
Private Overlay of Enterprise Social Data and

Interactions in the Public Web Context

Kundan Singh
1
 and Venkatesh Krishnaswamy

2

IP Communications Department, Avaya Labs
1
Santa Clara and

2
Basking Ridge, USA

{singh173,venky}@avaya.com

Abstract—We describe our project, living-content, that creates a

private overlay of enterprise social data and interactions on

public websites via a browser extension and HTML5. It enables

starting collaboration from and storing private interactions in the

context of web pages. It addresses issues such as lack of adoption,

privacy concerns and fragmented collaboration seen in enterprise

social networks. In a data-centric approach, we show application

scenarios for virtual presence, web annotations, interactions and

mash-ups such as showing a user's presence on linked-in pages or

embedding a social wall in corporate directory without help from

those websites. The project enables new group interactions not

found in existing social networks.

Keywords-Social network; virtual presence; web annotations;

enterprise communication; mash-up; HTML5; WebRTC

I. INTRODUCTION

Enterprise social networks aim to provide an informal and
flexible way to interact and share information within the rigid
enterprise policies. They suffer from several issues as follows.

Poor adoption: Employees are reluctant to participate for many
reasons, e.g., no training of the new software, lack of common
purpose to contribute, or unclear about how the social data may
be used – for performance evaluations or legal consequences.

Privacy threat: The IT (information technology) department
worries about leaking proprietary data outside the company.
Also, people like to separate their private and professional data.

No persistence: A social application often stores and controls
the user data, and it is unclear what happens when people leave
or a new social application replaces the existing one.

Fragmentation: A new social channel often fragments existing
information by creating another place to search, and does not
integrate well with directory or unified communication systems

Existing common social practices do not always fit in an
enterprise. For instance, social networks use bottom up data
sharing with individual contributions and define data popularity
by participation, unlike enterprises where department heads
dictate and control what data is important in a top-down
manner. Instead of focusing on social relations, enterprise
software should assist in what a user does at work. We propose
the following high-level software requirements to solve the
enterprise social software issues listed above.

1) Integration of existing behavior: Instead of creating another
collaboration space, it should allow interaction in what you are
doing, e.g., writing document, browsing or checking email.

2) Separation of data and application: Allow managing and
controlling the user data independent of any one application, so
that the enterprise IT can keep the data private and searchable,
and new applications do not fragment the data.

3) User in control of her data: Although the data is private
within an enterprise, a user should control her own pieces, e.g.,
who sees her post or where else is it used, and get notified
when someone views her data.

Our project named living-content uses these to show many
interaction scenarios in an enterprise. We apply the known
topics of virtual presence and web annotations to enterprises
with two motivations: change the collaboration behavior from
“go to a place” to “wherever you are”, and use public web
pages as contexts of interactions within an enterprise. The
collaboration applications are initiated and controlled by the
user by installing our living-content browser extension. Besides
collaboration, it also personalizes web browsing for the user by
selectively modifying certain web pages such as corporate or
social directory with users’ enterprise data.

Figure 1. (a) A single application controls the user data, (b) an application

allows another to access its data, (c) the user controls her data/approves apps.

Our goal is to separate the enterprise social data away from
any single application and make them available as properties to
any authorized web application. As shown in Fig.1(a) and (b),
social data such as user profiles, interactions and shared notes
are often controlled by a web application which requires pair-
wise integration with another application that wants to access
them. Separating the data in Fig.1(c) prevents its fragmentation
and allows the enterprise policies such as access control,
privacy and backup to be applied to the data independent of
specific social websites and by the entity that owns the data.

After showing the motivating examples and related work in
Sections II and III, respectively, we describe the details of the
architecture and implementation of our project in Section IV.
Section V discusses more user scenarios enabled by our project
and their challenges such as access control policies. Finally,
our conclusions and future directions are in Section VI. This
paper presents the details of design and implementation, and
the ramifications of the idea. Performance evaluation and a real
deployment experience are for further study.

App

Data

User (a) (b)

Data

App

User

App

(c)

Data

App

User

Data

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254118

II. OVERVIEW AND MOTIVATING EXAMPLES

A common enterprise practice is to go to an online meeting
system and then import a document to share. Often the
document provides the context for the meeting. The meeting
system stores the interactions that become unavailable when
the document is used outside the system. The edits made by the
participants may become unmanageable with many versions, or
become unavailable to others outside the meeting system.

Instead of the meeting system, the document could become
the starting point of collaboration, as demonstrated in this
paper. We define living-content as a web page (document) that
initiates and provides a context for collaboration and allows
storing the annotations and interactions by the viewers within
this context. Any web page can become a living-content using
our browser extension. The browser extension enables several
collaboration applications such as virtual presence, web
annotations and co-browsing within the context of a web page
or website. These applications store the user data independent
of a single website, are authorized by the user to access her
data, and can operate on any website while keeping the data
private within the enterprise as shown in Fig.2.

Figure 2. Alice and Bob see each other's data (annotations and interactions)

on the public website, but Carol of another company cannot see their data.

Our project enables several enterprise use cases. We
classify these scenarios into four categories as follows.

A. Web Annotations: Private Social Data on Public Web

Many use cases are enabled if employees can share data in
the context of public web pages while keeping the data private
within the enterprise. For instance, a sales team may put notes
on a customer website, e.g., who to contact or what features are
desired for this customer. An employee may post a comment
on a web article about the company's product and, two years
later, another employee may learn about that past discussion on
that article. When a company launches a new advertisement
campaign on YouTube, its employees can discuss it on the page
itself instead of having to create yet another forum without
making their comments public to others outside the company.
The job posting web page on craigslist or Linked-In may be used
by the hiring manager, human resource and interviewers to co-
ordinate private notes containing screening questions and
candidates' progress, instead of tracking chains of emails.
Enterprise IT department may proactively put technical
knowledge on StackOverflow pages in the form of private notes
to the employees, because an employee is likely to see that
website when looking for a solution to a computer problem.

