Improving Textual Merge Result

Mehdi Ahmed-Nacer
Université de Lorraine
INRIA, LORIA
Email: mehdi.ahmed-nacer @loria.fr

Abstract—In asynchronous collaborative systems, merging is
an essential component. It allows to reconcile modifications
made concurrently as well as managing software change through
branching. The collaborative system is in charge to propose a
merge result that includes user’s modifications. The users now
have to check and adapt this result. The adaptation should be
as effort-less as possible, otherwise, the users may get frustrated
and will quit the collaboration.

The objective of this paper is to improve the result quality of
the textual merge tool that constitutes the default merge tool of
distributed version control systems. The basic idea is to study the
behavior of the concurrent modifications during merge procedure.
We identified when the existing merge techniques under-perform,
and we propose solutions to improve the quality of the merge.
We finally compare with the traditional merge tool through a
large corpus of collaborative editing.

Keywords—Operational Transformation, collaborative editing,
merging interfering, merge procedure, conflicts.

I. INTRODUCTION

Collaborative editing systems allow multiple users dis-
tributed in time and space to edit the same shared document.
To achieve high responsiveness and to support disconnected
collaboration, data are optimistically replicated [34], [11]; i.e.
each user has a local copy of the document that can be modified
independently of the other replicas. In addition, to achieve
high availability, locking mechanism to handle concurrent
operations is prohibited. In peer to peer collaborative editing,
the systems allow replicas to diverge temporarily, but must
eventually reach the same value if no more mutations occur.
This consistency model is called Eventual Consistency (EC)
[41].

In asynchronous collaboration mode, e.g Distributed Ver-
sion Control System (DVCS) softwares, users modify their
document in isolation and synchronize after to establish a
common view of the document. Usually, these kind of systems
manages the modifications as a set of state (aka state-based
approach) as on git system [39] or So6 [23]. When a replica
receives a remote state, it computes the difference between
the local state of the document and the received one before
merging the modifications. If there are modifications in the
same part of the document in both versions, the system can
return a conflict information to the user and let him resolve
them. The conflict is generated when the system cannot merge
the concurrent modifications.

In order to provide a comfortable environment for collab-
oration, the collaborative editing system must merge correctly
the modifications. Merging totally concurrent modifications on

Pascal Urso
Université de Lorraine
INRIA, LORIA
Email: pascal.urso@]loria.fr

Frangois Charoy
Université de Lorraine
INRIA, LORIA
Email: charoy@loria.fr

large scale collaboration is impossible. However, the system
must reduce the human effort to obtain a correct merge. In
the other case, the users correct by themselves the conflicts. If
there is too much correction, the users may get frustrated and
will quit the collaboration.

Many solutions have been proposed to improve automatic
merge. A distinction can be made between textual [26], syn-
tactic [14] and semantic [10] merging. Syntactic and semantic
merge are more efficient than textual merge but they are
specific to a given document. DVCS as git system supports
any type of collaboration. The users can collaborate to produce
XML files or a simple text document or software source code.
For this purpose, in this paper we focused only of on textual
merging.

Git system uses a state — based approach to manage
the concurrent modifications, called three-way-merge (diff3)
[35], [16]. During the merge procedure, it compares the local
state with the remote one. If the document is modified in
the same position, diff3 produces a conflict. On the other
hand, many operation — based approaches were suggested
to solve concurrency control in collaborative editing [9], [40],
[1]. Unlike diff3, these approaches represent the modifications
as a sequence of operations that are integrated automatically
on the document. Both approach kinds are designed to reduce
the effort of users during the collaboration. However, study
what degree their result satisfy the users on real collaboration
is never established. In this regard, this paper studies the
behaviors of different approaches during the merge procedure
and understand in which case they create conflicts to reduce the
user’s effort. This paper study for the first time a decentralized
solution that offer a best merge than usual tool.

The contribution of this paper consists of observing through
a tool, different patterns of collaboration in git histories.
Afterward, we analyze the common cases that create a conflict
during the merge procedure such as undo/redo operations [44],
[31] and accidental clean merge [20]. Then, we adapt a solution
to solve them by using operation-based approach.

We validate our contribution by several experiments on
large scale histories. The experiments simulate traditional tool
used for merging and the solution proposed. We measure the
effort made by users in the document when a conflict is gen-
erated. Afterward, we compare our approach with traditional
tool used for merging.

This paper is organized into seven sections. Section II
describes the merge management by using existing approaches.
Then, we describe our methodology and tool which allowed
us to observe the different patterns of collaboration, detect

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254103

the different conflicts and compute the effort made by users
during merging procedure. Section IV proposes a solution
to correct the specific conflicts. Afterward, we present in
section V the experimental evaluation of our approach and
we analyze the performance of several existing collaborative
editing algorithms. Finally, we cite the related work and we
finish with a conclusion.

II. MERGE MANAGEMENT

The merge result depends strongly on the type of algo-
rithms used. In state-based systems as on git [39], the mod-
ifications are executed by states, while using operation-based
algorithms the modifications are executed by operations. In the
following, we describe how the modifications are managed in
both approaches state-based and operation-based.

A. Diff3 tool

The usual tool used in asynchronous systems for synchro-
nization and merging the documents is a three-way merges
algorithm diff3 [35], [16]. Developed in 1988 by Randy Smith
and used in large version control systems such as CVS[7], Git
[39] and SVN [6]. In Fig. 1, assume that the original document
is O, user 1 modifies the document into A and user 2 modifies
the document into B. When the collaborative system merges
the document, diff3 finds the maximum matchings between
O and A and between O and B. Then, diff3 examines the
parts where O differs from either A or B and what has been
changed by each user. Finally, it detects where the document
conflict. Afterward, the system returns the results to the users
with markers as in Fig. 1. These markers are useful, especially
if the size of the document is large. It specifies exactly the
position of conflict, in addition to other information, like the
modifications made by other users and the original document.
The users are invited to make corrections on their document
to solve the conflict and add modifications if necessary.

