
Shared Editing on the Web: A Classification of
Developer Support Libraries

István Koren and Andreas Guth and Ralf Klamma
Advanced Community Information Systems (ACIS)

RWTH Aachen University
Informatik 5, Ahornstr. 55, 52056 Aachen Germany

{koren|guth|klamma}@dbis.rwth-aachen.de

Abstract—Together with the current shift to cloud-based
solutions, various Web applications have been enriched with
collaborative features. These collaborative features enable users
to work together on digital products like documents, diagrams
and videos at the same time on a global scale. Implementing
them require developers to have knowledge about both com-
plex algorithms for maintaining consistency on one hand and
usability issues on the other hand. Besides developing apps from
scratch, Web application developers often meet these challenges
by employing ready-made libraries for shared editing on the
Web. A new generation of these shared editing frameworks has
emerged recently; several of these libraries are available as open
source solutions. In this paper, we first present general and
browser-specific requirements for shared editing like consistency
algorithms and means of workspace awareness. Then, state-of-
the-art frameworks for shared editing are analyzed in respect of
their support of these requirements. As a contribution, we have
identified missing features like the availability of general aware-
ness widgets and new architectural designs due to emerging Web
standards. To that end, we demonstrate prototypes addressing
some of these issues.

Keywords—CSCW; Shared Editing; Web Applications; Real-
time Collaboration; XMPP; Widgets

I. INTRODUCTION

An increasing number of Web applications with collabora-
tive features are presented nowadays. Applications like Google
Docs1 allow users to create documents in the cloud, share
them with others and edit artifacts concurrently within the
browser. Users are able to see the cursor position of their
collaborators in real-time and even chats are possible within
the scope of the web application. Most of these features have
to be developed from scratch which involves solving several
technological challenges.

The underlying foundation for all kinds of Web appli-
cations are HTTP servers delivering pages written in the
Hypertext Markup Language (HTML) and made interactive
by means of the JavaScript scripting language. The field of
collaborative Web applications in particular was made possible
by recent advances in web technologies including server-push
technologies such as Ajax and Comet. Mostly long-polling
techniques are used to get updates from other users through
the server. These techniques pushed the limits of the traditional
request/reply mechanism in the Web to enable near real-
time interaction between clients and servers. With HTML5,
emerging standards like WebSockets are introduced for stable

1http://drive.google.com

bidirectional client-server connections that reduce the overhead
of long-polling. Elaborate and easy-to-use JavaScript APIs
enable developers to easily push and receive updates to and
from the server. In addition, new standards within the HTML5
family such as WebRTC represent a paradigm shift in the Web.
Peer-to-peer computing is now possible within the browser
leading to new opportunities in architectural design. After an
initial signaling phase to establish a channel between two
peers, Web applications are now able to reach out to other
instances running in browsers on other devices. without having
to steer the communication over a server.

A. Motivation

While first, static Web pages were accessible by browsers
on desktop computers, the mobile revolution now enables a
variety of smartphones to be used for surfing the Web. Multiple
cross-platform solutions like PhoneGap2 and Sencha Touch3

have been introduced to overcome the problem of having to
develop specific native applications for each target platform.
They allow for developing mobile apps with HTML5 and
JavaScript and then exporting them as native applications
to particular platforms. Additionally, new mobile operating
systems such as Firefox OS and Tizen are being presented
that allow to directly run packaged HTML apps that behave
like native applications.

Shared editing systems built with JavaScript leverage this
focus on HTML5 based apps by providing collaborative fea-
tures for the Web. The biggest challenge in shared editing
systems is identifying conflicts in edits by possibly remote
users. Underlying consistency algorithms ensure that no user
overwrites the inputs of others and that changes in the docu-
ment are stored and synchronized securely without losing any
data. As these algorithms are complex and error-prone, devel-
opers often consider using ready-made frameworks within their
applications that ensure conflict resolution and update propa-
gation to collaborators. They leverage recent developments in
the Web such as bidirectional client/server communication over
Web 2.0 technologies like Ajax. Several JavaScript libraries
presented later are available as open source solutions to support
developers in creating shared editing applications for the Web.

However, not only the consistency algorithms require
special knowledge of the developers. Also a feature called
workspace awareness, i.e. following the updates of remote

2http://phonegap.com
3http://www.sencha.com/products/touch

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254097

collaborators is essential as a flawed realization can be espe-
cially confusing to users, e.g. if the user interface is constantly
blinking for highlighting remote edits. The Google Wave
project has shown how fulsome collaborative features may
decrease the usability in the end. Presented to the public in
2009, Google planned to turn Wave into a system that would
be an alternative to email. As not enough users adapted to the
concepts of Wave, the work was handed over by Google in
2010 to the open source community as Apache Wave [1].

Therefore ensuring consistency and providing support for
workspace awareness are crucial requirements for shared edit-
ing frameworks on the Web. Both are general aspects that are
difficult to develop. Google Wave took two years to develop
before it was opened publicly [2]. On the other hand, the
implementation of CoWord [3], an elaborate work that enables
real-time shared editing in Microsoft Office applications, took
three man-years; though after the general collaboration engine
was established, the implementation of CoPowerpoint building
on the same infrastructure took only six man-months. Thus
we consider consistency and workspace awareness as ideal
candidates to be provided in the form of a framework.

B. Contributions

To remedy the current situation in the Web, this paper
analyzes the current state of collaborative editing including
the basic concepts like architectural models, the algorithms
for keeping data consistent across devices and usability is-
sues of making users aware of remote changes. This first
takes into consideration approaches that were not specifically
targeted for the Web. The requirements are then matched
to the features of JavaScript frameworks for shared editing
on the Web. Hereby we identify several functionality lacks.
The underlying APIs of the frameworks and data models
are demonstrated for showcasing their complexity of being
employed in developments. This survey includes open source
solutions that can be easily integrated into custom software
such as research prototypes. We do not focus on the correctness
of the underlying consistency algorithms.