The web annotation application in living content allows a
user to leave notes in a text box, drawing or highlighted text, or
to edit a web page and share it with others in the enterprise.

B. Virtual Presence: Connected Browsing on Any Web Page

Several use cases are enabled when employees can quickly
and easily initiate a conversation from within any web page.
With living content, any web page can be used as a readymade
context to initiate collaboration from, instead of having to
setup, invite and co-ordinate participants on a separate meeting
system. For instance, a customer support person may notice
that a customer is stuck on the products page and may attempt
to guide her using co-browsing, video call and real-time
drawings. Team members may visit their team page at a
scheduled time for their weekly video meeting or to view the
past minutes. A candidate walks in online to a job posting page,
is placed in a queue, and later picked up by an interviewer for a
video interview. Furthermore, to facilitate programming
questions, a shared notepad may be launched on the same third-
party web page during the interview without help from that
third-party website.

In addition to traditional view of virtual presence where
people visit the page to communicate at any instant, the
application in living content also supports offline subscription
of a page. For example, the author or owner may subscribe to
her web page, and when a visitor posts a note on that page, it
gets immediately delivered to the subscriber on her instant
messenger or email, thus linking between synchronous and
asynchronous views of collaboration with virtual presence.

C. Client Mash-ups: Enhanced Third-Party Websites

The user experience can be improved on many existing
websites if the existing user or enterprise data can be used to
modify the content on that websites. The living content
extension can embed social and media data, e.g., live video
presence on a person's home page, or lab's webcam feed on a
department's page, completely using client-side changes and
without help from those websites. Such enhancements improve
adoption of the collaboration tools by reducing the number of
steps needed to initiate conversation in whatever the enterprise
user is already doing.

The living content extension can enable impromptu
interactions among the developers and testers directly on the
popular enterprise applications such as webmail or web pages of
subversion or jira without you having to look up a phone number
or add a contact in the instant messenger to initiate a
conversation. The extension adds presence and click-to-call
buttons on corporate directory pages, so that when a user visits
a colleague’s directory profile, he can see her presence status
and can quickly initiate conversation. Furthermore, the
extension can modify the directory listing page on the client
side to include the visited user’s social profile or mutual past
conversations in addition to her administrative data of the
directory, without changes to the directory website or database.

These are the examples of application mash-ups at the data
level, and are possible because of the data-centric design in
living content which decouples the data producer from the
consumer application. Instead of an application asking another
application for permission to use the user data, the end user
directly grants permission to individual applications to use her
data using our generic and consistent data access interface.

Public

website

(P)

Data

Company A

Browser
Extension

Browser
Extension

Browser
Extension

Data

Company B

Bob

Alice

Carol

D. Social Presence and Data-Centric Applications

The data-level mash-ups are further illustrated by sharing
social presence among existing applications. The living content
project includes collaborative editing and social wall
applications, which improve user experience by sharing data
with the instant messenger application. A user may edit a web
page by creating its local view, and share or merge with her
colleagues or instant messenger contacts. We are building a
per-user social wall to show different content based on who is
viewing and from where, and to show contextual data from
external channels like emails, phone calls and instant messages.

The social wall can be embedded client-side by the living
content extension in the corporate directory listing page or
third-party social websites, but visible only from the enterprise
network. The social wall gives a social presence of the user in
an enterprise, allows message posting or sharing of calendar
events, business cards or files. It can change appearance when
overlaid on other web pages such as her Linked-In profile. A
user may share a custom view of her social profile and
interactions to specific users or groups of users. The social wall
may contain contextual data such as the attachments from the
recent emails they shared or imminent calendar events [1].

III. RELATED WORK

Unlike the earlier notion of living content as a dynamic web
page [2], we define it as allowing interaction by its viewers in
both synchronous and asynchronous modes. We apply the
concepts from virtual presence, web-based communication and
data-centric design to enterprise use cases.

Virtual presence [3-4] makes people aware of others
browsing the same web page and allows them to interact. It
maps the visited URL (uniform resource locator) to a room
identifier and a chat server location, and automatically joins the
chat room. Early systems [5-9] used web servers or proxies for
information gathering and focused on intelligent group creation
and proactive information delivery, e.g., based on current topic,
past browsing history or link distance. Projects such as
WebRogue [10], Cheerz, Weblin, RocketOn, Googlin, BumpIn,
Zspeech, Gabbly, SamePlace, WebTalk [11] and Open Virtual
World, many of which are not active anymore, demonstrated
several concepts, e.g., avatars on the web pages, virtually
imitating whisper, scream, handshake and follow gestures,
correlating synchronous and asynchronous communication, and
a browser plugin or extension to interact on a website without
control from that web server.

Custom browsers [12-13] can integrate browsing with
social and media sites such as Facebook, Twitter, YouTube and
Flickr. Some [14-15] allow editing HTML, CSS (cascading style
sheets), XML (extensible markup language) and SVG (scalable
vector graphics). Systems to annotate or co-edit web pages [16-
18] such as ComMentor, CoWeb, Annotator, ThirdVoice, CritLink,
CoNote, Diigo, MyStickies, Open Annotation, W3C's Annotea and
Google's Sidewiki [17][19-29] have emerged over more than
fifteen years. Although, many of them have disappeared in
favor of website controlled sharing and commenting, they did
demonstrate several concepts, e.g., using browser extension vs.
server assistance, ability to leave a note anywhere on the page,
at the end or only in the designated areas, security level to

delete or move, personal versus public access to notes,
searchable text, and finding time dependent notes.

Most recent efforts are focused on web as a global system
of scientific and scholarly notes [30], but not on improving the
enterprise collaboration experience. We focus more on utilizing
web annotations with other contextual and communication data
to improve the short-term and long term enterprise
collaboration experience, thus making our work
complementary to earlier and ongoing web annotations
research. Earlier systems also exposed a threat to websites
where the visitors could publicly deface a web page bypassing
the owner's control over the content [21][29]. Our work avoids
the problem by keeping the annotations and interactions as
private data within an enterprise but not visible from the
outside public Internet.