B. Operational Transformation (OT)

Many operation-based algorithms are proposed and claim
to integrate correctly the operations on the document. These
algorithms respect the Eventual Consistency (EC) model; i.e,
the systems allow replicas to diverge temporarily, but must
eventually reach the same value if no more mutation occurs.
In this paper, we assume that a granularity of operations is a
line. So, the modifications are executed per lines.

[¢]

inta;

int b;
user 1 / in ussr 2
A

(2) Merge int a=0;
int b=0; int b;

(3) diff
(1) (ommlt\

int a=0jw
int b; (4) return merge
to user

inta;

Figure. 1: Conflict in state-based systems for collaborative
editing

Site 0 Site 1

sstems

Op: = ins(2, y)

Op2 = del(6)

T1 = T(Op1, Op2)=ins(1,y)
T2 = T(Op2, Op1)=del(7)

7= dein) G D T1=ins(1, y)

system system

Figure. 2: Integrate operation in OT algorithms

Operational Transformation (OT) [9], [32], [23] algorithms

are operation-based designed for collaborative editing context.
They have been proposed to maintain the consistency of the
shared document. For textual collaborative editing, they usually
apply the insert and delete operations, and sometimes update
operations.
To apply the operations at the correct position and to preserve
the user’s intention, OT algorithms transform the operation
received before its execution with the concurrent one, to take
into account the changes made on the document by other
executed operations. In Fig.2, two users shared the same
document initially "sstems" and work together to produce
the document "system". User O inserts "y" at position 2
which intends to produce the document "systems", when
concurrently, user 1 deletes the character at position 6 which
intends to produce the document “sstem”. When user O re-
ceives op2, it is transformed to take into account the effect
of the concurrent operation opl, then op2 is transformed to
del(7) instead of del(6) since the position of the concurrent
operation (opl) is before the position of op2. While, on site 1
the operation opl is not transformed since the position of the
concurrent operation (op2) is after the position of opl. Finally,
both users produce the same document "system".

Although, OT algorithms allow to order the operations,
problems can happen when two users modify concurrently the
text at the same position since there is no order between the
operations.

However, deploying such algorithm on real system should
not merge automatically every concurrent operation silently. It
is more appropriate to inform the users and let him check the
result. For example, so6 [23] that is similar to diff3 upon on
OT algorithm, cannot merge silently the modifications when
two concurrent operations are generated. the result is returned
to the user and let him to solve the conflicts.

III. METHODOLOGY

In order to detect the merge behaviors that create conflicts,
we deploy a framework! which allows us to observe the merge
procedure and locate easily the conflicts. In addition, this tool
replays the collaboration as on DVCS histories and computes
the effort made by users on the conflicting document by using
the traditional algorithms diff3 — state-based — and by using
other operation-based algorithms. The difference is the gain in
a user’s effort.

However, to compute the effort made by users in case of
conflict, we need to know what the users want as the final result

Thttps://github.com/score-team/replication-benchmarker

before starting the collaboration. The history of Distributed
Version Control Systems (DVCS) contains the results that
the user corrected. Thus, in the histories, the merge result is
correct.

Assume that the modifications made by users to correct
their document, when the conflict occur is the ground truth for
merging procedure. The methodology consists of reproducing
the same collaboration as on the histories of DVCS and observe
through a tool the effort made by users when conflicts occur.
At the first time by using the traditional algorithms (diff3),
afterward by using our solution. Then, we compute the number
of corrections performed to reproduce the same document as
generated manually by the users. In textual merging [22], the
most common approach is to use line-based merging. Thus,
operation-based algorithms evaluated in this paper manage the
modifications per lines. They create a new operation for each
line modified.

A. Corpus available

A large number of available Distributed Version Control
Systems (DVCS) history publicly available constitutes a very
interesting corpus of distributed asynchronous editing traces.
DVCS are widely used to manage large scale asynchronous
collaborative editing. For instance, the linux kernel is devel-
oped by thousands of programmers around the world using
Git [39]. Several web-based hosting services for software
development projects provide large DVCS history such as
GitHub (3.4M developers and 6.5M repositories)?, Assembla
(800,000 developers and more than 100,000 projects)®, or
SourceForge(3.4M developers and 324,000 projects)*. In this
paper, we selected traces from the most used system: Git.

B. Framework

To replay the same collaboration as in the history of git
by using operation-based algorithms, we need to transform
the states to operations. Thus, we provide a framework which
is the base of our experiment. The framework transforms the
state of the document retrieved from the history of DVCS to
the whole of operations ready to be used in operation-based
algorithms. The framework implements also the operation-
based algorithms and computes the size of modifications
made by users to correct their document. The framework is
open source and publicly available in order to let researchers
evaluate their own algorithms. It is developed in Java, and
reveal the source on GitHub platform® under the terms of the
GPL license.

After retrieving the traces and implementing the frame-
work, we replay the collaboration using operation-based algo-
rithms and we compute the user’s effort.

C. Merge computation

We define the user’s effort as the difference between the
simulated merge and the correct merge committed by the actual
user. It represents the effort that users would make if the used

Zhttps://github.com/about/press
3https://www.assembla.com/about
“http://sourceforge.net/about
Shttp://github.com/PascalUrso/ReplicationBenchmark

DVCS system was based on the evaluated operation-based
algorithms. We distinguish two metrics:

o Merge blocks: the number of different blocks on merged
documents.

e Merge lines: the number of lines in the blocks or number
of lines inserted by the framework to correct the docu-
ment.

For example, if the user requires three consecutive inser-
tions and two consecutive deletions to correct his document.
Number of blocks are two and the number of lines is five.

Remark. The framework does not count in merge metrics
the markers add by the merge mechanism (lines beginning

by “>>>>>>>>7 “<<<<<<<<” gnd “========").the user
need at lea s.

D. Observing collaboration

In order to improve the merge procedure on asynchronous
systems, we observe during the experiment through the frame-
work, which part of document conflict and detect where
the user’s effort is the most important. This allowed us to
understand the conflicts to solve them automatically.