As an overall result, we conclude indications for missing
features in shared editing frameworks on the Web. Furthermore
opportunities for these frameworks arise out of emerging stan-
dards such as WebSockets for resource-efficient client/server
communication and WebRTC for direct peer-to-peer commu-
nication from browser to browser. We show how standardized
Web widgets could resolve current issues of workspace aware-
ness by providing awareness tools as user interface widgets.
Finally, possible peer-to-peer architectures are showcased.

The rest of the paper is structured as follows. First, the
related work section analyzes existing approaches of building
general shared editing frameworks for native applications and
the Web in special. Then, the underlying Web technologies
used later are introduced. Open source shared editing frame-
works for the Web are depicted thereafter, before missing
features are identified. The paper concludes with possible
solutions to overcome the issues.

II. RELATED WORK

The history of developer support for shared editing system
began with GroupKit, a framework for building collabora-
tive applications based on a client/server approach [4]. The

system proposed consists of a toolkit written in C++ that
connects to a registrar running as a centralized instance. The
client workstations run session manager processes that are
responsible for creating, joining or leaving Conference objects.
Conference applications are invoked by the session manager
and display certain tools like shared editing widgets. Events
are distributed via multicast remote procedure calls (RPC).
Developers can create custom events, distribute them and
listen to these RPCs calls to change the data model and
user interface accordingly. Groupware widgets are available
that provide general awareness tools like a participant list
or telepointers. The toolkit is only available for applications
developed with the interpreted Tcl language and Tk interface
toolkit, no binding exists for the Web and no concept exists for
variably sized user interfaces. The authors explicitely exclude
direct multimedia communications.

Another approach considers collaboration as an aspect-
oriented feature. The CoWord approach by Sun et al. in-
troduces the general idea of a transparent adaptation (TA)
approach that converts existing single-user applications into
collaborative ones by inserting a layer that promotes and
applies local changes to remote instances of the same software
[3]. CoWord and CoPowerPoint are presented as evaluation
prototypes that use the Microsoft Word and PowerPoint APIs
to listen to document changes and promote them remotely.
To manage consistency, the collaboration infrastructure uses
operational transformation (OT). Telepointers for distributing
the mouse position and radar views to see the scroll position
of collaborators are available as workspace awareness tools.

Recent work of Heinrich et al. has brought the idea of
transparent adaptation to the Web [5]. Based on document
object model (DOM) based replication, i.e. listening to events
concerning the insertion, editing or deletion of nodes, the doc-
ument state is distributed to remote instances. However, they
state that web applications that are "structured according to
the established Model-View-Controller (MFC) pattern" are not
transformable since they break the underlying synchronization
mechanism. Besides demonstrating their approach with HTML
based rich-text editors and SVG based drawing apps that are
DOM based per definition, they analyzed 12 web applications
from which only 6 could leverage the automatic collabora-
tion transformation and usage of their General Collaboration
Infrastructure (GCI) [6]. Therefore, still 50% of applications
must be transformed by hand. The work was extended with
general workspace awareness capabilities in further work [7].
They capture information about user interaction at the DOM
level and propagate it over a central server. Participant lists
and text highlighting are implemented as reusable workspace
awareness widgets. Both solutions are closed-source commer-
cial products thus not available to the general public.

The WatchMyPhone framework by Bendel et al. [8] pro-
vides a set of user interface widgets for collaborative and
general awareness features for the Android mobile operating
system. Therefore, the work derives from the original UI
classes and transparently adds shared editing capabilities, so
that developers leveraging the framework only need to ex-
change the concrete class they are using. To overcome mobile
network outages, operation queues are built before they are
sent to the server component. The framework is built on the
CEFX framework [9] for consistency management. As the

target is limited to Android, it is out of scope for this paper.

Apache Wave as shortly outlined above is the successor
of the discontinued Google Wave project and available as a
server-based open source solution called "Wave in a Box"
within the Apache incubator. The idea behind Wave is the
inclusion of many different media into rich text documents
within the browser. The documents called "waves" can be
best imagined as e-mails in the traditional sense, though these
documents remain editable even after they are sent to recipi-
ents. Two extension points are available as add-in solutions to
enhance the functionality, namely robots and gadgets. Robots
are server-side tools that can be added to a wave and perform
automated tasks such as translating content written in a foreign
language. On the other hand gadgets enhance the user interface
of a wave with widget-like elments.

The related works described above specify concepts that
can be used by developers to develop and provide applications
to support shared editing. In the following, two available
collaboration suites are presented to describe the current state-
of-the-art in shared editing on the Web.

A. Collaborative Web Applications

Prominent representatives of Web applications with shared
editing functionalities are Google Docs and EtherPad4. Here,
we showcase their features and highlight state-of-the-art fea-
tures for shared editing on the web.

Google Docs is a Web-based office suite available through
a Google Drive account. Thereof Docs, Sheets and Slides
are independent applications standing for word processor,
spreadsheets and presentation functionalities respectively. All
applications in the Google Drive family have rich collaboration
features allowing documents to be shared to other users and
edited simultaneously in real-time. Google Drive itself builds
the cloud-based file container that provides a uniform user
interface to share a document and notify possible collaborators
via email. A public option allows anonymous users to partici-
pate in the editing. While editing the document, users can start
a chat to send each other text messages. In the participant
list the profile pictures of logged in users are shown while
anonymous contributors get assigned a random animal name
and icon. Furthermore every user is represented by a cursor
with a user-specific color. For history support, Google Docs
shows the user a list of changesets that can be selected. Upon
selection, the part of the document that changed is highlighted
in the document.

EtherPad on the other hand is a completely open-source
word processing tool that can be freely hosted on any server.
Both EtherPad and Google Docs provide the user with a history
viewer for documents. EtherPad presents the users with an
interface that resembles a minimalistic media player, enabling
the user to play back the complete history of the document
and watch it like a movie. Awareness features of EtherPad are
shown in detail in section IV-C.