Web based multimedia communication is traditionally done
using browser plugins such as Flash Player [31] to enable voice
and video. Companies have started to embrace WebRTC (Web
Real-Time Communications) [32] to enable plugin free media
path where one or both ends are in the browser, e.g., many
hosted telephony services have added browser as yet another
client. Social businesses can bring live web-based interaction in
their existing applications such as bug tracking, enterprise wiki,
or customer support [33]. Many such systems enable use of a
browser to connect to an existing service or application,
whereas we focus on building a generic framework for WebRTC
independent of a specific application so as to do mash-ups of
web applications at the data level.

Plethora of social networking sites have emerged in the last
few years and many of them for enterprises, e.g., Yammer,
Beehive, Chatter, GoInstant or NextPlane. A trend among these
is to create yet another visible fragmentation causing the issues
we discussed earlier. Islands of these “data hiding applications”
require pair-wise application-specific integration that do not
scale for mash-ups as the number of applications grows. As
mentioned earlier, a user data-centric model [34] separates the
user data from the application accessing them, so that an
application can use the data upon user's approval rather than
from another application. Recent proliferation of social web
applications has amplified the need for such architectures [35-
36]. Some community projects address the social data's
privatization problem [37-39]. Menagerie [40] allows sharing
user's data across web applications using hierarchical naming.
BStore [41] has a global web-accessible storage where the user
controls which applications get access to her data. Any of these
data separating systems can potentially be modified to work in
our project.

The main differences in our work are as follows.

1. We focus on enterprise use cases to relax the
scalability concerns, but strengthen the security and
access control policy needs of the private interactions.

2. We show how to interoperate at the data level without
control from another application, e.g., another
application may create the annotations to display in
living-content, or a user may receive posted annotations
on her instant messenger.

3. We use HTML5 technologies such as WebSocket [43]
and WebRTC [32] to enable generic real-time
interactions in rich Internet applications.

4. Most importantly, we identify many useful enterprise
use cases that are enabled by a few simple architectural
concepts.

Next, we describe the architecture and implementation of
our project that explores enterprise social interactions by
building a private overlay of data on top of the existing web.

IV. ARCHITECTURE AND IMPLEMENTATION

A living content use case has three elements: (1) the
website or web page that provides the context and is visited
from the user’s browser, (2) the application such as web
annotation or collaboration that provides the application logic
in the form of JavaScript code independent of the website and is
enabled by the living-content browser extension, and (3) the data
generated and used by this application. A user may create
different types of data in the context of a web page based on
the application being used, e.g., notes or drawings, page edits,
chat messages, call logs and recordings, and list of people who
participated. As shown in Fig.2, these pieces of data and their
contexts are stored in private data storage within the enterprise
and a browser extension is used to access them.

A. Resource-based Application Model

We use the resource-based application model from our
prior research [42], which runs the application logic entirely in
the browser while using a resource server as the data storage
and event notification system. A resource server is a generic
data store with no application specific logic, e.g., for
annotations vs. chat history. The resource data is kept private
where the user controls her data. An application can define its
own data model or use the one from another application, but it
does not control the data.

The resource server and the browser extension constitute a
generic framework to enable presence and collaboration among
people visiting a web page. On this framework, we have built
specific collaboration applications such as web annotation,
impromptu conversation, shared notepad, white-board and co-
browsing. Any other application such as email or social wall
can read or write the data upon approval from the user.

Figure 3. The resource server decouples the data and the applications

enabled by the living-content browser extension.

Fig.3 shows the various applications on various websites
across the enterprise boundary all using the same resource

server within the enterprise network. These applications create
and use resources on the resource server to store specific data
items, e.g., a note text or a presence status.

Resources are hierarchical data similar to files but with
structured representation, e.g., in JSON (JavaScript Object
Notation). They are identified by relative paths on the server,
e.g., /room/1234/notes. An application accesses them over a
WebSocket [43] connection using a request-response protocol
[42]. The protocol and its JavaScript API support the standard
CRUD (create, read, update, delete) methods on resources.
They also allow publish-subscribe on resources, e.g., an
application that subscribes to /room/1234/notes is notified when
this or its immediate child resource is created, updated or
deleted. A file-style access control with permission flags to
read, write, append, traverse and send-event are used.

B. Browser Extension Supporting Pluggable Apps

The living-content browser extension hosts applications such
as web annotation and conversation. The framework to interact
among the page visitors is in the extension, but the application
specific code is downloaded on demand from an external web
server, which is currently co-located with the resource server.
This software design of pluggable applications allows adding
more applications without changing the framework or
redistributing a new version of the browser extension.

Figure 4. The living-content browser extension and the separate window

hosting the various applications tied to the browser tab.

Fig.4 shows the living-content icon that appears in the user’s
browser. When the user clicks on the icon, the living content
extension is enabled for this browser tab, a separate window is
opened and is tied to the user’s current browser tab. The icon
on the tab changes appearance to indicate that the extension is
enabled. The separate window shows the user interfaces of the
living content applications in the context of that tab. The example
screenshot shows the virtual presence and conversation
application, which allows a user to see and interact with others
who have also enabled the extension on that visited web page.

As the user navigates from one page to another in that tab,
the extension delivers the tab's location URL to the separate
window, which creates a resource path, e.g., using one-way
hash (H) on the domain portion or the full URL. This root
resource path is given to the applications within the separate
window to create more resources underneath, e.g., chat
messages. Thus, all the collaboration resources within the
context are created in the resource sub-tree of the root resource
path. An application can decide whether it creates root resource
path in the context of a website domain or its individual web
page URLs, e.g., annotations may be stored for web pages, but
virtual presence for a website so that one can see anyone else
visiting the same website domain even if on another web page.
Fig.5 shows an example resource tree for presence and

Click on the

extension icon

to launch the

separate

window

Browser
Alice

resource

server DB

craigslist.com

Notepad
Browser

Bob

stackoverflow.com

Annotator

Browser
Eric

trac
Interact

Browser

Frank

Interact

Browser
Dave

Cobrowse

product page Browser Lily
Cobrowse

Jira

Browser
Kate

Social wall

page

Mail exchange,

context engine,

LDAP, VoIP, …

Enterprise

boundary

annotation. For popular websites such as YouTube or Amazon,
instead of using the domain, we extract certain parts from the
URL to construct the context’s resource root so that the same
resource path is used for people visiting the mirrored websites
or alternate links for a particular video, a user profile or a
product page.