The behavior of users during the collaboration is different
from one project to another. Several factors can influence
the collaboration such as, number of users, type of project,
proximity between users, latency in networks ...etc. For this
reason, it is difficult to detect and know what are the most
common cases that create conflicts during the collaboration.
The framework helps us to extract these scenarios.

1) Addition at the same position: The conflict happens
when two users modify concurrently the text at the same
position (not necessarily the same content) since there is no
order between the operations.

In this kind of concurrency and on textual merge,
operation-based algorithms can outperform state-based ap-
proach when an update operation falls in concurrency with
insert operation as shown in Fig. 3. Initially, both users shared
the same document "int a; ". afterward, user 1 updates the
line by "int a=0; " when concurrently user 2 inserts in the
same position "int x;". After merging, git system cannot
merge the documents since both users make modifications in
the same position, contrary to the operation-based approach
that merges the document correctly. Indeed, it transforms the
update operation to a delete followed by an insertion, when
user 2 receives the delete, it deletes "int a;" and after
it inserts "int a=0; ", while user 1 applied the received
insertion "int x;" in the correct position. Since there is
no order between the concurrent operations, operation-based
algorithm may also integrate the operations in the wrong order
and force user to make corrections. Indeed, it is possible to
produce the document ”"int a=0;" "int x; " instead of
”"int x;" "int a=0; " since there is not order between
the concurrent operations. In this case, the user must delete
"int a=0;" from position 1 and re-insert it at position 2.
However, in the worst case, operation-based algorithm requires
2 modifications (one delete and one insert). While using state-
based approach, the users require at least one modification to
produce ”"int x;" "int a=0;" as for user 2 in Fig. 3,
and in the worst case three modifications as for user 1. In this

USErT TNy user 2
int a; int a;
update("int a=0;", 1)

del(1), insert(*int a=0;",1) insert("int x; 1)

int a=0;

Merging

intx; ™ correct merge int x;
int a=0; on EC algorithm int a=0;
<<<<< userl) <<<<< userg §
int a=0; — I it
inta

Conflict on

int a=0;
state-based

>>>>> user2 >>>>> userl

Figure. 3: Addition at the same position

example, the difference between the approaches is not very
large (two modifications versus four modifications), but this
difference is larger in real collaboration since users produce
many copy/paste operations.

We notice also that this case of conflict is very common on
real collaboration.

2) Accidental Clean Merge (ACM): When users insert the
same content at the same position, this is called accidental
clean merge. dif f3 manages well this kind of conflict as in
the Fig.4. Using operation-based algorithms that consider the
modifications per line, a new operation is generated for each
line, thus a duplicated line is inserted in the document and
users must to correct line per line.

In Fig.4, both users insert concurrently the same element at
the same position, "int b; " at position 2. di f 3 detects that
two lines are identical. Thus, diff3 merges correctly the doc-
ument. While operation-based algorithm produces duplicated
lines "int b;" "int b; " since it generates a different
operation for each line.

3) Undo/Redo: The undo/redo operations are very useful
on collaborative editing systems. They allow any user to

user 1" user 2
int a; int a;

insert("int b;", 2)

) insert("int b;", 2)

inta; -
int b;

Merging

inta; = Operation-Based inta; =
int b; intb;

int b; ® int b;
inta; State-based

inta;

int b; int b;

Figure. 4: Accidental clean merge

user I___ user2

inta; int a;
int b; int b;
opl = delete(2)

inta;

undo(opl) =
insert("int b;",2)

A 4

Merging

IMETcly— Line "int b:" is not deleted. inta; "=
int b; Require correction int b:
on EC algorithms !

inta; "= Not need correction inta;
on state-based

Figure. 5: undo/redo operation

correct any edit operation at any time. On git system the
undo/redo operations are generated when users revert their
modifications to one of the previous states®. However, using the
operation-based algorithms can produce a conflict document.

Figure Fig.5 illustrates an example where state-based ap-
proaches manage well undo operations while operation-based
algorithm creates a conflict. Initially sites 1 and 2 shared
the same document "int a;""int b;". Site 1 deletes
line 2 which intends to produce the document "int a;",
while concurrently, site 2 deletes the same line and undo its
operation and does not change the initial document. During the
merge operation, dif f3 of git system merges both states and
produces a correct document "int a;". While, operation-
based algorithm creates a conflict in the user’s documents.
When site 1 receives the operations from site 2, it has reinserts
"int b;" since site 2 undo its deletion. Thus both users
produce "int a;" "int b; " document. To have the same
document as in the history of git, both users must delete "int
b; " from their document.

IV. ADAPTED MERGE

To improve the performance of operation-based algorithms
in asynchronous systems, we propose some improvement to
avoid the “most” common cases that create conflicts: accidental
clean merge and undo/redo conflicts. We adapt the Tombstone
Transformation Functions (TTF) approach [25] to avoid these
kind of conflicts. Before explaining our method we describe
TTF algorithm.

A. TTF algorithm

TTF approach [25] was proposed to solve the problems
occurred on Operational Transformation (OT) algorithms (de-
scribed in section II-A). OT approaches are based on the
transformation property C; and Cs [32] and some trans-
formation functions. C; ensure that the execution of any
pair of concurrent operations obtains the same result on all
replicas. Using a central server, C; is sufficient. However,

6Command “git revert”

on peer to peer collaboration the system require Co [42].
These functions change the index of the operation to take
into account the effects of the concurrent operations. Imine
et al. [13] have shown that few operational transformation
algorithms proposed fail to satisfy C; and Cs conditions.
In this context, Tombstone Transformation Functions (TTF)
approach was introduced [25]. It overcomes the problems by
keeping all characters in the model of the document. When
user deletes an element, it is not physically removed from the
document, but just marked as invisible to users, i.e. deleted
elements are replaced by tombstones. However, TTF approach
does not solve the conflict described previously.

