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Abstract—As Big Data becomes prevalent, the traditional
models from Data Mining or Data Analysis, although very
efficient, lack the speed necessary to process problems with data
sets in the range of million samples. Therefore, the need for
designing more efficient and faster algorithms for these new types
of problems. Specifically, from the field of social network analysis,
we have the influence maximization problem. This is a problem
with many possible applications in advertising, marketing, social
studies, etc, where we have representations of influences by large
scale graphs. Even though, the optimal solution of this problem,
the minimum set of graph nodes which can influence a maximum
set of nodes, is a NP-Hard problem, it is possible to devise an
approximated solution to the problem. In this paper, we have
proposed a novel algorithm for influence maximization analysis.
This algorithm consist in two phases: the first one is an entropy
based node ranking where entropy ranking is used to determine
node importance in a directed weighted influence graph. The
second phase computes the minimum cut using a novel metric.
To test the propose algorithm, experiments were performed in
several popular data sets to evaluate performance and the seed
quality over the influences.
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I. INTRODUCTION

Large scale data processing analysis has brought us new
challenges with respect to algorithmic support. There are sev-
eral problems, like finding statistics in data streams, clustering
of information in data streams, classification and learning
[1], [2], [3], where the need of light and efficient algorithm
is necessary. For example, in pattern recognition there are
algorithms [4] where the top-k most important patterns are
found instead of all of them.

Specifically in the new world of social networks, being
able to identify sets of users able to influence the rest of the
social network has become highly important and necessary. For
example, Influence Maximization (IM) is a classic problem
in social analysis, and it has become of great interest in
data mining, machine learning and optimization. The original
problem was formalized by Domingos and Richardson in [5],
and it has the following structure: Given a social network (a
directed graph) G, we need to find m nodes (call seeds) who
influence the maximum set of network nodes. Because IM is
NP-Hard problem [6], most of related works [6], [7], [8], [9]
are focused in trying to approximate the optimal solution.

Quality results in the IM problem depends of finding the
best seed nodes, and there are two kind of seeds nodes, static
and extra seed nodes [7].

Static seed nodes are those which are well know. For
example, if we represent a series of twitter accounts, which
talk about a famous pop music singer, as a graph. It is possible
to identify fan club leaders as static nodes, and the rest of the
followers as nodes being influenced by the leaders. The second
type of seed nodes are related to nodes who potentially can
influence others to change their opinion. These type of nodes
are called extra seed nodes. The focus of this work is to try
to find these extra seed nodes to define a solution of the IM
problem.

Even though, several methods [10] [6] [11] [8] [12] allow
to process large amounts of information, they lack of effective
techniques for seed discovery. Therefore, it is necessary to
have more effective methods to obtain faster and more complex
answers. For example, Liu et al. [7] uses a greedy technique
based on min-cuts that allows finding the most influential
nodes by computing min-cuts for every node to be a potential
extra seed node. A drawback of this technique, when applied
to a large amount of data, is its combinatorial nature.

IM has been recently re-stated as a Big Data problem
for marketing purposing in social networks. For example,
traditional greedy techniques based in Kempe et al. [6] were
adopted to get faster results using parallelizing algorithms [11].
In another example, Li et al. [12] were facing large datasets
problems, for which they decide to introduce the “conformity”
term in the network. This term means “the inclination of one
node to be influenced by others”.

In this work, the proposed algorithm needs to calculate
these two indexes, influence and conformity. Then, using these
indexes, it gets a series of graph partitions to determine local
seed nodes because after all influence and conformity are local
properties.

Then, the initial problem is to find the extra seed nodes.
Then, nodes need to be classified in order to determine the
extra seed nodes.

A popular method is the use of ranking algorithms [13] for
this task. For example, there are traditional ranking algorithms
using the degree of the nodes, as the populars PageRank
[14] and HITS [15], for web page classification. Another
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method [16] uses ranking for labeled directed graph for hyper-
linked document ranking. There are other methods, as Dirichlet
PageRank [17], designed to avoid cyclical structures to identify
e.g. spammer pages in web map.