Figure 5. Example resources: resource path derived from hash (H) of website

domain or full web page URL for presence vs. annotation, respectively.

Regular expression is used to extract context from popular website URLs.

The separate window hosting the applications has three
tabs: conversation, editing and applications. The virtual presence
and web annotation applications are extracted out in the first
two tabs, whereas other pluggable applications such as shared
notepad and co-browsing are available in the third. These
applications are further described below.

C. Virtual Presence and Multimedia Conversation

The conversation tab (Fig.6a) shows a list of users who are
on the same website or web page and allows interaction among
them. It assumes a virtual chat room resource under the root
resource path, and keeps membership and chat messages in that
resource tree, e.g., /room/1234/members, /room/1234/messages,
respectively. It allows real-time interaction among the viewers
via audio, video and text. File sharing is done by including a
data URL with the content of the file in an HTML chat
message resource. Since the browser imposes limit on the size
of the clickable data URL, it is converted to a JavaScript Blob
and a clickable object URL of the blob is displayed.

The chat room membership is a transient resource which is
automatically removed at the resource server when the client
connection terminates. The chat messages are persistent and
stay until deleted, so that users can view the past interactions in
the context of a webpage. The application may restrict and

show only the most recent twenty chat messages, for example.

We use our aRtisy developer platform [42] and its
communication widgets to implement the conversation panel.
Widgets run the application logic in the browser while using
only the resource server at the backend. These communication
widgets use WebRTC [32] to enable real-time voice and video
among the chat room members. A client-server WebSocket [43]
connection to the resource server is used to send end-to-end
session negotiation messages on the membership resource, e.g.,
the ones shown in Fig.5 for alice and bob. Currently, it creates a
full-mesh media path among the members, but may be
modified in future to use a centralized media server for
efficiency. A flag in the chat room resource indicates voice or
video session. Any member can start or stop multimedia by
writing this flag, and a new member can learn about an
ongoing session by reading it. The conversation application has
other common communicator features such as the indication
when someone is typing, or the ability to send emoticons, or to
mute audio/video of individual participants.

D. Web Annotations and Page Edits

The editing tab (Fig.6b) allows web annotations and editing
of the web page that the user is visiting. Additionally, it allows
creating personal views to store the edits. A view can be shared
with another user or merged with another view. The difference
between annotation and edit is that an annotation is layered on top
of an existing web page content to highlight certain parts,
whereas the edit mode allows modifying the web page content
using the HTML5 contenteditable attribute.

Web annotation is a well-researched topic. Here, we give
details of our implementation. We support several types of
annotations including an inline text highlight, post-it style text
box and freehand drawing (Fig.6c). The drawings are done via
SVG. Other widgets such as shared notepad, white-board, or
video elements can also be used as overlaid dynamic
annotations. Additionally, a shared pointer widget allows a user
to share her mouse pointer position with other visitors of the
page, e.g., to bring to attention certain areas on the page during
a live conversation.

The difference between post-it style annotations vs. shared

http://www.avaya.com/usa/products/

/room

1234 5372

alice bob

members

…

7945

notes

…
http://www.youtube.com/watch?v=xObXa

https://www.youtube.com/v/xObXa same H(…)

Extract root path from popular websites:

H(…) => 5372

H(…) => 1234

 (a) (b) (c) (d)

Figure 6. Screenshots: (a) living-content's conversation tab showing a two-party video call and text chat, (b) living-content's editing tab showing various

editing and annotation controls, (c) an annotated webpage with three types of annotations – graphic drawing, post-it styles notes and embedded shared

notepad, (d) personal wall of a user showing walls posts, shared files, user profile, live video presence and links to calendar and address book.

notepad widget is that while the former has static text, the latter
shows real-time typing and allows interaction within the shared
widget. Although the annotations are updated in real-time so
that the other viewers see the new notes without having to
refresh the web page, they persist even after the end of the
conversation when the creator is no longer viewing the page.

The annotations are stored in the resource server separate
from the web pages on which they apply. An annotation
resource contains both the data and type of the annotation. The
type determines how to show the annotation when another user
loads the page and enables the living content extension. The data
is type-specific, e.g., text string and its position on the web
page for a post-it note, or the (x, y) position of the control
points of a freehand drawing that can recreate the SVG. Since
these annotation resources are owned by the user and not the
annotator application, they can be used in other applications,
e.g., to search for all the notes created by a particular user or to
get a list of all the annotators on a particular web page.

While most of the annotations are positioned in the overlay,
the text highlights must be in line with the text content of the
underlying visited web page. Thus, dynamic anchoring of such
annotations is important when the web page is changed on that
third-party website. We describe challenges related to access
control, cold start and dynamic anchoring of annotations in
Section V.

E. Pluggable Application Framework

The applications tab in the separate window shows a list of
other applications built on top of the basic framework. These
fall under two categories: intrusive items such as co-browsing
and drawing that access and/or modify the underlying web
page content, and non-intrusive items such as shared notepad or
white-board that are launched in a separate browser tab and do
not interfere with the visited web page. More applications are
easily included without changing the basic framework.

The locked browsing application, when enabled, facilitates
co-browsing by locking the browser tabs of the viewers, i.e., it
captures any change in the location URL and tells all the other
viewers' browsers to visit the same URL. The synchronization
messages are sent via the resource server.

The shared notepad allows text editing and delivers the edits
to all the visitors in real-time. To avoid simultaneous edits by
two or more visitors, we use a shared resource as a mutual
exclusion lock to allow only the lock owner to edit at any time.
Similarly, a visitor may launch the shared whiteboard application
attached to the visited page, see real-time as well as past edits
on the board, and improve the collaboration experience.