B. Clean Merge Undo Algorithm (CMUndo)

To improve TTF approach on asynchronous systems we
add some transformation functions to take into account the
case of undo/redo and accidental clean merge.

e undo/redo:

Undo/redo operations in collaborative editing are very
useful but considered as difficult problem [42], [44], [21],
[5], [19]. They allow users to correct any edit operation at
any time. In git system, the only information that can be
useful to detect a real undo/redo operation, is the message
introduced by users when they revert their modifications.
Unfortunately, not all users specify on their messages
that is a revert operation. For this reason, it is difficult
to manage this kind of conflict by a revert mechanism.
To simplify the operation, we assume that all delete
operations are considered as undo of insert operation.
Moreover, before inserting an element in the model we
test if this operation is a redo or a simple insert as shown
in algorithm 1. The algorithm receives two arguments:
position of insertion and the content of insertion. it returns
the operation to be applied in the document and to be sent
to other replicas. In line 1, the algorithm tests if it can
find the element as a tombstone (invisible to users) in the
same position. In this case this operation is considered
as redo, in the other case it is considered as a simple
insertion. ’

Algorithm 1: Locallnsertion(pos, content)

Input: The content and the position on the document
Output: operation
if ((getDoc(pos).visibility = false) and
(getDoc(pos) == content) then
\ return redo(position, content);
else
L return insert(position, content);

[R S

However, to manage the undo/redo operations, the algo-
rithm uses the computation of line visibility degree [44].
When a line is created, it has a visibility of 1. Each time
the line is deleted, the algorithm decreases its visibility
degree. When a delete is undone or an insert is redone,
the algorithm increases its line visibility degree. The line
is visible only if its visibility degree is greater than 0.

TThe user can delete an element, and after reinserts the same element in
the same position without an explicit redo operation. During the collaboration
there is a little chance to have this case.

Site 0 Site 1 Site 2
[oc] [eee] [

Op1 = ins(X, 1) Op2 = ins(Y, 1) Ops = ins(X, 1)

O

Figure. 6: ACM divergence by using traditional OT

Accidental Clean Merge (ACM):

ACM [20] happens when users insert concurrently the
same content at the same position. During the merge
procedure, the merged document may contain a duplicated
element. OT algorithms (described in section II-B) can
be used to avoid these conflicts. They detect during
the transformation phases the ACM cases and might
transform them to noop operations (nil value).

To ensure consistency of the document when two con-
current operations made in the same position, TTF and
other OT algorithms use site id as a priority [36], [30].
Using this solution with ACM transformation may create
a divergence as presented in Fig. 6. Three sites shared
the same document initially "ABC". Site 0 and site 2
inserts concurrently the same element "X at position 1
and produce "AXBC" document. While, site 1 inserts
concurrently ”Y” at position 2 and produces "AYBC"
document. To avoid the ACM conflict, when site 0O
receives the operation from site 2, it does not execute
the operation since both users insert the same content
at the same position. However, when site 0 receives the
operation from site 1, it detects that both operations have
the same position. Since OT algorithms give the priority
to replica number, op2 is transformed with opl. It is
transformed to insert at position 2 instead of position
1. Finally, site 0 produces "AXYBC" document. On the
other hand, when site 1 receives opl from site 0, it is not
transformed, since the priority is given to site 0. Thus, site
1 produces "AXYBC" document. Afterward, when site 1
receives the operation from site 2, it transforms it to insert
”X” at position 3 and produces "AXYXBC" document. On
site 1, ACM is not detected and replicas diverge.

For this purpose, we propose a solution to use the element
of operation as a priority. As an example, in this paper we
chose the content’s hash code. During the transformation,
we add a new test to detect the accidental clean merge
cases. Indeed, the algorithm 2 tests in lines 4 and 5 if there
are two concurrent insertions in the same position with
the same content. In this case, it returns a noop operation,
in the other case it makes a traditional transformation by
comparing the position and the content’s code. Applying
algorithm 2 in Fig. 6, the problem is resolved. Indeed,
when site 1 receives an operation from site 2, the insertion

TABLE I: Projects characteristics

PROJECT cloud/backbone | twitter/bootstrap | mbostock/d3 git/git gitorious/mainline jquery/jquery rails/rails statusnet/mainline
Head shal 6ac7704c 37d0a30 did71el 8c7a786b c1105eb 2f2e045 3617732 d7880cH
Files with merge 11 69 38 558 72 29 352 213
Commits 2293 6009 2192 32958 4136 5035 28895 12057
Merge 274 434 282 5646 151 178 1153 1218
Num.Operation 2605 7626 2352 33084 3915 5386 26899 11953
Max. Replica 13 10 30 59 5 12 6 11
[Merge block Diff3 [155 1614 [648 3184 489 458 442 1159
[Merge line Diff3_| 895 | 14658 | 4658 [10159 | 2303 | 2146 [3899 | 4783]

of ”X” is transformed into position 2 instead of position
3 since the hash code of ”X” is less than hash code of
”Y”. Thus, the algorithm detects that two X are inserted
in the same position. Site 1 detects ACM and does not
execute op3. Finally, all replicas converge and produce
"AXYBC" document.

Algorithm 2: Transform(opl, op2)

Input: operations to transform : opl and p2

Output: operation applied on the document : op
1 Let ¢y and cs respectively the content of opl and op2
2 Let t; and ¢, respectively the type of opl and op2
3 Let p; and po respectively the position of opl and op2
4 if (t1 = insert) and (to = insert) then

5 if (cI=c2) and (pI=p2) then

6 return noop();/* An operation that
return null value */

7 else

8 if (pI > p2) or (pl=p2 and

9 HashCode(cl) > HashCode(c2)) then

10 | return insert(cl, pl+1,Site;);

11 else

12 L return insert(cl, pl,Site;);

In the following, we provide an experiment to compare our
solution with existing operation-based approaches, in addition
to dif f3 of git system.

V. EXPERIMENTAL EVALUATION

The experiment was made on eight git repositories chosen
among the most popular project from Github® hosting service

and among the most active project from Gitorious®.