To process large datasets for IM, we propose a two-phase
algorithm and a bounded greedy algorithm in order to reduce
computational time and to obtain good approximations to the
IM problem. In the first phase, we rank the graph nodes using
an entropy ranking [18] to find “a hidden organizational struc-
ture to select interesting prominent members”. This entropy
ranking does not take in account the node’s degree which
makes this ranking more effective for finding extra seed nodes.
The influence entropy is calculated by removing the node
from the graph, and calculating its effect. The second phase
uses a well know min-cut in a local fashion to speed up the
computational time.

This idea of using the min-cut is inspired by the Ising
model [19]. This model was originally used for ferromagnetic
material behavior analysis in mechanical statistics [20]. In
Social Network Analysis (SNA), the Ising model is used to
detect community structures [21]. In this type of problems,
the computation of the min-cut for calculating the Ising model
leads to a ground state, which is a configuration with a state
of low energy. In an equivalent way, in social networks, the
ground state is a configuration with low number of conflicts.
Finally, the proposed method utilizes a greedy pruning method
taken from IM traditional methods [15] [8] to obtain the extra
seed nodes. These extra seed nodes are choose from the most
ranked nodes, which are also attractor seeds.

Finally, in order to prove the proposed algorithm, we select
a series of datasets to build weighted graphs. These datasets
are from twitter trending topics, hashtags, user mentions and
retweets to represent the users influence. In addition, we
include random graphs for baseline comparison.

The paper is organized as follows. In Section II, we
formally explain the problem, and the required background
to understand the proposed algorithm. In Section III, we
describe the proposed algorithm. In Section IV, we explain
how the algorithm was implemented. In Section V, a series
of experiments are described, and the results are reported
including comparison with other algorithms. In this section, we
show the complexity time improvement due to the two phase
algorithm and the bounded greedy algorithm. Finally, in the
conclusion, we describe some ideas for future improvements.

II. PROBLEM DESCRIPTION AND BACKGROUND

A. Graph Construction

Graphs are a very used technique for data representation,
specially in SNA [22] [23]. In our case, the graphs are used to
represent influences between social network members. For this,
we define a Social Network as a graph G = 〈V,E〉, in which
every user is a graph node (V ), every link (E) between nodes
represents an influence. Links are defined as E ⊆ {(i, j) ∈ V×
V : i 6= j }, and we define influence in one way or direction.
In other words, if there is a influence from i to j, there is not
necessarily the same influence from j to i. Actually, this is the
natural way to form user’s link (followers) in twitter. Matrix
weight W represents degrees of influence between nodes, W :

{n}× {n} → N where n = |V |, Wij means link weight from
node i to node j and i 6= j.

For twitter data representation, graphs are used to represent
twitter followers where users are nodes and links are follow
relationships. For example, if a user a follows user b there
are a link from a to b. Follow relationships do not necessary
reflects influence because, for example, user a can follow user
b but if b never writes a tweet, there is no influence. For
influence representation, we can build it using retweets and
mention graphs. This means that if user a retweets user’s b
tweets, there is an influence from b to a. The same happens
for tweet mentions. In this way, the weight matrix Wij is built
by summing the number of times user j mentions or retweets
user i those ideas are based in McKelvey and Menczer work
[22].

Influence graphs are constructed to represent specific users
opinion. Given an opinion set Ψ, every opinion ψ ∈ Ψ belongs
to a node ψi (the node’s i opinion). To fit the notation to
the min-cut problem model, we say, if node i has a positive
opinion, then, it is represented by ψi ∈ N+. When it has
negative opinion, then ψi ∈ N− as is used in [7]. For example,
we could use an opinion set to indicate if a user knows or does
not know a new product.

B. Entropy Based Ranking

The node ranking problem is wildly studied in web search,
document classification, citation analysis, anomaly detection,
etc., and many of the proposed solutions use graph represen-
tation [9], [16], [18].

The most basic algorithm is the Degree Ranking (DG), it
was mentioned in Kempe et. al [6] as a simple strategy to find
extra seed nodes. In this algorithm, given the degree value
of each node, the nodes are sorted by degree values with a
expected complexity of O(n log n), if quicksort is used. For
example, if we apply this for twitter followers, the node with
most in-degree is the most popular node because in-degree
represents the number of followers. In-degree is represented
by a function indegree(i) and the out-degree is represented
by function outdegree(i). In this algorithm, high out-degree
values could represent spammers.