F. Click-to-Call from Corporate or Social Directory

The ability to initiate conversation on any website is at the
core of the living content project. Virtual presence is one way to
achieve this. Another way is to modify the visited web page to
inject communication elements. The application logic to do
such modifications run in the client browser without help from
or changes to the visited website, but is tailored towards
specific websites. For example, it could identify a web page at
http://mycompany/users/{user} as an employee’s homepage and
insert a click-to-call button on the displayed web page using the

browser extension. Clicking such a button initiates multimedia
call with that target user whose home page is viewed.

Our living-content extension modifies web pages on our
internal corporate directory, bug tracker, wiki and public
Linked-In to add a clickable presence icon next to user identity.
Thus, the user’s presence status is displayed on these web
pages wherever the user’s name appears (Fig.7). The icon's
appearance is bound to the presence resource of the target user,
e.g., green for available, grey for offline, red for busy and
orange for away.

Figure 7. Screenshots of click-to-call presence icon injected by the living

content browser extension on three different websites – (1) corporate directory

listing, (2) Jira bug tracker and (3) Linked In profile.

Any application can set the presence resource. For example,
communicator is a full featured instant messenger with contact
list, presence, text chat, voice, video, and file sharing written in
HTML5 using the resource model where all the application
logic runs in the browser. It allows a user to set her presence
resource corresponding to her enterprise identity. Additionally,
it allows attaching the enterprise identity to her Linked-In
account so that her presence status appears on Linked-In pages
next to her name.

When a visitor clicks on the presence icon, the extension
launches a conversation window to enable multimedia chat
with the target user (Fig.7). This window uses the same set of
communication widgets and resources as the living content
conversation tab of the separate window. These examples show
the application mash-ups at the data level where the presence
and conversation resources are produced and consumed by
different applications.

G. Context Sensitive Personal Wall

We gave an overview of the enterprise social wall in
Section II D. Our personal wall application shown in Fig.6d is
a web-based enterprise social network that allows a user to
manage work related discussions, interactions and documents
within an enterprise. It differs from existing social walls in two
aspects: (1) the content of the wall (and its appearance) changes
based on who is viewing and from where and when, and (2) the
wall displays resources which may have been created outside
the wall application, i.e., it decouples the social data of profiles,

Conversation window launched

when clicked on the presence icon

Click-to-call presence

icon injected by the

extension on these

web pages
1

2

3

connections or wall posts from the wall’s application logic. The
first aspect means that the wall could display a context-
sensitive summary of the visitor's past interactions with the
wall owner that happened outside the website via email,
outlook calendar, instant messenger or phone call. Fig.6d
shows the live video feed or video presence enabled by the wall
owner from his webcam, and viewed by the visitor when he
lands on the wall page.

1) Automatic social profile and resource connectors
To improve the adoption of this application, the existing

enterprise data may be used to bootstrap the social resources in
the resource server. For example, the user profile could use the
information from the corporate directory, group or department
membership, profiles on existing social networks such as
Linked-In, and/or collaboration history with others within the
company based on past emails, shared calendar events and
phone calls. Secondly, making the user profile dynamic that
changes over a period of time based on more recent
information further improves its usefulness. Finally, it is crucial
to present the information in a concise and appealing visual
layout without being too verbose to lose the visitor’s interest.
Hence, the profile content can further be filtered based on who
is viewing and from where.

Figure 8. Connectors to resource server for third-party websites and apps.

In our software architecture, connectors are used in the
resource server to delegate part of a resource tree to third-party
social websites or enterprise applications as shown in Fig.8. It
allows the web applications in the browser to transparently
access the social and enterprise data upon user’s approval
without knowing whether the data is stored in the local
resource server or dynamically accessed from third-party.
Additionally, data from existing enterprise applications such as
outlook calendar, address book or directory can be connected to
the resource server. Similar to a file system mounting, a
resource path could be mounted for specific social sites, e.g.,
/dev/linkedin could allow an application to access Linked In APIs
via resource access or update /dev/linkedin/56854/status to update
the user’s status on Linked In.

The automatic profile creation deals with these specific
questions: What kinds of user information constitute a user
profile? Where are these pieces of information available? How
often do they change or need to be recomputed? How do we
extract such information from existing tools and websites, and
use it in our enterprise social network? How do we deliver
changes made back to these external tools and websites?

2) Context from embedding web page and viewer
A common problem with social walls is that there is too

much useless information for many visitors. This often requires

the visitor to manually skim through everything and filter out
useless information. The problem is more prominent in
enterprise social networks where the viewer does not have
enough time, often loses interest and stops using the system. In
such cases, changing the view of the social wall based on the
contextual relationship between the wall owner and the visitor
is desired. For example, if the visitor is in the same department
as the wall owner, then departmental calendar events and
shared documents may be automatically displayed. For a large
number of posts on a wall, we use a relevance score of the post
based on who is viewing whose wall to sort the wall posts, e.g.,
the displayed files, messages or message threads.

It should be possible to embed or link the user’s social
profile from other websites, e.g., blog, wiki, bug tracker, etc.,
within the company and explore different behavior based on
the identity of the viewer and the context supplied from those
websites. Our browser extension allows embedding a subset of
the social wall in other websites completely from the client
browser, so that the social profile and her administrative
enterprise data can be found in one place. The embedded social
wall also enables a subset of data sharing, interactions and
video presence on those websites that do not already have these
features. The wall's appearance is custom defined based on the
web page that embeds it, e.g., corporate directory vs. Linked In.
Furthermore, it is possible to search the social profile data by
keywords or associations (contacts) independent of a specific
wall application.

A context sensitive wall deals with these questions: What
kinds of relationships between the wall owner and the visitor
can be derived from the wall’s context? What other relationship
information can be imported from other sources? How can the
relationship be used to filter and rank the pieces of information
in the social wall? How can it visually layout the information
within the available constraints (e.g., screen space) without
being too verbose?