A. Description of Collaboration Logs

Since there is no collaboration when the files are not
merged, the framework replays only histories of files that are
merged at least one.

In table I, we present the characteristics of eight projects.
The head commit shal used to run our experiments is presented
above the name of each repository. The characteristics are
computed per file. Based on these files we compute the total
number of commits and merges that affected the files, the

8https://github.com/repositories.
“https://gitorious.org/projects.

TABLE II: ACM and Undo/Redo in git repositories

. Features ACCIDENTAL CLEAN MERGE UNDO REDO
Project

backbone 271 1357 1137
bootstrap 563 7210 3957
d3 7 19877 218

Git 1272 42734 1614
Gitorious 750 932 513
jquery 213 1947 1432

rails 426 5329 16172

status 2297 9060 6352

number of operations and the maximum users that collaborate
on each file of the project.

During the experiment, the framework computes the num-
ber of accidental clean merge and undo/redo cases. Table II
presents the number of accidental clean merge and the number
of undo/redo operations produced in the eight git repositories.

B. Algorithms Evaluated

Since git system is based on peer to peer architecture, the
algorithms evaluated have the particularity that support peer to
peer collaboration. We evaluated in this experiment, three-way-
merge techniques (diff3 described in Section II-A) used by git
system. We evaluated also the usual textual algorithm used
for collaboration editing: Operational Transformation (OT)
algorithms and Commutative Replicated Data Type (CRDT)
algorithms [43], [33], [28], [24].

The most OT algorithms that exist, use a central component.
However, some others do not require a central server such as
SOCT2[37], MOT2[4] and Goto [38]. However, these algo-
rithms require some property that only TTF approach ensures.
In addition, the impact of these algorithms on merge result is
same since they apply the same transformation functions. For
this reason, we evaluated only SOCT2 among OT algorithms.

a) OT Algorithm: SOCT2: SOCT2 [37] algorithm is a
representative Operational Transformation (OT) algorithm that
do not make any assumption on using a central server for
a total order of operations. The principle of this algorithm
is illustrated in Fig. 7. When a causally ready operation is
integrated on a site, the whole log of operations is traversed
and reordered. After reordering, causally preceding operations
come before concurrent ones in the history buffer. Finally,
the remote operation has to be transformed according to the
sequence of all concurrent operations.

b) CRDT Algorithm: Unlike OT algorithms, Commuta-
tive Replicated Data Type (CRDT) algorithms do not need to
transformation functions. They are designed for concurrent op-
erations to be natively commutative. In this paper we evaluate

the first CRDT proposed : WOOT [24]. In WOOT algorithm,
the elements are uniquely identified. An insertion is defined by
specifying the new element identifier, the element content and
the identifiers of the preceding and following elements. Con-
current operations determine partial orders between elements.
The merging mechanism can be seen as a linearisation of the
partial order to obtain a total order.In Fig.8, two users shared
the same document initially ABC. User 1 inserts X between
A and B to produce AXBC, when concurrently user 2 deletes
B and produces AC. The element deleted is just marked as
invisible to users. When user 2 receives the operation from
user 1, it is executed in a correct order. Since, each element
has a unique identifier, when user 1 receives the operation
from user 2, the correct element is deleted. However, if two
concurrent insertions are generated in the same position, the
merged operations can generate a conflict document.

WOOTH [1] is a new version of WOOT that improves its
performance by using a hash table.

During the simulation of the collaboration, the framework
computes number of corrections (Merge blocks and merge
lines). Depending on the algorithms used and how an opera-
tion is generated, the order of blocks and lines in the document
will be different. Thus, the number of corrections changes from
one algorithm to another.

C. Result

Fig. 9a and Fig.9b represent respectively the percentage
of merge blocks and merge lines for TTF, WOOT, diff3 algo-
rithms and CMUndo. To observe how undo/redo and accidental
clean merge operations impact on merge results, we present
also Clean Merge (CM) algorithm that detects only accidental
clean merge cases (without undo/redo operations). We consider
the merge blocks and merge lines produced by diff3 of git
system presented in table I as the reference (=100%).

The number of merge blocks and merge lines correlates
well with the number of accidental clean merge and undo/redo
operations represented in table II. Indeed, more accidental
clean merge and undo/redo operations detected in reposito-
ries and more the difference between our solution and other
algorithms grows. For example, in git repository we detected
a large accidental clean merge and undo operations, so the
gain of user’s effort obtained by our solution is around 54%
in git repository. In Gitorious repository, diff3 is more efficient

@ piprecedes op
Opi conccurent to op

O remote operation o) op

Historst(n{ O e ® - 0O @ -0 T

op1 op2 0Op3 opL opk opn

opn+1 ?

(OR
Historst'(n{ 0O 00 - 0leee Ve
_ -— e

History Hs(n) ¥V pi: piprecedes op Y pj: pj conccurent to op

opn+1

Figure. 7: Integrate a remote operation in SOCT2

user 1

ins(AL X< B)

del(B) P
[AXpE]
Figure. 8: Integration in WOOT

than all algorithms in merge block, This is due to a specific
collaboration pattern in the file “diff_browser. js”. The
users collaborate independently and each one produces almost
the same document. During the merge procedure diff3 manages
well this kind of collaboration.

Even if OT and CRDT algorithms have a completely
different behavior to merge the operations, the result of TTF
and WOOT are almost the same in merge block and merge
line. So, change the manner of operations’ generation is not
sufficient to improve the quality of the merge and reduce the
users effort. However, CMUndo algorithm implements more
functions to detect the accidental clean merge and undo/redo
operations. It reduces in all cases the effort of users, except
on Gitorious repository.

In Fig. 9a and on repositories that contain much accidental
clean merge and undo/redo operations, diff3 algorithm out-
performs TTF and WOOT algorithms but remains worse than
CMUndo algorithm. Indeed, TTF and WOOT algorithms do
not manage the accidental clean merge operations (see Fig.
4), while diff3 algorithm can merge them correctly and can
retrieve some identical lines when two concurrent blocks are
inserted. CMUndo is more efficient than all other algorithms
except on Gitorious repository. Indeed, CMUndo takes the
advantage of diff3 since it detects accidental clean merge op-
erations and takes the advantage of operation-based algorithms
since it manages well the concurrent addition at the same
position. Except for Gitorious repository, CMUndo algorithm
is the best.

