number of data items are
210. Then, log n = 10. Hence, even the most efficient ORAM
presented in [19] requires more than 100 × 10 = 1000 data
items to be retrieved for a single data access, which is far from
practical. Moreover, the overhead gets bigger as the number
of data items (n) increases. On the other hand, the analyzed
hybrid policy I retrieves approximately 6 documents for each
document access of searchable encryption when ϵ = 0.001.
Still, Oblivious RAM completely hides the access pattern, but
the hybrid policies I and II leak ϵ − distant access pattern.

VI. Conclusion

In this paper, we analyze the heuristics for the access pat-
tern obfuscation over searchable encryption model. To this end,
we first aim to measure the amount of access pattern leakage
of an arbitrary model. Then, we determine the obfuscation
amount for each heuristic and two different combination of
those. By using these calculated obfuscation amount, we com-
pare the cost of heuristics while restricting the access pattern
leakage by a predetermined constant. An empirical analysis is
conducted on a real world data set. The empirical evaluations
indicates the practical nature of the hybrid heuristics.
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