
Silence Behavior Mining on Online Social Networks
(Invited Paper)

Qingbo Hu, Guan Wang, Shuyang Lin, Philip S. Yu
University of Illinois at Chicago

Chicago, IL, U.S.A.
{qhu5, gwang26, slin38, psyu}@uic.edu

Abstract—Keeping silence is a behavior that widely exists in
human society and has been studied in social science for a long
time. After a new event occurs, instead of expressing opinions
towards it immediately, individuals may choose to remain silence.
Similar to a real social network, in online social networks, after
observing an interesting event from their friends, users may not
decide whether to share it at once due to different reasons. In
influence propagation process, we observe that there are three
states regarding to one’s reaction on an event: activated state

(shared), inactivated state (not shared) and silent state (take longer
than usual time to make decisions). Silent state is an intermediate
status before turning into inactivated or activated state. In this
paper, we provide a mathematical definition of “silence” based
on the length of hesitating time before a user makes decisions.
However, during the hesitation period, silent users behave exactly
like those users who already entered the inactivated state. In
order to differentiate them in this case, we develop an iterative
algorithm, Similarity Interest (SI) model, to identify possible
silent users by quantifying the interest of users toward the
event. Furthermore, comparing to real social networks, we reveal
different behavior of silent users in online social networks and
use the Transient Influence Principle to explain it. At last, based
on experimental results, we design a new model (Diffusion with
Silence (DS) model) incorporating Similarity Interest model and
two widely used diffusion models (Independent Cascade (IC)
model and Linear Threshold (LT) model), in order to capture
the silence behavior. Our experiment shows that DS model can
more accurately depict the process of information propagation
than IC model and LT model do.
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I. INTRODUCTION

On the Internet, sharing and commenting are major ways to
express a person’s opinion towards a certain event. Once an
individual observes an interesting event from news websites
or sharing lists of his/her friends, s/he may share or comment
on it. Such behavior may further impact his/her other friends
and is one of the primary reasons resulting in the flourishing
of online social network service. It not only increases the
potential business opportunities in online social networks, but
also makes them become testbeds for the research on human
behavior. Previously, researchers have done reasonable amount
of studies on the sharing propagation and social influence
analysis [1]–[3]. Most of them assumed that there were only
two states of a user’s attitude towards a certain event: activated
state and inactivated state. However, we believe that it is

necessary to introduce and analyze another neglected state,
which is the silent state. Fig. 1 uses a finite state automata
(FSA) graph to show the difference between a traditional
model and a model containing a silent state.

Fig. 1: Traditional Model and the Model with Silent State

A. Motivation

Studies on the silence behavior have many interesting
applications in real-life. For example, during the presidential
election, there are many swing voters, who are exactly those
individuals taking a longer time to make decisions. Discov-
ering them as soon as possible and designing stratagies to
win their votes may change the result of the election. In
our opinion, introducing the silent state into diffusion models
also has both practical and theoretical values. In practice, it
may improve the performance of viral marketing strategy. For
example, by differentiating silent users with normal inactivated
users, we can shrink the advertising cost by only focusing
on the silent users. Theoretically, the diffusion model with
the silent state is more consistent with empirical studies on
sociology or other areas related to the silence behavior [4],
[5]. Thus, such model should be more accurate in depicting
the information process in real world.

B. Challenges and Solutions

Definition of Silence. Intuitively, one can define those cases
when a user has longer hesitating time than his/her average
responding time as “silence”. Approximately, the hesitating
time in the online social network, is the difference between
the time when an event firstly appears in the sharing lists of
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a user’s friends and the time when the user decides to share
it or not. Unfortunately, even though we can directly observe
the time when a user shares an event, we cannot be aware
of the time when a user decides not to share it. To solve this
problem, given the fact that a user does not share an event, we
use the time when the user shares another event from his/her
friends as the approximated time point when the user decides
not to share the event. With such approximation, we will be
able to provide a mathematical definition of “silence” in the
online social network.

Fig. 2: Identifying Silence Behavior

Discovering Silent Users. Although we can define the silent
state based on the length of time before making a decision,
such post-hoc definition is not useful in real applications, due
to the fact that we often need to identify silent users before
they make decisions. More specifically, since silent users
behave exactly like inactivated users, how to differentiate them
still remains a challenge. During such period, the time when
a user makes its decision is unknown, we therefore cannot
directly adopt the definition of “silence” to discover a silent
user. In this article, we believe the user’s interest towards the
event is a reasonable indicator to differentiate inactivated users
and silent users (in Fig. 2), since silent users may have higher
interests to the event than normal inactivated ones. If we can
develop a method to quantify the interest of a user towards the
event, we may further use these “interest scores” as the feature
to classify whether a user is silent or inactivated. We propose
an iterative algorithm, (Similarity Interest model), based on
similarity measures to achieve that. In the experiments, we
formulate a binary classification problem using two real online
social network datasets to evaluate this algorithm.