Although, most of the ranking methods are based in metrics
related with high node degree, this metric does not necessarily
implies “importance”. This can be seen in (Fig. 1), where
there are nodes linking two communities, both with low
indegree(v) = 3 and low outdegree(v) = 1.

This is the reason why we decide to adopt graph entropy
[18]. For this, we are using the entropy definition in [24],
which has the following expression (Eq. (1)).

H(G,P ) = min
x∈SatableSet(G)

n∑
v∈V

pvlog(pv) (1)

This equation involves finding the Stable Set (SS). This set
is the node collection L such that there is no edge between
L members. It is well know, that finding SS is NP-complete
problem. To overcome this problem Shetty et al. [18] proposed
to use the equation (Eq. (2)) to compute graph entropy. In



Figure 1. The graph represents twitter user interactions which are
formed with hastag #israel. The brown nodes have low in-degrees and
out-degrees, but are important because they link two big communities.
Data was taken from Indiana University Truthy project [22].

addition, they also proposed an algorithm to determine node
“effect”. This metric evaluates the graph when a node is
present and re-calculates the evaluation when the node has
been removed. The node’s effect is calculated as follows:

1) Compute node entropy E(v).
2) Compute graph entropy without node to be evaluate

EN(v).
3) Calculate the effect with effect function (Eq. (3)).

H(G,P ) =

n∑
v∈V

pvlog(1/pv) (2)

effect(v) = EN(v)/log(EN(v)/E(v)) (3)

If these three steps are applied ∀v ∈ V , all possible
effects are calculated. Then, the nodes can be sorted in descen-
dant order using the ranking/effect generated by the entropy.
Furthermore, entropy could be calculated at different levels
(l). Here, level number is related to the direct and indirect
influences between nodes. For example, l = 1 represents
direct influence, i.e. node v0 directly influences node v1. For
l > 1, we have indirect influences, i.e. for example, node v0

influences node v1, and this in turn influences v2. This means
that there is an indirect influence of level two from v0 to v2.

How the probability graph distribution P is calculated
depends on analysis level. For l = n, we need to count every
single path of size n for each node v. Probability of node v is
equal to all paths of length l, which contain v, divided by the
total number of graph paths of length l (ρl).

pv0 = (
∑

(v0,v1)∈E

· · ·
∑

(vl−1,vl)∈E

Wl−1,l)/ρl ∀v ∈ G, l > 0

(4)

A final note, it does not make sense to analyze l with large
values because influence is lost as you increase level’s value.

C. Min-cuts for Influence Maximization

Min-cuts are mainly used in social network analysis for
graph reconstruction [21]. Suppose that we have a directed
weighted graph G that represents social network’s influences
between users V by edges E, weight matrix W , and we know
all members opinion about certain subject s. If all opinions
are of two types, positive or negative, then we have two sets,
N+ for positive opinion nodes, and N− for negative opinion
nodes. In addition, N+ and N− are disjoint sets. Therefore,
the min-cut can be defined as a function that:

c(N+, N−) = min
(i,j)∈N+×N−

∑
Wij (5)

Now, suppose we want to reconstruct the graph’s node
opinion set, and we know some specific opinions represented
by subsets Ψ+ ⊆ N+ representing positive opinion, and
Ψ− ⊆ N− representing negative opinion. These subsets are
called seed nodes, and they have the characteristic that they
never change their opinion no matter what. We can use these
seed sets and a min-cut algorithm [25] to obtain the original
opinion sets, N ′+ and N ′−, which are known as source and
sink sets. In addition, if we compare N+ and N ′+ subsets
obtained from the min-cut algorithm, from the original graph
opinions, we can get an error e, defined as the number of nodes
in N+ which are misclassified. In other words, they are in N ′−
after min-cut. This error e can be reduced, if we increase Ψ+

size [21].

Then, we can use min-cuts for IM, with a dependable seed
sets, to infer the other member opinions [7] in a very accurate
manner. This final inference is determined depending on which
side of the min-cut the node is. In order to use the min-cut
algorithms in the IM problem, we need to specify, in addition
to seed sets, the source s and sink t nodes.