In Gitorious repository diff3 is more efficient than all algo-
rithms on merge block, This is due to a specific collaboration
pattern on the file “diff_browser. js”. The collaboration
in these file begin with the merge of two branches that have
no ancestor in common. However, these two branches contain
states with common lines that the diff3 tool is able to merge.

However, the impact of accidental clean merge operations
on merge result is greater than undo/redo operations. Indeed,
CM algorithm that manages only accidental clean merge cases
and CMUndo algorithm that manages accidental clean merge
and undo/redo cases improve almost the same merge result.
The difference is only 3%.

Using diff3 algorithm on asynchronous system creates
more conflicts that CMUndo algorithm, Consequently, the
document cannot be merged and users make more correction
on their document. Comparing diff3 and CMUndo algorithms,
the later gain 60% of blocks in jquery repository, 54% on git
repository and 59% on bootstrap repository. However, it loses
just 1% on Gitorious repository.

140

00
o0
| hh
0

backbone bootstrap a3 itorious.

g

&

(a) Merge blocks on git projects

= Diff3

=WOOTH

uTTF

ucm

5 CMUndo
Git Gi iquery rails status

140

120

8

38

&

3

backbone bootstrap @3

(b) Merge lines on git projects

Figure. 9: Merge blocks and merge lines

In Fig. 9b, it is clearly that CMUndo algorithm is the best.
It outperforms widely all other algorithms and especially diff3
algorithm. More algorithm generates merge blocks and more
the document require corrections. In Fig. 9a we found that
CMUndo generate less blocks than diff3 algorithm, for this
reason the users introduce many lines by using diff3 algorithm
than CMUndo algorithm.
In addition, when a conflict occurs there is a high probability
to generate a large block in state-based than operation-based
approaches. Indeed, using operation-based approach, some
operations can be inserted correctly, while on state-based
approaches, the merge procedure depends on blocks. Then,
when states are mixed the users require much correction.
For this reason, TTF and WOOT algorithms outperform diff3
algorithm on merge lines. In Gitorious repository and precisely
in “diff_browser. js’ file, two users insert concurrently
a large block with a content almost the same. During the
merge procedure, diff3 can merge correctly the identical lines
while operation-based approaches do not. for this reason, diff3
outperform TTF and WOOT algorithms. We notice that, this
kind of collaboration is specific and rarely comes.
Using CMUndo algorithm on asynchronous system, the users
require few corrections, while diff3 algorithm creates more
conflict and require more corrections. Comparing diff3 and
CMUndo algorithms, the later gain 70% of lines on jquery
repository, 52% on git repository and 57% on bootstrap
repository.

To summarize the experiment, we compute the total merge
blocks and merge lines on all repositories. We found that
for 1335 files, we compute 5799 accidental clean merge,
118409 undo/redo operations, a gain of 3583 blocks and
21675 lines by using CMUndo algorithm. Fig. 10 presents the
total merge blocks and merge lines. In addition, we separate
both algorithms (accidental clean merge -CM- and undo/redo)
from our approach to observe the effect of each one on the
result. TTF gains 26% in blocks and 23% on lines, while our
solution gains 43% blocks and 50% lines. Moreover, accidental

0 Y
Git Gitorious iauery. rails status

120

= Diff3

uTTF
=cm

WOOTH

= CMUndo

Figure. 10: Total merge block and merge line

operations has the greatest effect on the document with a
gain of 40% in blocks and 45% on lines. While undo/redo
operations represent a gain of only 5% on blocks and lines.

VI. RELATED WORK

Software merging is necessary during large scale develop-
ment. It is very important to reduce the number of conflicts in
the document during the collaboration. Textual, syntactic and
semantic merging is widely studied in [22], [26], [14], [10],
[15], [29]. However, git system deploys a generic model to
allow any collaboration. The users can collaborate to produce
XML files or a simple textual collaboration such as software
source code. For this purpose, it is difficult to implement
semantic and syntactic algorithms on git system. Thus, in this

Diff3
WOOTH
TTF

™
cMUndo

paper we focused only on textual merging.

In [20], many policies are proposed to solve conflict in
structured documents such as XML files or file systems. These
policies can be applied with our methodology to manage the
files of git system. As an example in this paper, we focused
only in a simple linear text such as software development.

Bayou [27] proposed a technique to maintain the consis-
tency of the shared document. It used an epidemic algorithm to
propagate modifications between weakly consistent replicas. If
the merge procedure cannot find a solution, conflict resolution
is delegated to the user. However, the authors do not compute
the conflicts and the efforts made by users. D.Perry et al.
[26] studied the various aspects of parallel development in the
context of a large scale software development. They observed
a large collaboration and studied some interfering changes.
However, they do not offer a solution to merge correctly the
modifications. In [17], [26] the authors specify that 90% of
the modifications can be merged without detection conflict
and only 10% cannot be merged automatically, since the tool
does not consider any syntactic or semantic information. The
authors do not study the effort made by users to correct the
conflicts. In [23], the authors propose an operational transfor-
mation algorithm that realizes a file system synchronization.
However, The only operational transformation designed for
collaborative editing and respect the transformation property
C1 and Cs [32] is TTF approach evaluated in this paper.

On the other hand, operation-based algorithms designed
for concurrency control such as Operation Transformation
(OT) algorithms are widely studied on [9], [40], [1]. All the
studies are focused on synchronous systems and they are
focused on execution time or memory occupation. Recently
new approaches called Commutative Replicated Data Type
(CRDT) are proposed [43], [33], [28], [24] to be a substitution
of OT algorithms. As OT algorithms, these approaches are
evaluated only on execution time and memory occupation
in [1] and [2]. Diff3 algorithm that is widely considered as the
gold standard for merging document on asynchronous systems.
It is widely studied and presented by many researchers in [16],
[35], [18], [8]. However, study the merge result to reduce the
user’s effort in asynchronous system by using operation-based
approaches are never studied.