III. WEB TECHNOLOGIES

As stated above, the Web has become a major platform
to reach users on a variety of devices. Web applications can

4http://www.etherpad.org

Figure 1: Publish/Subscribe based Multi-Display Image Viewer

be used both on desktop and mobile browsers. Furthermore
frameworks for cross-platform mobile apps are available that
leverage the development possibilities of HTML5 by packag-
ing Web content into a bundle that behaves like a native app
on several platforms like Android and iOS.

In the following, server-push technologies are presented
including the state-of-the-art WebSockets standard. WebRTC
is showcased as emerging standard that allows to use the
architectural paradigm of peer-to-peer computing on the Web.
Finally, widget technologies are highlighted as technology that
is later used to tackle some of the issues and missing features
of the shared editing frameworks surveyed.

A. Server-Push Technologies

In the early days of the Internet, Web servers served
static HTML files with fixed content to the user over the
HTTP protocol. Interaction was limited to HTML forms that
allows users to enter information and send it to the server
thus blocking the user interface while waiting for the input
to be processed on the server using CGI scripts. With the
advent of the Web 2.0 enabled by Asynchronous JavaScript and
XML (AJAX), bidirectional message flow was made possible
without blocking the UI. Elaborate techniques like Comet
over the Bayeux protocol use a technique called long-polling.
Thereby, the TCP connection to the server is started and held
open; as soon as there is processing output on the server, the
information is sent on the open channel. The client then closes
the old connection and opens another one to wait for the next
input coming from the server. On the contrary, if the client has
to send new input to the server, the old connection is closed
and the new information is sent over a newly established TCP
channel.

Another popular use case for long-lived TCP connections
is the Bidirectional-streams Over Synchronous HTTP (BOSH)
protocol used within the Extensible Messaging and Presence
Protocol (XMPP) [10] defined in XEP-0124 [11]. Coming
from a mere Instant Messaging use case, XMPP became a
common protocol for a multitude of use cases like real-time
middleware and Internet of Things (IoT) [12]. BOSH emulates
a bidirectional message channel over HTTP by having open
multiple request/reply pairs between the client and the server.

The latency of the underlying protocol is an important fac-
tor in real-time collaborative software. In mobile, the message
size is important as well. WebSockets has been introduced
by the W3C as a means to enable stable TCP connections
from a Web browser to a server without the need to misuse
the HTTP protocol. To provide backwards-compatibility, a
standard HTTP request has to be sent by the WebSockets-
enabled browser to start a connection. Hereby, an upgrade
header is included to indicate that the browser wants to start the
WebSocket connection. If the server understands the protocol,
the HTTP connection is skipped, and a stable connection is
established on the same TCP channel Now, to send a message
from the client to the server or vice-versa, no additional HTTP
request has to be started, thus reducing the cost of exchanging
the HTTP headers. As for XMPP, in earlier work we have
presented a plugin for the popular Strophe JavaScript XMPP
client that enables data to be sent via WebSockets instead
of the BOSH protocol described above5. Experiments have
shown that XMPP communication via WebSockets outper-
forms BOSH with considerable efficiency improvements [13].

B. WebRTC

Besides WebSockets, Web Real-Time Communication (We-
bRTC) is an emerging Internet draft currently under revision
at the IETF and the W3C that brings real-time communication
capabilities to browsers. While previously plugins such as
Adobe Flash and Java Applets had to be installed at the client
side to enable real-time communication applications like video
streaming, WebRTC is a complete stack of protocols and APIs
built directly into the browser.

Use cases include not only audio/video communication but
also direct message exchange between peers. WebRTC offers a
complete stack including different APIs to acquire audio/video
content such as webcam, screen capture and microphone on
the client device as well as protocols that support peer-to-
peer message exchange between remote browsers. Different
media tracks are bundled into a single media stream that can
be streamed to another peer. Every message exchange between
peers is encrypted by default.

To start the communication establishment between two
peers, signaling is required. The WebRTC draft does not pro-
vide a specification on this, except that the connection setup is
based on the Session Description Protocol (SDP). Instead, the
decision on how to exchange SDP statements is delegated to
the web application developer. To overcome possible firewalls
and Network Address Translation (NAT) routers, the Interactive
Connectivity Establishment (ICE) protocol is used together
with Traversal Using Relays around NAT (TURN) and Session
Traversal Utilities for NAT (STUN) servers. ICE tries to find
the best path for the media stream which can be over the
internet or over the local link, if peers are on the same WiFi
network for instance.

For collaborative Web applications, the DataChannel API
of the WebRTC specification is of high interest. It allows
arbitrary binary data to be sent from one browser to another
in an encrypted channel. In latency sensitive applications such
as shared editing systems, messages could save the indirection
time of being sent over a possibly remote server.

5https://github.com/strophe/strophejs

C. Widget based Web Applications

Most of today’s websites provide their functionality in
a monolithic page that comprises all the functionality in a
single interface. One possible way to achieve a separation of
concerns within the user interface is by employing HTML5
specific tags such as header or menu. Another way is
dividing a website in distinctive functional pieces. This can be
achieved by widgets. They describe single units of well-defined
functionality embedded into a user interface component. As
such, they resemble mobile apps, where every screen stands for
a clearly defined functionality. A major benefit is that widgets
lend themselves to be reusable across applications.

A set of widgets displayed in the same context possibly
on a single webpage defines a widget container. From the
technical perspective, these combinations require a managed
application context with various runtime functionalities such
as user management provided by the container. An example for
such a widget container is the open source ROLE SDK6 that
is using an Apache Shindig7 container. The SDK provides a
widget context together with a set of features like Inter-widget
communication (IWC), authentication and authorization as well
as Inter-widget communication (IWC). IWC enables multiple
widgets to exchange messages following a publish/subscribe
pattern. Widgets may publish a message together with a subject
and all other widgets interested in this particular subject get
notified and may then act accordingly. A typical use case for
IWC is the orchestration of complete Web applications from
single widgets. For local IWC message exchange, the widgets
communicate via the HTML5 Messaging API. Remote IWC
that is applicable when the same application is running on
multiple devices is coordinated via XMPP. This XMPP channel
can further be used for presence updates and a multi-user chat.