Diffusion Model to Capture Silence Behavior. In order
to design a reasonable diffusion model to capture the silence
behavior. There are two questions to be answered: (1) given
an event, how can we judge whether a user is in the silent
state? (2) Knowing a user is in the silent state, how to depict
a silent user’s evolving process? For the first question, instead
of assigning uniform probability for users to become silent,
we can utilize the classification results based on Similarity
Interest model to be more reasonable. For the second question,
we examine the factors causing silent user to transit into
activated or inactivated state later. During our analysis of the
relationship between activated neighbors and a silent user’s
final decision, we reveal a unique phenomenon (Transient In-

fluence Principle) in online social networks. Such phenomenon
is related to, but different from the statistical foundations
in Social Threshold model [6]. Such discovery implies that
when we depict a silent user’s evolving process, some popular

models (Linear Threshold model [1]) are more suitable than
the others (like Voter model [7]). At last, we incorporate
two widely used models (Independent Cascade and Linear
Threshold) to describe the information propagation process
that includes the silent state and its evolving process. The
proposed Diffusion with Silence (DS) model preserves sub-
modularity, which inherits from traditional diffusion models.
Therefore, it guarantees the constant-factor approximation of
greedy algorithm solving problems such as influence maxi-
mization. In order to show the value of the proposed DS model,
we use it and the traditional diffusion models to simulate the
propagative process of a most shared event in our dataset. The
result shows that the proposed DS model is more accurate in
describing the information propagation process.

C. Contributions

Compare to former work on social influence papers, we
summarize our main contributions as follows:

• To the best of our knowledge, we are the first one to
introduce the concept of silence from sociology into
the computational research of online social networks.
Moreover, we provide a formal mathematical definition
of “silence”.

• In order to identify possible silent users before they make
decisions, we try to use user’s interest towards the event
to differentiate silent users from usual inactivated users.
We propose an iterative algorithm, Similarity Interest
model, based on similarity measures to achieve this and
evaluate its performance on two real-world datasets.

• Comparing to offline social networks, we discover a
unique behavior associated with silent users in online
social networks. We use the Transient Influence Principle
to explain the reason of such difference.

• We extend the traditional diffusion model by incorporat-
ing the silent state and its evolving process. The proposed
model combines Similarity Interest model and two tradi-
tional diffusion models, which preserves submodularity.
Additionally, we use experiment on the real event to
demonstrate its value.

The rest of the paper is organized as follows. In Section
2, we propose the definition of silent users, as well as the
Similarity Interest model. In Section 3, we explain our work
to study the evolving process of silent users and the proposed
Transient Influence Principle in online social networks. In Sec-
tion 4, we introduce the proposed diffusion model, Diffusion

with Silence model. Section 5 will present the experimental
results to evaluate our work. Section 6 explains previous work
in related areas. At last, Section 7 offers the conclusion.

II. DEFINITION OF SILENCE AND SIMILARITY INTEREST
MODEL

A. Silent State

Before starting everything, we need to present the formal
definition of the activated state, inactivated state and silent
state:

Definition 2.1: (Activated State) For each user v and any
event e that appears in the sharing lists of v’s neighbors, we



say that the final state of user v to event e is activated, if e

appears in v’s sharing list as well.
Definition 2.2: (Inactivated State) For each user v and any

event e that appears in the sharing lists of v’s neighbors, we
say that the final state of user v to event e is inactivated, if e
does not appear in v’s sharing list.

Definitions 2.1 and 2.2 are very straightforward. We further
denote a user’s response to an event the same as sharing the
event. We define silent users as follows: on the one hand, for
users who are activated to an event, a silent user takes itself
a longer than usual time to respond. On the other hand, for
users who are inactivated to an event, a silent user takes itself
a longer than usual time to change its focus and respond to
another event. Formally, we define the response duration and
focus-changing duration as follows:

Definition 2.3: (Response Duration) Given the fact a
user’s final state to an event is activated, response duration
d is the difference between the first time when a user’s friend
shares it and the first time when the user responds to it.