The computation of the min-cut is accomplished by using
a flow algorithm [25]. For example, if we use the Edmonds-
Karp algorithm, the running time is in O(V E2). This is highly
recommended for sparse graphs as the ones generated by social
networks. Finally, we only need to determine the source and
sink nodes. There are two strategies to determine these nodes:

• The first strategy takes the most representative node
belonging to a community. This can be done if we
have some knowledge about the graph. For example,
in the karate club problem [21], if we do not choose
as a source/sink the most representative nodes, and
select them randomly, the results may give us a very
different result. For this selection, we can use ranking
algorithms to determine them, we can select one node
with high values in the positive opinion side and one
for the negative opinion side.



Figure 2. The first graph represents the source and sink election by
high degree in their communities. The second graph represents the extra
node placement for source and sink nodes.

• In the second strategy, we create extra source and sink
nodes. These nodes do not represent any real graph
member, it is only used to have a starting node and a
ending node. This technique is used in flow problems
(Fig. 2).

Once we have s and t, we need to link them with static
seeds nodes, with s ∈ N+ and t ∈ N−. For this, we use the
following directed weights:

• Wsv+ =∞, ∀v+ ∈ Ψ+.

• Wv−t =∞, ∀v− ∈ Ψ−

Where set Ψ is defined as Ψ = Ψ+ ∪ Ψ−. These rules are
from multi-source/multi-sink flow problem. In addition, they
are used to not allow N+ nodes does not go to the N− subset.
References to all this notation can be seen in (Table I)

An example of an algorithm that uses these ideas of seed,
source and sink nodes is the Greedy Placement (GP) algorithm
[7]. This algorithm can find extra seed nodes by evaluation of
node influence in running time of O(mV 2E2), where m is
the number of seeds sought. This is the base algorithm for
comparisons in the experiment (Section V).

III. PROPOSED METHOD

In order to analyze the IM problem for “Big Data,” we
need to have low computational complexity algorithms due to

TABLE I. NOTATION USED IN THIS PAPER

Notation Description
G Directed weight graph
V Set of nodes (vertex) in G
E Set of edges (links) in G
W Node weights matrix
N+ Set of nodes classified as positive
N− Set of nodes classified as negative
Ψ+ Positive seed nodes
Ψ− Negative seed nodes
Ψ′+ Positive extra seed nodes
Ψ′− Negative extra seed nodes
ψi Opinion of the ith node
outdegree(v) Function to count number of out edges
indegree(v) Function to count number of in edges
H(G,P ) Entropy of G probability distribution P
s Source node
t Sink node
c(N+, N−) Cut function
GP Greedy placement algorithm
DG Degree based algorithm
EMinG Entropy based algorithm

the size of the problems. Therefore, it is necessary to have fast
algorithms that are suitable to obtain high quality results. How-
ever, most of the proposed approximation algorithms for the
IM problem are based on greedy methods over combinatorial
interpretations of the IM problem [7] [15] [12] [8]. This makes
them vulnerable to runaway computation with exponential
bounds. To address this, we propose a novel algorithm which
has two phases. In the first phase, an analysis is carried out
using node entropy ranking because is faster than use greedy
approaches. These greedy approaches measure every single
node influence, even when using min cut analysis. This implies
to compute min-cut as many time as nodes have the graph. In
the second phase, the min-cut algorithm, Edmonds-Karp, is
used locally to obtain an approximation in the opinions of the
graph.

A. Data Preparation

To apply the proposed algorithm, we need to decide in
which part of the graph we are going to rank the nodes. It could
be in the entire graph or only a set of nodes. This happens
because local ranking of a node is not equal than the entire
graph ranking. In our specific problem we need to know which
m nodes in N−, could attract more N− nodes to N+.

The local ranking will be done in the N− side, in order
to reduce the number of operations. To get N−, the min-cut
needs to be calculated. After the N− subset is obtained, we
rank the respective nodes.

B. Ranking Phase

In this phase, we want to identify “prominent” nodes.
This characteristic must be related to an individual power of
persuasion. Therefore, the ranking serves as data preparation.
The top most m ranked nodes can be the extra seed nodes
(Ψ′+). Entropy ranking is only calculated in N− subgraph to
reduce the number of operation. Graph entropy is calculated
by the formula 2, and node effect with 3. The algorithm for
this phase is in (Algorithm 1 ).

Complexity of ranking is directly related to the number of
nodes in the graph. The computation of probability is made
in O(N−)l, and we only are going to compute influence
level for l = 1 and l = 2. To compute effect is necessary
to compute graph entropy, which is caluculated with com-
plexity O((N−)2). Finally, sorting of the nodes is done in
O(N−logN−) complexity, and addition of nodes is done in
O(N−) complexity.