IV. CHARACTERISTICS OF SHARED EDITING SYSTEMS

After the foundation of state-of-the-art Web applications
was laid out above, this section presents requirements and up-
to-date best practices for designing shared editing systems for
the Web.

A. Consistency Algorithms

Consistency management is at the heart of every shared
editing system as it ensures that all clients working on the same
artefact remain synchronized and edits at diverse instances of
an application do not harm each other. Possible conflicts are
resolved in a fashion that is satisfying for every participant
in the collaboration session. For shared editing systems this
means that all users will have exactly the same data after
every change. A variety of consistency preserving algorithms
is available today, the most prominent one is Operational
Transformation (OT) with its variations.

Simple approaches for ensuring consistency include floor
control. In a multi-display image viewer prototype we devel-
oped, we employ a simple publish/subscribe based mechanism
to save the state of the application. The system can be seen
in Fig. 1. When the application starts, the tablets are allocated
within a grid before an image is loaded. Whenever the image

6http://sourceforge.net/projects/role-project/
7http://shindig.apache.org

Figure 2: Example of divergence in OT

gets dragged on one screen, a message with the new absolute
coordinates of the image is published onto a common channel.
Upon that, the other displays are notified. In our tests, even
small latencies to the publish/subscribe server affected the
usability in a bad way and simultaneous drag events resulted in
flickering. One strategy to resolve this would be to introduce
floor control, so that only one tablet may serve as input device
at one point in time. This floor control can be implemented
by a token system, where only a single user who is currently
holding the token may submit updates to the document. The
user interface at all other instances would then be locked while
not holding the token.

1) Operational Transformation: As opposed to simple
floor control algorithms, operational transformation is about
transforming possibly conflicting operations against each other
so that conflicts are resolved. The concept of operational
transformation (OT) was first introduced in 1989 by Clifford
et al. [14]. Since then, a variety of refinements for special
use cases have been presented. The basic idea behind OT is
to capture changes done by users as operations, e.g. “insert
character x at position y” and let other clients apply those
changes themselves taking into consideration the version of the
document the operation was executed on. All clients have their
own OT engine that is able to apply and transform incoming
operations.

A problem that every OT system has to solve is that
of divergence. Divergence occurs when multiple users apply
changes at the same time, i.e. two sets of changes are generated
from the same starting point. In Fig. 2 the changeset from a
different user is applied without adapting the operation to the
new condition (which is an inserted character), whereas in Fig.
3 an OT engine transforms incoming operations before they are
applied.

2) Differential Synchronization: In 2009, Neil Fraser pro-
posed a different approach, called Differential synchronization
[15]. In contrast to OT, DS does not work with operations but
operates directly on the data itself. It works by continuously
diffing and patching the copies of the clients and servers.
Though the algorithm itself is fairly easy to implement, it relies
on powerful diff and patch algorithms that support fuzzy and
preferably also semantic diffs and patches.

Figure 3: Example of convergence in OT

B. Architectures

There are three possible architectures for shared editing
systems, namely centralized, peer-to-peer or hybrid. Tradition-
ally the Web favors a centralized approach where consistency
preserving algorithms run on a server that clients connect to.
Updates are sent to the server and get promoted to other clients
working on the same artefact.

In peer-to-peer systems, every clients holds a record of the
synchronized data. Here, every session participant get updates
from all clients. Even though consistency algorithms working
in a peer-to-peer fashion have been proposed (see [16]),
they are not applicable for the Web. However, the emergint
WebRTC standard could bring these peer-to-peer architectures
to the Web.

Hybrid approaches take advantage of the power of both,
centralized and peer-to-peer. In conjunction with recent devel-
opments like the upcoming of systems that support multiple
devices per user as opposed to one-device-per-user [17], hybrid
collaborative applications could ensure that on one hand up-
dates of a user are promoted to other devices of the same user
in a peer-to-peer fashion. On the other, these updates could be
sent to a central instance that makes sure that these operations
are passed to other clients of the system.

C. Awareness

Besides consistency management, being aware of other
users’ changes is an essential part of online collaboration.
This feature called workspace awareness answers the questions
who is working on the same document simultaneously, what
the collaborators are doing and where in the document they
are working [18]. User studies have shown, that users require
awareness mechanisms to answer these kind of questions [5].

Depending on the type, awareness tools can either be
tightly integrated into an editor’s user interface element itself
or be available as separate modules. Separate user interface ele-
ments may answer the question who is currently connected to a
collaboration session by showing a participant list. Whereas the
exact position of current remote updates such as new input in a
text editor is highly application specific and needs to be tightly
coupled within an UI element itself. Traditional approaches
regarding awareness widgets are telepointers, teleselection or
radar views [19]. Telepointers are duplicated cursors that

show the current mouse cursor position of other participants,
possibly with a small label depicting the user’s name; the same
principle is applicable for a text cursor in a text field. Similarly,
telesection refers to highlighting parts of the document that
are currently selected at a remote user’s application instance.
Radar views are scaled down outlines of the whole document
enriched with squares marking the currently visible screen area
of remote collaborators.

For applications supporting shared editing on the Web,
the approaches to achieve workspace awareness have to be
examined specifically in due consideration of possible con-
straints within the browser. Approaches like radar views cannot
be easily transferred into browser environments due to the
presence of various screen sizes, resolutions and display screen
densities on desktop computers compared to smartphones or
tablets. Even though approaches like responsive web design
tell us to adapt content to various screen sizes in a fluid way
[20], they do not yet specifically consider awareness features
for collaborative applications.

Means for workspace awareness can be found in the promi-
nent shared editing tools presented above, namely Google
Docs and EtherPad. Fig. 4 shows an exemplary screenshot of
EtherPad with numbered labels on top of awareness tools that
are explained in the following.