3) Custom boards and sharing a subset of social profile
The wall application also enables collaboration and sharing

in smaller groups. It allows a user to create a custom board
with dynamic content to share with others in the group. For
example, a user may create a board, attach project specific data
such as documents, emails, meeting notes, and share the board
with the project collaborators. The dynamic element in the
board such as people’s profile, message thread or conversation
widgets are automatically updated when new information is
available, instead of having to re-share the board. For example,
if a message thread has a dynamic email filter, a new received
email that matches the filter automatically appears on the
board. This avoids redundancy by copying the content by
reference instead of by value on the custom wall. Such custom
boards can also be embedded on third-party websites such as
project wiki, where different people may see different views
based on their relationship with the board owner.

H. Specifics of Our Implementation

We have already implemented several core pieces including
the web annotations, virtual presence, multimedia conversation,
locked browsing, shared notepad, whiteboard, personal wall
and custom shared boards. Our browser extension is written for
Google Chrome that supports HTML5. The extension is easy to

resource

server DB

Browser
Extension

Social data from

private network

Private enterprise

network

Browser
Extension

LinkedIn

Google

Calendar

Facebook

Connections

Social data from

public network

Corporate

Directory

(LDAP)

Outlook/

Exchange

port to another browser such as Firefox that supports browser
extensions and HTML5. The resource server is written in
Python, and uses PostgreSQL database to store the resources and
pywebsocket [44] as a WebSocket server. The applications are in
HTML, CSS and JavaScript, run in the browser and have no
server-side application logic beyond the resource access and
event notification of the resource server. Many HTML5
features are used such as WebRTC, WebSocket, LocalStorage,
audio/video elements, drag-and-drop, file API, postMessage,
and SVG.

V. MORE SCENARIOS AND CHALLENGES

This section describes some challenges in the new scenarios
enabled by living content.

A. User Interface Layout

If a browser extension is not desired, a web proxy could
inject code for web annotations and virtual presence without
control from the website [7][9]. On mobile platforms that
disallow browser extensions, a native application could replace
the living-content functions.

It may be desirable to embed the conversation and editing
features in the browsing tab as a sidebar instead of launching a
separate window. Firefox allows a sidebar extension, whereas
Chrome does not. If we inject a separate frame in the webpage
to host the extension, the content of the frame reloads and loses
state when the user goes from one page to another.

The annotations on websites with dynamic content such as
blogs or news become irrelevant when the page changes, e.g.,
the annotation posted yesterday on a news site may no longer
be correct today. To solve this, the annotations could be time
stamped along with storing the page content. This also allows
showing history or timeline of annotations.

The position of a drawing or text highlight is important but
less so of a text note. An absolute (x, y) position of the
annotation does not work if the page layout changes when the
browser window is resized. The layout of the page is
sometimes also dependent on the browser or platform, in which
case a note created on one browser may not correctly appear on
another. To solve this, the annotation could use the position
relative to some element on the webpage.

An annotation has four pieces of information: style, state,
selector and scope [26]. The style defines the presentation of
the annotation, e.g., using CSS. The state identifies the web
page when the annotation was created, e.g., via timestamp. The
selector determines the specific portion of the web page to
annotate. The scope contains the context behind the creation of
the annotation, e.g., what the user was viewing at that time,
especially for dynamic content. We have explored anchoring of
annotations to semantic structure of the dynamic web pages so
that when a page has minor edits the annotations can still be
applied by recalculating the selector.

The user interface could use different styles for temporary
vs. permanent annotations. For example, while reviewing an
online article, one could put temporary notes and markups, and
turn some of them into permanent at the end. Alternatively, the
permanency level could be determined by social feedback, e.g.,
more “likes” increases the age of the annotation.

B. Access Control and Groups

With more people annotating a popular web page, it quickly
becomes crowded with notes irrelevant to many visitors. One
could filter the notes based on the visitor's context, e.g., her
contact list, group membership or other preferences. It could
show only the recent notes, but allow search on all.

User groups could be automatically created using contact
list or corporate directory. The user's browsing history could
determine groups of users who often visit similar web pages or
search for similar terms, suggesting a common interest. Unlike
simple permissions of public vs. limited, fine grained controls
like the Linux file ACL (access control list) could be used.

The concept of views is borrowed from version control
systems, and allows creating private and separate views of the
annotations and edits on the same webpage. This enables
multiple groups of people to edit and collaborate on the same
webpage without interfering with each other.

Moderator control of annotations is important, e.g., ability
to delete inappropriate notes or modify them after the creator is
no longer available. The problem is similar to that of the shared
repositories in enterprises with many people contributing to file
changes, and can be resolved similarly via peer or supervisory
reviews of the changes.

Moderator control of voice and video chat is also important.
The conversation application can use the corporate hierarchy or
page's activities history to automatically pick a moderator. A
user should also be able to block media from a misbehaving
member, similar to blocking a rogue chat participant.

The system should smoothly transition a person who moves
from one group to another or leaves the system, e.g., the group
permissions should persist but the ownership of the previously
created resources may be reassigned.

C. Enterprise Policies to Social Data

Enterprise policies often dictate how an enterprise social
software behaves, e.g., periodic backups of data, access to other
data such as corporate directory, or isolation from the public
Internet to prevent information leak. The access control
policies may become complex and are often not implemented
in existing enterprise social software, e.g., allow access to a
document within my group only when the visitor accesses it
from the corporate network, but not from a mobile device, or
allow posting comments on my article from only those with
whom I have exchanged emails in the past month. Such
complex access control policies are hard to model based on the
simple file system style access control because the user space is
not known in advance and the access policy needs external data
not typically delivered during user authentication.

We are creating an identity and policy assertion layer in our
architecture. A separate identity and policy server maps the
user’s enterprise identity with her other social presence such as
email or Linked In identity, and allows the resource access based
on any identity. For example, a user could continue the
personal wall conversation on her Linked In page using dynamic
embedding and unified identity, or a user could interact with
her Linked In contacts on her enterprise personal wall or her
social wall embedded in the enterprise corporate directory.