During experimentation, it was discovered that a good level
of influence in this phase was l = 1 and l = 2. An increase of
the level values may result in loss of time without improving
the quality of the extra seeds selected.

C. Cut Phase

The min-cut splits the graph in two sets N+ and N−.
Because Min-cut is computed locally, we need to establish
source and sink nodes. Locally, this refers to obtain a local
min-cut between these nodes and not the global min-cut. Then,
every node i ∈ N+ is classified as a positive, and every node
j ∈ N− is classified as a negative. For our model, the m nodes



Algorithm 1 Ranking algorithm
Require: Directed Weight Graph G.

1: Ψ′+ = φ
2: N− = mincut(G)
3: Combine all N+ nodes as a supernode
4: entropyN− = H(N−, PN−)
5: for all v−i in N− do
6: G− = N−\v−i
7: entropyG− = H(G−, PG−)
8: effect[i] = entropyG−/log(entropyG−/E(v−i ))
9: end for

10: Sort(effect)
11: for j = 1 to | N− | do
12: if v−j /∈ Ψ+ then
13: Ψ′+ = Ψ′+ ∪ {v−j }
14: end if
15: end for
16: return Ψ′+

Algorithm 2 Cut algorithm EMin
Require: Extra seed set Ψ′+.

1: j = 1
2: for i = 1 to m do
3: ψ+ = Ψ′+[j]
4: while ψ+ ∈ N+ do
5: j = j + 1
6: ψ+ = Ψ′+[j]
7: end while
8: Wsψ− =∞
9: N+ = mincut(G)

10: Combine all N+ nodes as a supernode
11: end for
12: return

with high entropy ranking are chosen. Then, the following
algorithm (algorithm 2 ) is applied.

As we see in the cut algorithm, in line 4 there is a validation
that guarantees a special case, when a node with high entropy
value was attracted previously to N+ by other node. In (Fig.
3) we illustrates the situation. The algorithm deals with the
situation in the following way: The attracted nodes are not
added to Ψ′+ because all the possible nodes, which could
be attracted by this node, are also includes when they are
members of N+ side.

In the ranking and cut algorithms in line 3 and 10 respec-
tively, we note a special operation which combines all nodes
in the N+ side in a single node. Supernode is a technique
in graph theory [25] to reduce the number of operations. In
this technique, nodes in N+ related by an edge to N− nodes
are called cut nodes. The technique takes all edges between
positive cut nodes to negative cut nodes, and fused them in
one edge which is the sum of all weights of cut nodes. This is
also done for negative cut nodes linked to positive cut nodes.
All weights between N+ nodes are ignored because it does
not make sense to analyze N+ interactions, and they are also
in the side that we need to increment. Finally, the supernode
always will be the source node.

The algorithm time complexity consists of Min-cut com-

Figure 3. Special case representation. In the left graph, there are two
top most ranked nodes in N−. In the right, after adding most ranked
node to the N+ side. Also the second most ranked node is attracted
because it is not necessary to take this node as extra seed.

plexity and the entropy effects calculations. It needs to com-
pute Min-cut over using the seeds generated by the entropy
ranking. Then, the cut algorithm complexity is O(m(V E2)).

D. Adding Greedy to Entropy

As we mention earlier, greedy techniques may lead us to
a spend more time to obtain results, in addition to have low
quality results. Still, we want to exploit the greedy methods
main characteristic, the reduction of the combinatorial part of
the IM as an optimization problem. Thus, we can prune the
number of combinations to compute high quality seeds. We
can take m+m′ top ranked nodes and test which attract more
nodes, where m′ is an extra search space to find best extra
seeds. The value for m′ could be determined by experimental
tests. In addition, the traditional greedy algorithm is defined
when m+m′ = |N−|. In (Eq. 6), we define EMinG algorithm
as an optimization equation, where Ψ′+m+m′ are top m + m′

ranked nodes. The final algorithm with the new greedy part is
defined in (algorithm 3 ).

ψ+
j = arg max

i ∈N−\Ψ−
mincut(N−,Ψ′+m+m′) (6)

Algorithm 3 Cut algorithm with Greedy EMinG
Require: Extra seed set Ψ′+.