1) User-specific colors: As can be seen here, EtherPad uses
various colors to make its users distinguishable. These colors
are randomly assigned as soon as a new user enters the current
collaboration session. All text that is written by the user has a
colored background according to his color. Thereby EtherPad
takes care of the right contrast of the background color to
the text color. The inputs of no longer connected authors are
shown with reduced saturation. A similar coloring scheme is
available in Google Docs.

2) Mouseover effects: Text written by a user has a
mouseover effect that reveals the author when the mouse is
placed over a text region. The tooltip shows the fixed user
identifier instead of the name the user gave himself in order to
avoid confusion. The user ids are still accessible when a user
has left the document editor.

3) Participant list: The user interface of EtherPad features
a user counter in the top right counter. Behind that button the
participant list is shown that also indicates the colors of the
participants.

4) Chat: A chat widget allows remote collaborators to talk
with each other without having to type messages within the
document itself. Likewise to the document the chat is colored
with the respective user colors.

D. Undo/Redo and History

Finally, undoing and redoing a certain edit operation and
history support for saving the former states of a document
are important requirements for shared editing systems. Undo
and redo functionality require the system to actually store
operations to later undo them. Hereby, undo and redo support
is tightly coupled to the underlying consistency management
algorithm. A system based on differential synchronization
works in the same way as a system utilizing operational
transformation, with the difference that in systems employing

differential synchronization operations are basically the gener-
ated diff patches.

There are two main ways of implementing undo operations.
The first way can be used if the system supports exclusion
transformation. In that case an operation can be removed
entirely from the document’s history by rolling back the
system to the state of the operation that is being undone
and reapplying all changes after the transformation with ET
against the undone operation. If ET is not supported, undoing
an operation via inclusion transformation can be done, but the
undoing operation will show up in the history as as a separate
operation and the undone operation will remain in the history.

A special case of history is support of late join. Late join
describes techniques to load the collaborative assets onto a
client that has not been part of the collaboration session at
all or at least for a certain period of time. Therefore this also
includes the case that a client has received updates, then went
offline and finally after a certain period of time online again.
In this situation, the client may already keep some of the
shared data in his cache. More specifically in Web scenarios
the content could be saved in a HTML5 indexed database or
any other client-side archive. Late join is mostly implemented
by re-flushing all the content of a document from a central
resource.

V. DEVELOPMENT FRAMEWORKS

While in the sections above, necessary requirements for
shared editing and the implications of a Web setting for these
requirements were described in detail, this section introduces
state-of-the-art shared editing libraries and frameworks that can
be used by developers to create applications with collaborative
features. We survey open-source solutions (with the exception
of the Google Drive SDK Realtime API) that can be easily
used and integrated into custom software such as research
prototypes.

We have shown the importance of both consistency algo-
rithms and workspace awareness features for shared editing
systems. Hence our hypothesis is that frameworks allow for
elaborate conflict resolution and rich awareness features. As
so, we expect ready-made hooks for functionality like consis-
tency management, undo/redo and user interface widgets for
common awareness tasks like a participant list.

A. Google Drive SDK Realtime API

The Google Drive SDK Realtime API is the most recent
shared editing framework included in our survey, as it was
introduced by Google in March 2013 and has since then
experienced a couple of feature upgrades. As part of the Drive
SDK the Realtime API is a client-only library that can merely
be used in combination with Google servers. In contrast to
Google’s own collaborative web applications like Google Docs
anonymous users are not permitted and as such using the API
requires the users to have an active Google Drive account.
Before being able to take part in a collaboration session, an
authorization dialog is shown to users to grant permission to
the application. Applications that intend to use the Realtime
API need to be registered at Google’s API site.

The Realtime API follows an object oriented approach.
Supported basic types that are built in are strings, lists and

Figure 4: Awareness Tools in EtherPad

maps. Custom objects can be created that are composed out
of these basic types or other custom objects on their part.
Listing 1 (a) shows an example where the string variable str
is created. The custom object book of type Book is created
below. Custom objects need to be registered to the model
together with their properties before they can be initialized.
Object’s properties can be other collaborative objects; circular
structures like in graph based data models are possible. As
the DOM tree represents a special kind of graph, it can be
translated into the API’s data model.

After being created, collaborative variables become part of
the JavaScript application’s data model and are therefore avail-
able on remote instances of the application. The collaborative
types follow an event-based approach and provide listeners
that are called upon specific events such as insertion, deletion
or change of content. Besides listening for updates, string
types can also be directly bound to user interface elements as
shown in Listing 1 (b). Hereby, the API takes care of updating
the bound text field upon remote changes and notifies remote
instances upon changes in the local UI respectively.

The API features rich awareness features such as a user
management with an event-based participant list. Users are
automatically assigned random colors. Due to the fact, that
only users logged into their Google Drive account can take part
in a session, the API can be queried for the user profile includ-
ing the name and a profile image. the Google Drive account’s
username is queriable over the participant list. Furthermore,
string type variables can be supplied with the current cursor
position making it easy for developers to implement workspace
awareness widgets such as telecursors.

As shown in Listing 1 (c), undo/redo is implemented
within the API. To bundle several operations into a single
undoable operation that is sent to the server at once, compound
operations can be used as in Listing 1 (d).

// (a) initialize string variable
var str = model.createString(’Hello World!’);
model.getRoot().set(’text’, str);

var Book = function() {};
realtime.custom.registerType(Book, ’Book’);
Book.prototype.title =

realtime.custom.collaborativeField(’title’);
var book = model.create(’Book’);

// (b) binding to user interface
var str = doc.getModel().getRoot().get(’text’);
var textArea = document.getElementById(’edit’);
realtime.databinding.bindString(str, textArea);

// (c) add undo button logic
var model = doc.getModel();
var undoButton =
document.getElementById(’undoBtn’);

undoButton.onclick =
function(e) { model.undo(); };

// (d) bundling operations
model.beginCompoundOperation();
myCollaborativeList.push("Hello");
myCollaborativeList.push("World");
model.endCompoundOperation();

Listing 1: Various operations with the Google Realtime API

However, as the API is the client-side API is obfuscated
JavaScript code and the backend service is the Google Drive
cloud service itself, its use remains little for developers want-
ing to create a custom application on their own servers. As
we found out in our experiments, it even allows for outages
in network connection; operations are persisted locally and
pushed to the server as soon as the network connection is
available again.