An awarness mechanism can be independently added upon
the same kind of merge algorithm without affecting their result
[12], [3]. So, an awarness mechanism can be added in system
upon CMUndo algorithm. If a conflict occurs, the system
proposes to users an automatic merge and they can accept it
without efforts. It is possible also to add modifications in the
automatic merge if necessary.

In this regard, this paper studies for the first time a
decentralized solution that can offer a better merge than usual
tool.

VII. CONCLUSION

This paper presents an evaluation of eventual consistency
algorithms in asynchronous systems, designed for collaborative
editing. In addition, we present a solution to overcome the most
cases of conflict that can be occur during the collaboration.
We implemented also an open-source framework which allow

us to observe the collaboration and detect the real conflict.
The tool simulates a real collaboration as on the history
of git repositories by using state-based and operation-based
approaches. It computes the number of conflicts and the
number of corrections requires by users to merge correctly
their document.

Merging automatically the modifications can help users
during the collaborations. When concurrent modifications oc-
cur, the merge tool can create conflicts. The users make an
effort to correct their document. Reducing the user’s effort
improve the quality of collaboration and encourage users to
work collaboratively.

In this paper, we observed the collaboration and studied the
case where concurrent modifications interfere. We evaluated
operation-based algorithm on asynchronous corpus. We found
that, the existing operation-based algorithms perform well in
asynchronous systems, but they do not manage any specific
conflicts such as accidental clean merge and undo/redo op-
erations. While diff3 algorithm handles these cases without
problem.

For this purpose, we defined a new solution to avoid these
kinds of conflicts and generate an operation-based algorithm
that can be used correctly on asynchronous systems, reduce
the conflicts and human interactions. It also outperforms the
existing tool used on asynchronous systems: diff3.

Our experiments demonstrate in which cases operation-
based algorithms are suitable for asynchronous systems and
outperform the three-way-merge tool massively used in DVCS
systems. We investigate first on the collaboration to detect the
problems of merging procedure. Thus, we give guidelines to
improve such OT algorithms to take into account the most
common case that create conflicts when accidental clean merge
and undo/redo operations are generated. Finally, we proposed a
solution to handle these kinds of conflicts, make an experiment
on asynchronous corpus, improve the quality of the merge and
reduce the user’s effort.

ACKNOWLEDGMENT

This work is partially supported by the ANR project
Concordant ANR-10-BLAN 0208. The authors would like to
thanks following people for their contributions to the algo-
rithms implementation : G. Oster (SOCT2) and S. Martin (Git
Walker).

REFERENCES

[1] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and P. Urso.
Evaluating crdts for real-time document editing. In ACM, editor, ACM
Symposium on Document Engineering, page 10 pages, San Francisco,
CA, USA, september 2011.

[2] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, and P. Urso. 8émes journées
francophones mobilité et ubiquité. In ACM, editor, ACM Symposium
on Document Engineering, page 12 pages, IUT de Bayonne — Pays
Basque, FR, jun 2012.

[3] S. Alshattnawi, G. Canals, and P. Molli. Concurrency awareness in a
p2p wiki system. In Collaborative Technologies and Systems, 2008.
CTS 2008. International Symposium on, pages 285-294, 2008.

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

M. Cart and J. Ferrie. Asynchronous reconciliation based on operational
transformation for P2P collaborative environments. In Proceedings
of the 2007 International Conference on Collaborative Computing:
Networking, Applications and Worksharing, pages 127-138. IEEE Com-
puter Society, 2007.

R. Choudhary and P. Dewan. A general multi-user undo/redo model.
In ECSCW’95: Proceedings of the fourth conference on European
Conference on Computer-Supported Cooperative Work, pages 231-246,
Norwell, MA, USA, 1995. Kluwer Academic Publishers.

B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato.
Control with Subversion. O’Reilly Media, 2007.

B. Collins-Sussman, M. Pilato, and B. Fitzpatrick. Version control with
subversion. 2003.

Version

D. M. P. Eggert and R. Stallman. Comparing and Merging Files with
GNU diff and patch. Network Theory Ltd, January 2003.

C. A. Ellis and S. J. Gibbs. Concurrency Control in Groupware Systems.
SIGMOD Record : Proceedings of the ACM SIGMOD Conference on
the Management of Data - SIGMOD ’89, 18(2):399-407, May 1989.

M. Fowler. Refactoring: Improving the Design of Existing Code. 1999.

O. A.-H. Hassan and L. Ramaswamy. Message replication in unstruc-
tured peer-to-peer network. In CollaborateCom, pages 337-344, 2007.

C.-L. Ignat, S. Papadopoulou, G. Oster, and M. C. Norrie. Providing
awareness in multi-synchronous collaboration without compromising
privacy. In Proceedings of the 2008 ACM conference on Computer
supported cooperative work, pages 659-668. ACM, 2008.

A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving correctness
of transformation functions in real-time groupware. In Proceedings of
the eighth conference on European Conference on Computer Supported
Cooperative Work, ECSCW’03, pages 277-293, Norwell, MA, USA,
2003. Kluwer Academic Publishers.

D. Jackson and D. A. Ladd. Semantic diff: A tool for summarizing the
effects of modifications. In Proceedings of the International Conference
on Software Maintenance, ICSM *94, pages 243-252, Washington, DC,
USA, 1994. IEEE Computer Society.

A.-M. Kermarrec, A. I. T. Rowstron, M. Shapiro, and P. Druschel.
The IceCube approach to the reconciliation of divergent replicas. In
Proceedings of the twentieth annual ACM symposium on Principles of
distributed computing - PODC’01, pages 210-218. ACM Press, 2001.