Definition 2.4: (Focus-changing Duration) Given the fact
a user’s final state to the event is inactivated, focus-changing
duration d

0 is the difference between the first time when a
user’s friend shares it and the first time when the user responds
to another event.

At last, we can have the definition of silent states:
Definition 2.5: (Activated Silent State) For each

user v we construct a response duration vector (RDV)
D

R

={d1, d2, d3...dn}, which includes all of v’s response
durations, where d

i

is the response duration to the i

th event
that v’s final state is activated. Using RDV, we define that
before becoming activated, a user was in the activated silent
state to the event, if the corresponding response duration, say
d, satisfies d > D̄

R

, where D̄

R

=
P

di

n

. Let AS(i) denote
the set of activated silent users to the event i.

Definition 2.6: (Inactivated Silent State) For each user
v we construct a focus-changing duration vector (FDV)
D

F

={d01, d02, d03...d0
n

0}, which includes all of v’s focus-
changing duration, where d

0
i

is the response duration to the i

th

event that v’s final state is inactivated. Using FDV, we define
that before becoming inactivated, a user was in the inactivated
silent state to the event, if the corresponding focus-changing
duration, say d

0, satisfies d

0
> D̄

F

, where D̄

F

=
P

d

0
i

n

0 . Let
IS(i) denote the set of inactivated silent users to the event i.

Definition 2.7: (Silent State) For each event i, the users in
the silent state is defined as: S(i) = AS(i) [ IS(i).

One thing to mention is that if an event is never shared
by the user’s friend, we do not take it into consideration. In
other words, we only consider the internal influence among
users. The external influence is omitted, since it is usually
intractable. From the Def. 2.7, it is obvious to see that during
the hesitation period of a silent user, its behavior is the same
as any other inactivated one. That is why we need an approach
to identify them in advance. As stated previously, our solution
is to use users’ interest to identify possible silent users.

Before introducing the Similarity Interest (SI) model, we
present a topological graph, User-Event Graph in the next
subsection. User-Event graph is an abstract model on which
our study is based. In the subsection C, we are going to

Notation Definition
U set of user nodes
V set of event nodes

EUV {uv|u 2 U, v 2 V }
EUU {uu0|u, u0 2 U}
s(x, y) SimRank score between node x and y

N (x) {y|xy 2 EUV }
i(u, v) SI score representing user u’s interest towards event v

R iteration times of SI algorithm

TABLE I: Notations in Similarity Interest Model

Fig. 3: User-Event Graph

introduce how to use Similarity Interest model to quantify a
user’s interest towards each event. Finally, we will provide
the analysis of the SI model. TABLE I lists all the important
notations we use in this section.

B. User-Event Graph

Definition 2.8: (User-Event Graph) Let U , V denote the
sets of two different types of nodes, which represent the users
and events in an online social network, respectively. In other
words, U = {u|u is a user in the online social network} ,
V = {v|v is an event in the online social network}. E

UV

denotes the set of edges crossing between U and V , while
E

UU

denotes the set of directed edges inside U . Formally,
E

UV

= {uv| if user u shares event v} and E

UU

= {uu0|
if user u

0 follows u}. A User-Event graph is a graph G =
(U, V,E

UV

, E

UU

)
Fig. 3 shows a user-event graph. In such a graph, edges

in the E

UV

have no directions, while the edges in E

UU

are directed, and the direction implies how information flows
between two users. Such difference between E

UV

and E

UU

is due to that a user shares an event is equivalent to the event
shared by the user, yet the relationship between two users are
usually asymmetric. For example, in Fig. 3, u

j

has followed
u

i

, while u

i

does not follow u

j

. In this case, u
j

can receive
influence from u

i

, while u

i

cannot receive influence from u

j

.
This assumption is reasonable, since in a real online social
network, friendship between users are usually directed as well.
For example, in the Twitter network, if user A follows user B,
s/he would see the tweets of B, but user B could not see the
tweets of A unless B follows A as well.

C. Similarity Interest Model

Similarity Interest (SI) model is inspired by the framework
of nearest neighborhood model [8] and used to quantify a
user’s interest towards events. However, being different from
neighborhood model, we cannot observe the user’s initial inter-
est towards the event (a.k.a. user-item rate in the neighborhood
model), and non-iterative neighborhood model fails to depict
the propagative essence of information diffusion. We fix the



first problem by using similarity measurement to approximate
the initial interest and extend the model to an iterative one
to fix the second problem. The results can be used to identify
possible silence behavior in the online social network. In order
to ensure the computational efficiency, the similarity measure
here is only based on the topology of the User-Event Graph,
which does not incorporate other factors (like [9]).