B. OpenCoweb

The OpenCoweb framework consists of the Coweb server
and client libraries. The server is available in both a Java and
a Python version, aiming to provide the same set of features
with a greater target area. So called “service bots” that act on
incoming operations and other data can be implemented for
the system, resembling the Wave robots presented in Section
II. The server communicates with the clients over the Bayeux
protocol, which uses either Comet or WebSockets and is part
of the CometD project of the Dojo foundation.

The underlying consistency algorithm is operational trans-
formation; on OpenCoweb it is intended to work primarily on
text on a per-character basis; still it works on any object that
can be serialized as JSON. It supports 4 types of operations,
namely “update”, “insert”, “delete”, and a “null” operation
that is used by the transformation engine if an operation has
become superfluous. Listing 2 shows an example of how a

character in the collaborative field examplename gets added
and deleted again.

collab.sendSync("examplename",
"x", "insert", 5);

collab.sendSync("examplename",
null, "delete", 5);

Listing 2: Inserting and deleting characters in OpenCoWeb

OpenCoweb comes with a set of prebuilt widgets including
a rich text editor, a chat and a Google Maps widget. The
Framework does not keep a history of operations, so undo/redo
and history functionalities are not included. Although there is
no function that handles late join itself, there are designated
callbacks.

OpenCoweb’s core operational transformation library is
also available as a separate project called coweb-jsoe, for cases
when a complete shared editing framework is not needed or
a server setup is not available. Therefore this library can be
used to utilize OT functionality without the server component
of OpenCoweb. In that case, developers must take care of
the sending, receiving, generating, applying and transformation
functions for the operations of their collaborative application.

The documentation of the project is very extensive and
features commented code, beginner tutorials, example appli-
cations and boilerplate code for almost every function the
framework provides.

C. MobWrite

MobWrite was developed to showcase the capabilities of
the differential synchronization algorithm presented in section
IV-A2. To our knowledge, it is currently the only shared editing
framework that is based on DS. The library is focused on
synching existing HTML elements in websites, with very little
customizability and a high-level API. Standard elements that
can automatically be shared are “input” elements including
textfields. MobWrite can either be deployed on Google’s Ap-
pEngine platform or run an own server via a python daemon.

mobwrite.share("textfield");
mobwrite.unshare("textfield");

Listing 3: Sharing and unsharing text fields in MobWrite

MobWrite knows two different data types that can be
shared, which are text and numbers/enums. The merging of text
in form of an HTML input field happens with diffs and a fuzzy
patch algorithm. Enum means any kind of field where the user
can select one or more values from a static list, e.g. checkboxes
or checklists. These elements are not merged, because changes
on these fields are all operations that just set a specific value
without a bigger context. If there is a conflict in these fields,
the latest action just overwrites the previous one.

Listing 3 shows the main way to incorporate MobWrite in
a project. By calling share with the identifier of a HTML
input field, the field is synchronized with parallel instances;
calling unshare stops the synchronization efforts.

D. ShareJS

ShareJS is a project started by former Google Wave
engineer Joseph Gentle [2]. The focus of this project lies
on simplicity and usability, specifically the author wants to
build a shared editing framework that is simpler to employ
than Google Wave. Gentle claims that “ShareJS is a simple
(~4k LOC) CoffeeScript server & web client library for OT.”.
Most of the code is written in CoffeeScript, a language
which compiles to JavaScript. The server runs one the Node.js
platform. ShareJS can use either the socket.io or Browser-
Channel libraries to communicate with the server, therefore
communication over comet or WebSockets is supported.

In ShareJS, developers do not need to care about specific
operations if the framework is only used for synchronizing
strings. Large parts of the source handling the conflict res-
olution algorithms based on operational transformation are
taken from the EtherPad project introduced earlier. OT is
also supported for arbitrary JSON objects. The JSON API
is modeled as a list of objects whose items can be inserted,
removed, replaced and moved. Late Join is handled by getting a
complete copy of the current document’s state from the server;
ShareJS does not have any history functionality yet.

doc.submitOp({i:"Some text", p:100}, callback);
doc.insert(100, "Some text", callback);

Listing 4: ShareJS

The framework is object oriented; the doc variable in the
demo code in Listing 4 refers to the currently edited data. The
code excerpt shows how developers may directly work on OT
operations. Both the first and second line accomplish the same,
which is inserting text at position 100; the second one simply
uses convenience methods provided by the framework.

E. Changesets

As opposed to the libraries above, changesets is not a
full framework for shared editing as it does not provide a
full setting with server-side tools and network communication.
Instead, the library tries to give developers easy API access
to operational transformation functionality. It only features
plain-text based OT; operations are generated by using the
‘diff-match-patch” library by Neil Frasers that is also used
in MobWrite to implement differential synchronization.

// (a) constructing and applying a changeset
var changes = cs.text.constructChangeset(text1,
text2);

var finalText = changes.apply(text1);

// (b) serializing a changeset
var serialized = changeset1.pack();
var changeset2 =
cs.text.Changeset.unpack(serialized);

Listing 5: changesets

Besides being solely focussed on OT, changesets is also the
most low-level library in this paper. It requires developers to
invoke the OT functions manually to construct the changesets
and even distribute them to other collaborators. The example
code in Listing 5 (a) shows how a ‘changeset’ is created
out of two different strings. Finally the changeset is applied

to text1; the result is that both text1 and finalText
contain the same string. Besides constructing changesets it
is also possible to let the library serialize the changesets for
more efficient messages to be transferred to participants in the
collaboration session, which is shown in Listing 5 (b). This
example shows the packing and unpacking of a changeset.