S. Khanna, K. Kunal, and B. C. Pierce. A formal investigation of diff3.

D. B. Leblang. Configuration management. chapter The CM challenge:
configuration management that works, pages 1-37. John Wiley & Sons,
Inc., New York, NY, USA, 1995.

T. Lindholm. A three-way merge for xml documents. In Proceedings
of the 2004 ACM symposium on Document engineering, DocEng 04,
pages 1-10, New York, NY, USA, 2004. ACM.

J. Maeda. The laws of simplicity. MIT Press, 2006.

S. Martin, M. Ahmed-Nacer, and P. Urso. Controlled conflict resolution
for replicated document. In CollaborateCom, pages 471-480, 2012.

S. Martin, P. Urso, and S. Weiss. Scalable xml collaborative editing
with undo. In R. Meersman, T. Dillon, and P. Herrero, editors, On
the Move to Meaningful Internet Systems: OTM 2010, volume 6426 of
Lecture Notes in Computer Science, pages 507-514. Springer, 2010.

T. Mens. A state-of-the-art survey on software merging. IEEE Trans.
Softw. Eng., 28(5):449-462, May 2002.

P. Molli, G. Oster, H. Skaf-Molli, and A. Imine. Using the transfor-
mational approach to build a safe and generic data synchronizer. In
Proceedings of the ACM SIGGROUP Conference on Supporting Group
Work - GROUP 2003, pages 212-220, Sanibel Island, Florida, USA,
November 2003. ACM Press.

G. Oster, P. Urso, P. Molli, and A. Imine. Data Consistency for P2P
Collaborative Editing. In Proceedings of the ACM Conference on
Computer-Supported Cooperative Work - CSCW 2006, pages 259-267,
Banff, AB, Canada, November 2006. ACM Press.

G. Oster, P. Urso, P. Molli, and A. Imine. Tombstone transformation
functions for ensuring consistency in collaborative editing systems.
In The Second International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom 2006),
Atlanta, Georgia, USA, November 2006. IEEE Press.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(391
[40]

[41]

[42]

[43]

[44]

D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes in large-scale
software development: an observational case study. ACM Trans. Softw.
Eng. Methodol., 10(3):308-337, July 2001.

K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J.
Demers. Flexible update propagation for weakly consistent replication.
In Proceedings of the sixteenth ACM symposium on Operating systems
principles - SOSP’97, pages 288-301. ACM Press, 1997.

N. Preguica, J. M. Marques, M. Shapiro, and M. Letia. A Commutative
Replicated Data Type for Cooperative Editing. In Proceedings of the
29th International Conference on Distributed Computing Systems -
ICDCS 2009, pages 395-403, Montreal, QC, Canada, June 2009. IEEE
Computer Society.

N. M. Preguica, M. Shapiro, and C. Matheson. Semantics-based recon-
ciliation for collaborative and mobile environments. In On The Move to
Meaningful Internet Systems 2003: CooplS, DOA, and ODBASE - OTM
Confederated International Conferences, CooplS, DOA, and ODBASE
2003, volume 2888 of Lecture Notes in Computer Science, pages 38-55.
Springer, November 2003.

M. Ressel and R. Gunzenhiuser. Reducing the problems of group undo.
In GROUP ’99: Proceedings of the international ACM SIGGROUP
conference on Supporting group work, pages 131-139, New York, NY,
USA, 1999. ACM.

M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhéuser. An Integrating,
Transformation-Oriented Approach to Concurrency Control and Undo
in Group Editors. In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work - CSCW ’96, pages 288-297, Boston, MA,
USA, November 1996. ACM Press.

M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhiduser. An integrating,
transformation-oriented approach to concurrency control and undo in
group editors. In CSCW, pages 288-297, 1996.

H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract data
types: Building blocks for collaborative applications. Journal of Parallel
and Distributed Computing, 71(3):354 — 368, 2011.

Y. Saito and M. Shapiro.
Surveys, 37(1):42-81, 2005.
R. Smith. distributed with gnu diffutils package, GNU diff3 (1988)
Version 2.8.1, April 2002.

M. Suleiman, M. Cart, and J. Ferrié. Serialization of concurrent
operations in a distributed collaborative environment. In Proceedings
of the international ACM SIGGROUP conference on Supporting group
work: the integration challenge, GROUP ’97, pages 435-445, New
York, NY, USA, 1997. ACM.

M. Suleiman, M. Cart, and J. Ferrié. Serialization of Concurrent
Operations in a Distributed Collaborative Environment. In Proceedings
of the ACM SIGGROUP Conference on Supporting Group Work -
GROUP 97, pages 435445, Phoenix, AZ, USA, November 1997.
ACM Press.

C. Sun and C. A. Ellis. Operational transformation in real-time
group editors: Issues, algorithms, and achievements. In Proceedings
of the ACM Conference on Computer Supported Cooperative Work -
CSCW’98, pages 59-68, New York, New York, Etats—Unis, November
1998. ACM Press.

L. Torvalds. git, (April 2005). http://git-scm.com/.

N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies convergence
in a distributed real-time collaborative environment. In Proceedings of
the 2000 ACM conference on Computer supported cooperative work,
CSCW 00, pages 171-180, New York, NY, USA, 2000. ACM.

W. Vogels. Eventually consistent. Commun. ACM, 52(1):40-44, January
20009.

S. Weiss, P. Urso, and P. Molli. An Undo Framework for P2P
Collaborative Editing . In CollaborateCom, pages 529-544, Orlando,
USA, November 2008.

S. Weiss, P. Urso, and P. Molli. Logoot: A scalable optimistic replication
algorithm for collaborative editing on p2p networks. In 29th IEEE
International Conference on Distributed Computing Systems (ICDCS
2009), pages 404 —412, Montréal, Québec, Canada, jun. 2009. IEEE
Computer Society.

S. Weiss, P. Urso, and P. Molli. Logoot-undo: Distributed collaborative
editing system on p2p networks. IEEE Transactions on Parallel and
Distributed Systems, 21:1162-1174, 2010.

Optimistic replication. ACM Computing