The intuition of the SI model is straightforward: a user’s in-
terest towards an event is determined by the similarity between
this event and his/her previously shared events. Moreover, a
neighbor’s interest towards the same event can also influence
this user, and the power of such influence is determined by
the similarity between the user and its neighbor. One should
notice that such influence can be a cascade, which implies that
an iterative computation must be used in order to obtain the
final interest between a user and an event.

Before the model computes a user’s interest towards events,
we need the similarity between each user pair, as well as
each event pair on G. We use SimRank algorithm [10] to
compute these similarity scores. Obviously, the similarity score
between two nodes of different types should be zero, since
it is unreasonable to talk about the similarity between a
user and an event. In fact, this can naturally be achieved by
removing edges in E

UU

when we compute the similarity score.
After removing E

UU

, G becomes an undirected, bipartite
graph, resulting that the neighborhoods between two nodes
of different types will never have overlap. Therefore, the
similarity score between them will always be zero. As a result,
combining with the SimRank algorithm, the final similarity
s(x, y) between two nodes x and y (x, y 2 U [ V ) equals to
lim

t!+1 s

t

(x, y), while s

t

(x, y) is the t

th iteration value of
s(x, y) and calculated as follows:

s

t

(x, y) =

P
i2N (x),j2N (y) st�1(i, j)

|N (x)||N (y)| (1)

where N (x) = {x0|x0
x 2 E

UV

}. The initial case of s

t

(x, y)
is

s0(x, y) =

(
1 if x = y

0 otherwise

SimRank algorithm will usually stop around 10 to 20
iterations [10]. However, it is still very time consuming if
we compute every pair of users or events. Therefore, similar
to the original SimRank, we also apply pruning during the
computation. When two nodes can only be connected through
a path having more than two edges, we directly assign the
similarity score between them to be zero.

After obtaining similarity scores between users and those
between events, respectively, SI model can start to compute
user u’s interest towards an event v. Unlike measuring the
similarity scores, we take E

UU

into account in this step, since
we need to consider individual’s interest influences his/her
friends. User u’s interest towards event v, which is a score
i(u, v) calculated according to the following equations:

i0(u, v) =

P
vi2N (u) s(v, vi)

|N (u)|

i

t

(u, v) =

P
uui2EUU

i

t�1(ui

, v)s(u, u
i

)
P

uui2EUU
s(u, u

i

)

i(u, v) =
X

t=0...R

i

t

(u, v)

(2)

In Eq. (2), R is the iterative times of the algorithm. Eq. (2)
can be interpreted as follows: a user’s initial interest towards
an event (i0(u, v)) is the normalized sum of the similarity
between this event and the previously shared events of this
user. Moreover, the neighbors can further influence a user’s
interest at step t, which is the normalized weighted sum of
the neighbors’ interest at step t�1. The weight exactly equals
to the similarity of the user and this neighbor. A user’s final
interest towards the event is the sum of each step’s influence
and its initial interest.

The final scores obtained from SI model are used to train
classifiers to differentiate silent cases and inactivated cases.
In the Evaluation section, we demonstrate that the final clas-
sifiers using this feature can achieve an overall accuracy of
around 70%. This is much higher than a random classification
baseline.

D. Analysis of Similarity Interest Model

There are several interesting points that can be raised after
presenting the SI model. The first one is that when a brand
new user or event just joined the network, can the SI model
approximate this new user’s interest or the interest of existing
users towards the new event immediately? Unfortunately, the
answer is negative. We cannot connect the new user/event to
our existing User-Event Graph, if we do not have any previous
historical or related information of them. As a result, we are
unable to use SimRank to compute its similarity with the
other users or events, a.k.a. all the similarity scores related
to this new user or event will always be zero. However, if we
can approximate these similarity scores by using other related
features rather than topological information, we will be able to
apply the SI model to further estimate the “interest”. By only
using the topological features, SI model is used to approximate
the interest of existing users towards existing events.

Secondly, one may ask whether we can use other methods
to compute similarity scores instead of SimRank. In fact,
the Similarity Interest Model we are presenting here is a
framework, so the definition of “similarity” may vary from
different perspectives. However, the fundamental idea behind
the SI model is well described in our model: a user tends
to share the events, which are similar to its previous shared
events. Furthermore, its interest towards an event can influence
its neighbors’ interests.