1: j = 1
2: for i = 1 to m do
3: for j = 1 to m+m′ do
4: a = mincut(N+

⋃
Ψ′+[j])

5: if a > max then
6: max = a
7: ψ+ = Ψ′+[j]
8: end if
9: end for

10: Wsψ− =∞
11: Combine all N+ nodes as a supernode
12: end for
13: return

The complexity of EMinG is directly related with the num-
ber of seeds to be found. For example, Min-cut is computed
m(m+m′) times, then we get a O(m(m+m′)V E2) complex-
ity for the algorithm. For IM, m is very small compared with
the number of nodes in the graph. For example with m = 5,



as we will see in section V, we can attract 1033 nodes, in a
7500 nodes graph.

Finally, the proposed algorithm is a combination of min-
cut and ranking algorithms with greedy technique over nodes
which can potentially be influential, with this we can reduce
time over greedy methods and get more quality extra seeds.

IV. EXPERIMENT DESIGN

The proposed algorithm was applied over twitter data sets,
which are constructed from certain subjects, and also it was
applied over random build graphs. We run all the algorithms
with the same seed nodes discovered in the entropy ranking
phase Ψ+ and Ψ−. In addition to the same source s node,
sink t node and those which were chosen from specific studied
graphs.

A. Algorithms for Comparison

The proposed algorithm will be compared with two specific
algorithms, the DG algorithm and the GP algorithm. DG was
chosen to be compared with the algorithm in order to get an
extra seed set Ψ′+. As the experiments will show, the proposed
algorithm is able to obtain more quality results (better extra
seed nodes) when compared with the DG algorithm. Although,
with the GP algorithm, it is possible to obtain higher quality
results, the proposed algorithm is able to obtain faster results
than GP when the size of the data sets increases. We also
use random seed that were chosen heuristically together with
a single discount algorithm. The single discount algorithm
heuristic consist in a simple degree discount heuristic where
each neighbor of a newly selected seed discounts its degree
by one. This is used in cascade models.

B. Twitter Graphs

We use twitter data sets from Truthy project [22]. Those
graphs, from politics, social movements and news, are used to
try to understand how communication spreads on twitter. This
project recollects tweets for the last nine months and packed
them in data sets available to the public.

Using graph’s software visualization such Gephi [26], it
is possible to recognize some of the nodes’ preferences at
the graphs. Then, it is possible to use them as a seed nodes
(positive and negative). We also recollected data from twitter
for marketing datasets where the users are related with a certain
subject. The subject could be hashtag or keyword, and the user
relations are found by mentions or retweets.

C. Random Graphs

Although some random graphs generators could not rep-
resents any real problem, we are going to use a randomly
generated datasets to compare the testing algorithms against
the proposed algorithm in order to see how they behave as the
graph increses in size, degree at the nodes, etc . For this, ran-
dom graphs are generated with well know algorithm Barabasi-
Albert [27] generator. The importance of using random graphs
is because these can be configured to modify the average
degree of the nodes, sparsity and of course we can handle
the amount of nodes to be used. Modifying these parameters,
we can create graphs to represent real possible behaviors.

V. EXPERIMENTS AND RESULTS

The algorithms were implemented on Intel Core I7 3.4
GHz with 8Gb RAM, and this scenario was the same for all
algorithm comparisons.

A. Attracted Nodes

As we mention earlier, most of the traditional IM algo-
rithms are focused in maximizing the amount of nodes which
can change their opinion. Under this assumptions, it is clear
GP is going to have the best results. But, as we saw in the last
section, it is possible to obtain most of the influential nodes
by reducing the number of operations with EMinG.

In the #israel dataset (Fig. 4), GP and EMinG got the
same results because high quality nodes are also included in
top m + m′ ranked nodes. In this case m′ = | V | / 7 was
chosen for testing on all experiments. In #immigration, we
got almost the same results with both algorithms. The variation
was of at most 15 extra seeds. For example, node N4620 is
not of high entropy, but it is influential. Single discount had
acceptable results. For the first and second experiments, we
got 1910 and 2005 nodes respectively.