The server delivers various primitives for constructing the
access policy, e.g., user groups or domains, connected device
characteristics, summary of past interactions, etc. It allows
access to the resources from outside the enterprise network
when properly authenticated. It supports dynamic group
creation and membership, e.g., group of people I have talked to
in the past year, or those with whom my collaboration score is
high. A collaboration score between two people is a multi-
dimensional value of past and recent interactions.

D. Web of Annotations and Interactions

The overlay of annotations and interactions creates another
web (or graph) that can be navigated or searched on. For
instance, an employee visiting a webpage notices an annotation
from a co-worker and clicks on it to bring up other relevant
annotations that link to other web pages. This content and
social graph allows the enterprise to analyze it from another
angle, e.g., identify pages on public web related to a topic that
are important to its employees. The hyperlinks in annotations
provide another way to share related pages and add graph links.

Users can search the overlay data on the resource server
independent of individual applications. The search can include
social aspects, e.g., ranking based on the visitor's relationship
with the resource owner. Other factors such as resource age and
popularity of attached webpage may also affect the ranking.

The web of annotations can provide input to the policies,
e.g., share with others who have annotated on my authored
articles, or give relevance score of people or documents based
on the links in the annotation graph.

E. New Ways to Interact

Combining multimedia with annotations can be done in two
ways: (1) annotate multimedia content such as an audio or
video file so that the annotation appears when the media player
reaches the specific time or content selector, or (2) annotate
with multimedia content so that one can post an image or a
brief audio or video clip in the notes. The latter is readily
enabled by our widgets that host the multimedia content and
live streams, e.g., to put live webcam stream from the lab on
the department’s page to monitor the lab’s activity. Other
widgets, e.g., text chat and image drawing box as annotations
could provide more ways to interact within the web page.

Our enterprise personal wall enables new ways to interact,
e.g., client initiated federation with social presence on Linked-In,
or shareable and interactive wall embedded on social business
tools such as sharepoint, subversion or jira. A user could drop her
digital visiting card (a .vcf file) on a wall to request connection
with the wall owner, or drop a calendar event (.ics) to invite to a
meeting. To mash-up at the data level, the address book and
calendar data from the mail exchange could be exposed as
resources used by the personal wall (Fig.8).

These scenarios present new challenges, e.g., ability to
synchronize the profile resource when the user changes her
profile on Linked-In. Similarly, if the user links to her Google
calendar or Yahoo address book in the personal wall, it should
get the changes via efficient push instead of periodic pull from
those websites. Embedding of click-to-call or custom boards on
third-party websites is prone to change on those websites.

F. Interoperate With Existing Documents

Our project relies on HTML5 for creating and maintaining
documents. Enterprises often use office tools such as Powerpoint
and Word to create documents. It is possible to sometimes, but
not always, convert such documents to HTML5 to work with
living-content. Word and PDF file formats use their own way of
annotations (highlights) and comments within the document.
The pdf.js [45] project may be used to render PDF files in
HTML5 and apply the web annotations.

The adoption of enterprise social software often suffers
from a cold start, i.e., people will annotate only if others have
already annotated before them. This results in very sparse
annotations or social interactions on most web pages, but very
heavy debate on a few websites. One can use the enterprise
data from outside the social wall, e.g., email, instant messaging
conversations, phone calls, and calendar events, to pre-populate
the user’s social profile within the wall. Similarly, even
showing unrelated annotations from people in their group or
related annotations from other web pages based on similarity
(keyword matching) could further motivate them to contribute.

VI. CONCLUSIONS AND FUTURE WORK

Enterprise social networks should be a reflection of the real
interactions within an enterprise instead of creating yet another
way for online connections. There are six core functions in a
social network – search, grouping, authoring, tags, signals and
recommendations [46]. We present a data and user-centric
software architecture for building pieces of these core functions
at the enterprise-wide data level instead of application specific
fragments. Our resource server decouples the enterprise social
applications from the user data, so that the data can be managed
and controlled independent of individual applications.

We have presented web annotations, virtual presence and
personal wall as use cases of this resource application model.
The application logic runs in the client browser, and the user
identity is linked to the corporate directory. In addition to the
telephony-style applications such as phone calls, conferences or
instant messages, our architecture enables newer applications
for synchronous and asynchronous interactions. The end user is
in control of her data and applications, whereas the enterprise
IT can manage the overlay data, e.g., take backups or protect
inside the enterprise boundary. Since custom configured
browsers are common in enterprises, the living-content extension
could be pre-installed to improve adoption among employees.

We take a clean slate approach ignoring the legacy
communication protocols while relying only on HTML5. Our
project is an initial attempt to look at the enterprise social
interactions from a new angle. Although we have an initial
implementation, a few scenarios mentioned in our paper
including the ideas discussed in the section V still need to be
implemented. We are working on a loosely coupled integration
of resource server with existing social networks via connectors.
We are also exploring website controlled annotations and
collaboration by injecting the living-content applications from
the website instead of a client side browser extension. Our
future work on web-based collaboration will likely be guided
by how WebRTC and related technologies are adopted by
browser vendors and enterprises.

ACKNOWLEDGEMENTS

We thank Dilpreet Singh Chahal for implementing shared
notepad and SVG-based drawing annotations, Sireesha Pilaka
for the custom wall boards and message threads, and Parth
Joshi for text highlighter and shared mouse pointer. John
Buford helped in integrating living content with connected
spaces, a hosted meeting and document collaboration system.
Krishna Kishore Dhara is helping in utilizing contextual
information in annotations. Various members of our research
group provided valuable feedback on our project and its initial
implementation.

REFERENCES

[1] K.K.Dhara et al., "Reconsidering social networks for enterprise
communication services", IEEE Globecom, Florida, Dec 2010.

[2] N.Usborne, "Living content: it's what people want", Blog article, Jul
2010, http://searchengineland.com/living-content-its-what-people-want-
46006

[3] H.Wolf, "An introduction to virtual presence", Technical note, Jul 2007,
http://www.virtual-presence.org/notes/VPTN-1.txt

[4] H.Wolf, "Extension to Jabber group chat for virtual presence", XEP-
0151 (deferred), Jul 2005

[5] Y.Mass, "Virtual places – adding people to the web", Internation world-
wide-web conference, 1995.