F. CEFX

The Collaborative Editing Framework for XML (CEFX)
proposed by Ansgar Gerlicher [9] is a library for performing
consistency management for large documents. Even though
it is not specifically targeted on providing shared editing
functionality for Web, it is included here because of its new
concepts for the architecture and conflict resolution algorithms.

The first difference to most other shared editing systems
is that CEFX uses multiple history-buffers per document.
History-buffers are essentially queues of operations that other
clients have sent to the local client. Usually these buffers are
empty because incoming operations are applied to the local
copy immediately after arrival (or transformation).

CEFX has been constructed especially for XML data;
even plaintext data is transformed into an XML structure.
To manage a document it incorporates the hierarchy of the
XML data in the sharing algorithm. For each layer of XML
CEFX manages a separate history-buffer. This means that
every operation that is performed on the document affects not
the complete document but only specific elements in a tree
of elements. A big advantage of this is that this system has
to do far less transformations than systems that work with
linear data. CEFX is an example for a flexible multi-target
framework as it is already employed in a wide variety of
research prototypes such as WatchMyPhone shown in section
II. We have already used the framework in the context of cloud-
based semantic multimedia annotation tools [21]. As it uses the
XMPP protocol as message middleware to distribute updates,
a binding for the Web would be a reasonable next step.

VI. EVALUATION

In the last section, various shared editing frameworks have
been presented in detail together with code excerpts. Here, we
focus on the implications of the results considering the re-
quirements we have elicitated in Section IV. As demonstrated,
collaborative software requires features such as consistency
management and support for workspace awareness amongst
others.

The results have been summarized in Table I. As can
be seen, all shared editing frameworks with the exception
of MobWrite employ operational transformation to ensure
conflict resolution when multiple users work on the same
document. Furthermore, owing to the traditional architecture
of the Web where static webpages were delivered to client’s
browsers to be displayed there, almost all frameworks employ
a client/server model and come with server-side code. Often
the heavy-weight conflict resolution algorithms are performed
at the server.

When it comes to support for workspace awareness, only
the Google Drive SDK Realtime API ensures state-of-the-art
features such as automatic color assignments to users and
hooks for subscribing to remote cursor events.

To catch the code complexity, we have computed the total
lines of code (LOC) of the respective libraries. Changesets
has the fewest lines of code which is due to is very low-level
API. However, this enables the library to be used in various
scenarios. For the Google Realtime API we were not able to
get the code, as this library follows a blackbox approach that
makes it impossible to see the server-side source.

The completeness of the documentation is indicated by the
amount of demo code, tutorials, community support and code
comments. As it happens, all frameworks with the exception
of CEFX had satisfying documentation that allow developers
to get started easily.

VII. CONCLUSION

In this paper, we provided a survey of state-of-the-art
frameworks for shared editing on the Web. Therefore, we
have first analyzed recent developments concerning the Web
such as WebSockets for efficient bidirectional client/server
communication as well as WebRTC for peer-to-peer message
exchange scenarios without involving a browser after connec-
tion establishment. We have presented requirements for shared
editing systems like consistency management and workspace
awareness and have shown implications of employing them in
the Web. Finally, frameworks with mainly JavaScript libraries
were presented that provide developer support for web appli-
cations providing shared editing features.

Though workspace awareness was identified as a crucial
requirement for online collaboration, we have not found many
implementations of awareness tools with the exception of the
Google Realtime API. Here, we see a strong demand for easily
employable solutions that developers can use.

One way to develop new forms of architectures and algo-
rithms for shared editing on the Web could be using widget
based environments. In the context of collaborative software,
awareness widgets could be employed, such as a participant list
that highlights the currently editing user’s name whenever there
are ongoing changes in another widget. Finally, the XMPP
channel of this widget space could be used for signaling direct
peer-to-peer connections so that two instances could directly
push synchronization messages to each other using WebRTC’s
datachannel APIs.

In recent work, we have adopted the widget container of
the ROLE SDK that was presented in section III-C for a
collaborative tool for creating learning design models [22]. For
ensuring consistency, we used OpenCoweb’s standalone OT
algorithm library. To distribute change operations, the built-in
IWC facility of the ROLE SDK is used that ensures that all
updates are propagated to remote collaborators in near real-
time. We are currently updating the application to fully take
advantage of the widget environment like using the presence
mechanism of the underlying XMPP functionality of the IWC
system. Hereby, dedicated awareness widgets like a presence
list may be easily developed.

Furthermore, the adoption of WebRTC may further drive
innovation in the area of shared editing on the Web. While
currently the propagation of changes in our learning design
modeling tool is based on IWC, it may be extended to support
WebRTC’s datachannel to send operations from client to client
without a propagating server.

TABLE I: COMPARISON OF SHARED EDITING FRAMEWORKS

Feature Drive SDK OpenCoweb MobWrite ShareJS changesets CEFX

OpenSource 7 3 3 3 3 3

License Apache BSD + AFL Apache MIT MIT unknown
Consistency OT OT DS OT OT OT
Awareness Support 3 7 7 7 7 3

Undo/Redo 3 7 7 7 3 7

Serialization JSON JSON own format JSON own format XML
Granularity JSON characters characters characters characters XML-nodes
Lines of Code — 42.390 9.936 35.032 2.545 9.123
Documentation 33 33 3 33 33 7

After all, enhancing developer support for shared editing
systems could eventually lead to a Web where we can edit any
kind of document, image or video from any computing device
without being interrupted by synchronization conflicts when
changing from one device to another.

ACKNOWLEDGMENT

The work concerning the multi-display map described in
section IV-B has been funded by a grant of the Japanese
Society for the Promotion of Science (JSPS). The remaining
work was supported through the LAYERS FP7 ICT Integrated
Project (grant agreement no. 318209) of the European Com-
mission.