In the random graph, while looking for 30 extra seed nodes
with GP, we were able to attract 1171 nodes, with EMinG,
we got 1066. Using, the single discount algorithm, we got
794, with DG we got 549, and with Random we got 240. In
the fourth experiment, DG and Random got the worst results.
Furthermore, in the randomly generated graph, it was more
notorious the not so good results for DG and random seed
placement For random seeed placemente, seeds were selected
at random and the second phase of EMinG was used to find
attrected nodes and extra seeds. The main difference between
the first and third experiments is the out-degree node average.
In #israel is 1.21, in #immigration is 1.14, in random graph
experiment is 2.48 and #syria 1.18.

Although, the first, second and third expriments (Fig. 4)
were designed to show the performance of the algorithms, the
fourth experiment was done over a Big Data set (1,000,000
nodes) in order to show the scalability of the algorithms. Thus,
we noticed that with GP an EMinG we got 671310 and 650010
extra attracted nodes respectively. It is more, with m > 30, DG
and Random got small increases. Finally, the single discount
algorithm had incremental results, but they were much worse
when compared with ones by GP and EMinG.

B. Running Time

The final benchmark was done over the running time (Fig.
5). It was possible to see that DG and random seed placement
were the fastest algorithms at the four datasets with respect to
EMinG, but it was only with an advantage of seconds. For large
amount of data EMinG was faster than GP. The interesting fact
was that the Single discount algorithm had almost the same
results in time when compared with EMinG.

For example, at the #israel graph in order to find 5
extra seeds there were 300 seconds of difference between both
algorithms, DG and EMinG. Still, the nodes’ quality, for DG,
were not as good as in EMinG. We had a similar result for for
the random graph: With DG, we obtained 858 attracted nodes,
with EMinG 1033 and 245 for random placement. When we



Figure 4. Number of attracted nodes over #israel (4,000 nodes), #immigration (6,307 nodes), Barabasi-Albert (7,500 nodes) and #syria
(1,000,000) graphs.

increased the number of seeds to 30 and used DG we got 1878
attracted nodes. Instead with EMinG while looking for 25 extra
seeds, the algorithm got 1989 attracted nodes. Finally, with
random seed only placemente, there were only 1221 attracted
nodes.

Now, the GP’s results were slower than EMinG. This is
because with GP we need to evaluate every single node’s
influence. Then, while looking for a small number of extra
seeds, it can be seen that it has lower running time. But
with 10 or more extra seeds to find, GP’s time complexity
increases faster than any other algorithm. For example, to find
30 seeds, in the Barabasi-Albert random graph, GP runned for
11171.76 seconds against EMinG that runned only for 4814.04
seconds, in addition that GP got only 9 more attracted nodes.
For the same experiment the single discount algorithm runned
for 4579.09 seconds, which is less than EMinG, but with 111
attracted nodes less.

For #syria graph, EMinG attracted each node in 0.83
seconds versus GP that attrected each node in 2.31 seconds. Of
course DG and random seed placement are faster than EMinG,
but as we saw in the Big Data Graph, if we look for more
than 30 extra seeds there are no significant changes. As we
can see EMinG’s computational time is related with the graph
size because entropy ranking is calculated over all negative
opinion nodes. Finally, The additional time in EMinG is for
the greedy choice on top of the m+m′ nodes.

VI. CONCLUSION AND FUTURE WORK

The influence maximization problem will continue to be
studied from different points of view because the increasing
interest in studying the interaction among members of social
networks. This is increasingly having a heavy impact in
application development and gaming industry. The proposed
algorithm is based on simple algorithms, and other simple

techniques in order to be able to implement an highly scalable
application for Big Data. Of course, the algorithm is still
only trying to get an approximation to the optimal solution.
However, the experiments showed the accuracy and high
quality of the results of the proposed algorithm. Additionally,
one the characteristics of the algorithm is the use of local
information for increasing speed when dealing with large data
sets.

In addition, incorporating new ranking algorithms is quite
simple because this phase was designed independently in the
second phase of the proposed algorithm. Also, heuristics can
be incorporated, such as the ones applied in greedy algorithms
to reduce the number of operations without loss of quality,
or the use of heuristics to choose the seed nodes. In a future
implementation, many of the operations could be parallelized.
In addition, we are working in developing new methods to
analyze IM and mining large data streams to get faster results.

Finally for future applications, we want to apply the
proposed algorithm in no-social datasets to measure its effec-
tiveness. For example, in biological, sensor, communication or
networking datasets.
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