[6] P.P.Maglio and R.Barrett, "WebPlaces: adding people to the web",
poster, Internation World Wide Web conference (WWW), Toronto,
Canada, 1999.

[7] R.Barrett et al., "How to personalize the web", ACM conference on
human factors in computing systems (CHI), Atlanta, GA, Mar 1997,
http://www.psrg.lcs.mit.edu/projects/inforadar/p75-barrett.pdf

[8] G.Sidler et al., "Collaborative browsing in the world wide web", Joint
European networking conference, May 1997.

[9] T.Erickson et al., "A sociotechnical approch to design: social proxies,
persistent conversations and the design of Babble", ACM human factors
in computing systems (CHI), 1999.

[10] A.Soro et al., "WebRogue: meet web people", International conference
on web based communities, ISBN: 972-99353-7-8, pp.267-271, 2005.

[11] WebTalk: chat with others browsing the same website as you, open
source project, Jun 2010, http://code.google.com/p/webtalk-project/

[12] Flock, 2011, http://en.wikipedia.org/wiki/Flock_(web_browser)

[13] Rockmelt, A socially connected browsing, 2012,
http://en.wikipedia.org/wiki/Rockmelt

[14] Amaya, the W3C's web editor, 1994-2012, http://www.w3.org/Amaya/

[15] BlueGriffon, the next-generation web editor based on the rendering
engine of FireFox, http://www.bluegriffon.org/

[16] V.Vasudevan and M.Palmer, "On web annotations: promises and pitfalls
of current web infrastructure", International conference on system
sciences, Hawaii, 1999.

[17] S.Jacobs et al., "Filling HTML forms simultaneously: CoWeb –
architecture and functionality", Computer networks and ISDN systems,
Vol 28, issues 7-11, p.1385.

[18] Open cooperative web framework: JavaScript enablement of concurrent
real-time interactions, Jan 2011, http://opencoweb.org/

[19] M. Röscheisen et al., "Shared web annotations as a platform for third-
party value added information providers: architecture, protocols and
usage examples", Standford University Technical Report, 1994.

[20] I.Ovsiannikov et al., "Annotation software system design", Annotation
technology, 1998

[21] ThirdVoice: a web annotation browser plugin for IE, 1999,
http://en.wikipedia.org/wiki/Third_Voice

[22] K.P.Yee, "CritLink: advanced hyperlinks enable public annotation on
the web", 2002, CiteSeerX:10.1.1.5.5050

[23] G.Gay et al., "Document centered peer collaborations: an exploration of
the educations use of networked communication technologies", Journal
of computer mediated communication, Vol.4, issue 3, 1999.

[24] Diigo: web highlighter and sticky notes, https://www.diigo.com/

[25] MyStickies: sticky notes for the web, http://www.mystickies.com/

[26] R.Sanderson and H.V. de Sompel., "Making web annotations persistent",
ACM Joint conference on digital libraries, pp. 1-10, 2010,
arXiv:1003:2643 [cs.DL]

[27] M.Koivunen, "The Annotea Project", W3C, http://www.w3.org/2001/
Annotea/

[28] Google Sidewiki: a web annotation tool, 2009-2011,
http://en.wikipedia.org/wiki/Google_Sidewiki

[29] C.Irvine, "Google Sidewiki: new tool lets anyone comment on
webpages", The telegraph, Sep 2009.

[30] T.Carpenter, iAnnotate – whatever happened to the web as an annotation
system, blog, http://scholarlykitchen.sspnet.org/2013/04/30/, Apr 2013.

[31] K.Singh and C.Davids, "Flash-based audio and video communication in
the cloud", Technical report, 2011, arXiv:1107:0011 [cs.NI]

[32] WebRTC 1.0: Real-Time Communication Between Browsers, W3C
Working Draft, Aug 2012, http://www.w3.org/TR/webrtc/

[33] A.Lepofsky, "Social business 2013: less talking. More doing." Dec
2012, http://www.constellationrg.com/blog/2012/12/social-business-
2013-less-talking-more-doing

[34] R.Joshi, "Data-oriented architecture: a loosely coupled real-time SOA",
Whitepaper, Aug 2004, http://www.rti.com

[35] T.Berners-Lee, "Socially Aware Cloud Storage", Notes on web design,
Aug 2009, http://www.w3.org/DesignIssues/CloudStorage.html

[36] E.Naone, "Who owns your friends?", MIT Technology Review
Magazine, Jul/Aug 2008.

[37] The DataPortability project to connect, control, share and remix, 2007-
2009, http://dataportability.org

[38] Unhosted web apps: freedom from web 2.0's monopoly platforms,
http://unhosted.org

[39] The diaspora project: a privacy aware, personally controlled, distributed
open source social network, 2010, http://diasporaproject.org

[40] R.Geambasu et al., "The organization and sharing of web service objects
with menagerie", World Wide Web Conference (WWW), 2008.

[41] R.Chandra, P.Gupta and N.Zeldovich, "Separating web applications
from user data storage with BStore", USENIX Conference on Web
Application Development (WebApps), Boston, MA, Jun 2010.

[42] K.Singh and V.Krishnaswamy, "Building communicating web
applications leveraging endpoints and cloud resource service", 6th
international conference on cloud computing (IEEE Cloud), Santa Clara,
CA, Jun-Jul 2013

[43] The WebSocket API, W3C candidate recommendation, Sep 2012,
http://www.w3.org/TR/websockets/

[44] Pywebsocket project: WebSocket server and extension for Apache
HTTP Server, http://code.google.com/p/pywebsocket/

[45] PDF viewer built with HTML5, project page,
https://github.com/mozilla/pdf.js

[46] A.McAfee, "Enterprise 2.0: the dawn of emergent collaboration", MIT
Sloan Management Review, Vol.47, No.3, Apr 2006.