REFERENCES

[1] The Apache Software Foundation. Apache Wave (Incubating). [Online].
Available: http://incubator.apache.org/wave/

[2] Joseph Gentle. (2011) Sharejs: Live concurrent editing in your app.
[Online]. Available: http://sharejs.org/

[3] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai, “Transparent
adaptation of single-user applications for multi-user real-time collab-
oration,” ACM Transactions on Computer-Human Interaction, vol. 13,
no. 4, pp. 531–582, 2006.

[4] M. Roseman and S. Greenberg, “GROUPKIT: a groupware toolkit for
building real-time conferencing applications,” in CSCW ’92 Proceedings
of the 1992 ACM conference on Computer-supported cooperative work,
1992, pp. 43–50.

[5] M. Heinrich, F. Lehmann, T. Springer, and M. Gaedke, “Exploiting
single-user web applications for shared editing: a generic transformation
approach,” in Proceedings of the 21st international conference on World
Wide Web, ser. WWW ’12. ACM, 2012, pp. 1057–1066.

[6] M. Heinrich, F. Lehmann, F. J. Grüneberger, T. Springer, and
M. Gaedke, “Analyzing the suitability of web applications for a single-
user to multi-user transformation,” in Proceedings of the 22nd inter-
national conference on World Wide Web companion, ser. WWW ’13
Companion, 2013, pp. 249–252.

[7] M. Heinrich, F. J. Grüneberger, T. Springer, and M. Gaedke, “Reusable
Awareness Widgets for Collaborative Web Applications – A Non-
invasive Approach,” in Web Engineering, ser. Lecture notes in computer
science. Springer Berlin Heidelberg, 2012, vol. 7387, pp. 1–15.

[8] S. Bendel and D. Schuster, “WatchMyPhone — Providing developer
support for shared user interface objects in collaborative mobile applica-
tions,” in 2012 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), pp. 166–171.

[9] A. Gerlicher, “Erweiterung bestehender anwendungen um kollaborative
funktionen mit hilfe des collaborative editing framework for xml (cefx),”
in Aktuelle Trends in der Softwareforschung, D. Spath, K. Haasis, and
D. Klumpp, Eds., vol. 2. Stuttgart: Fraunhofer-IRB-Verl, 2005, p.
150–165.

[10] Saint-Andre, Peter, “RFC 6120: Extensible Messaging and Presence
Protocol (XMPP): Core,” 2011.

[11] Paterson, Ian and Smith, Dave and Saint-Andre, Peter and Moffitt, Jack,
“XEP-0124: Bidirectional-streams Over Synchronous HTTP (BOSH)
ublish-Subscribe Version 1.10, Draft,” 2010.

[12] A. Hornsby and R. Walsh, “From Instant Messaging to Cloud Com-
puting, an XMPP Review,” in Proc. of the 14th IEEE Symposium on
Consumer Electronics (ISCE), 2010, pp. 1–6.

[13] S. Govaerts, K. Verbert, D. Dahrendorf, C. Ullrich, M. Schmidt,
M. Werkle, A. Chatterjee, A. Nussbaumer, D. Renzel, M. Scheffel,
M. Friedrich, J. L. Santos, E. Duval, and E. L.-C. Law, “Towards
Responsive Open Learning Environments: The ROLE Interoperability
Framework,” in Towards Ubiquitous Learning. Springer Berlin Hei-
delberg, 2011, vol. 6964, pp. 125–138.

[14] J. Clifford, B. Lindsay, D. Maier, C. A. Ellis, and S. J. Gibbs, “Con-
currency control in groupware systems,” in SIGMOD ’89: Proceedings
of the 1989 ACM SIGMOD international conference on Management
of data, J. Clifford, B. Lindsay, and D. Maier, Eds., vol. 18.2. New
York and NY and USA: ACM, 1989, p. 399–407.

[15] N. Fraser, “Differential synchronization,” in Proceedings of the 2009
ACM Symposium on Document Engineering, Uwe M. Borghoff and
Boris Chidlovskii, Eds. New York and NY: ACM, 2009, p. 13–20.

[16] S. Weiss, P. Urso, and P. Molli, “Logoot: A scalable optimistic
replication algorithm for collaborative editing on p2p networks,” in
29th IEEE International Conference on Distributed Computing Systems,
2009. Piscataway and NJ: IEEE, 2009, p. 404–412.

[17] D. Kovachev, D. Renzel, P. Nicolaescu, and R. Klamma, “Direwolf
- distributing and migrating user interfaces for widget-based web
applications,” in Proceedings of ICWE 2013, LNCS 7977. Springer,
2013, pp. 99–113.

[18] C. Gutwin, G. Stark, and S. Greenberg, “Support for workspace aware-
ness in educational groupware,” in The first international conference on
Computer support for collaborative learning, ser. CSCL ’95. Hillsdale,
NJ, USA: L. Erlbaum Associates Inc., 1995, pp. 147–156.

[19] C. Gutwin and S. Greenberg, “The effects of workspace awareness
support on the usability of real-time distributed groupware,” ACM Trans.
Comput.-Hum. Interact., vol. 6, no. 3, pp. 243–281, Sep. 1999.

[20] M. Nebeling and M. C. Norrie, “Responsive Design and Development:
Methods, Technologies and Current Issues,” in Proceedings of ICWE
2013, LNCS 7977, vol. 7977. Springer, 2013, pp. 510–513.

[21] D. Kovachev, G. Aksakali, and R. Klamma, “A real-time collaboration-
enabled mobile augmented reality system with semantic multimedia,” in
Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), 2012 8th International Conference on. IEEE, 2012,
pp. 345–354.

[22] P. Nicolaescu, M. Derntl, and R. Klamma, “Browser-Based Collabo-
rative Modeling in Near Real-Time,” in Proceedings of the Ninth In-
ternational Conference on Collaborative Computing (CollaborateCom
2013). IEEE, 2013.