Thirdly, i
t

(u, v) is usually a monotonically decreasing func-
tion in term of t. This actually has a real world meaning: the
influence of a user’s interest will decay with the increase of
the steps. However, mathematically, we can only prove that
i

t

(u, v) is a monotonic function with mathematical induction.
Unless we make a strict assumption, such as that i1(u, v) �
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Fig. 4: X axis is the proportion of activated neighbors for
silent users. Y axis shows the probability of silent users

becoming activated (the proportion of activated silent users
among all silent users who have the same proportion of
activated neighbors). Missing points are filled by linear

interpolation.

i0(u, v) holds for any u and v, we will be unable to prove that
i

t

(u, v) is always monotonically decreasing. Therefore, in real
world application, we usually use a exponential dampening
factor to force i

t

(u, v) decreases with the increment of t. We
do not apply it here, since we found that in our experiment,
most of i

t

(u, v) are already monotonically decreasing, and the
the results obtained by adding such dampening factor are very
similar to the original one.

III. TRANSIENT INFLUENCE AND SILENCE EVOLUTION

After using the SI model to identify silent cases, we attempt
to address the second question that bothers us: except for
interest, what will further influence a silent user’s final state?
We believe that one of the reasons causing them silence
is the insufficient number of activated neighbors to draw
their attentions. In other words, will the number of activated
neighbors influence the activation probability of silent users?
We use statistical study and experiment based on our datasets
to find the answer.

Intuitively, with the increase of the proportion of activated
neighbors, the activated probability of silent users should
also increase. This is consistent with models and findings
in sociology [4], [6]. Inspired by these previous work, we
conduct a statistical study on the silent cases from two datasets
(the details of datasets will be introduced in the Evaluation
section). We draw two figures to show the relation between the
proportion of activated neighbors and the probability of a silent
user to become activated in Fig. 4. Surprisingly, we can see
that the curves are very unstable (especially in the first dataset).
These are different from the same type of curves in sociology,
which implies that in our settings, online social networks may
be different from traditional real social networks.

We then draw the same figures on these two datasets. Instead
of indicating the proportion of activated neighbors, X axis
here means the absolute number of activated neighbors. The
results are shown in Fig. 5. It is obvious to see that these
two curves are much smoother and can serve a better job to
show the relationship between activated neighbors and a silent
user’s activation probability. We use the following principle to
explain such phenomenon.

Definition 3.1: (Transient Influence Principle) In online
social networks, the influence of an activated neighbor towards
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Fig. 5: X axis is the number of activated neighbors for silent
users. Y axis shows the probability of silent users becoming
activated (the proportion of activated silent users among all

silent users who have the same proportion of activated
neighbors). Missing points are filled by linear interpolation.

a silent user is transient, i.e. the accommodated influence
from neighbors depends upon the total number of activated
neighbors instead of the fraction of activated neighbors.

In real-world social networks, the contacts between two
individuals are usually multiple times. It implies that a
silent/inactivated user’s exposure times to an event are propor-
tional to the percentage of activated neighbors. For example,
the spread of virus is a perfect example to illustrate this. Once
a person becomes a virus carrier, s/he will try to infect his/her
friend every time when they make contact until his/her friend
becomes a virus carrier as well. However, in online social
networks, when an individual becomes activated to an event,
s/he usually only impact his/her friends once. For example,
if someone posted a new event in Twitter, it usually only
appeared in the updated feed list of his/her friends for a short
time and drew their attention once. Then it will be quickly
overwhelmed by other newer feeds. This explains that the
influence of an activated neighbor to a silent user in online
social networks is transient. As a result, the exposure times to
the event are approximately the same to the exact number of
activated neighbors. Therefore, comparing to the proportion of
activated neighbors, the exact number of activated neighbors
are more related to the activation probability.

The Transient Influence Principle is important in our re-
search for two reasons: (1) it instructs us what feature should
be chosen to build the classifiers in the next paragraph to
further study the factor influencing a silent’s user’s evolving
process; (2) it also gives us the hint of choosing the appropriate
model to depict silent user’s behavior when we design our
diffusion model in the Section 4.

In order to further demonstrate the influence of number
of activated neighbors towards a silent user’s final decision,
we apply classification experiments on the datasets. We use
the decision tree [11] algorithm to test whether the generated
decision tree supports us. Intuitively, because of the Transient
Influence Principle, we prefer to use the exact number instead
of the fraction of activated neighbors as a feature to train
the classifiers to predict the final state of a silent user.
However, in order to be more persuasive, we also trained
the classifiers based on the proportion of activated neighbors,
and the prediction accuracy is lower than the ones using the
number of activated neighbors. Therefore, the final reported
decision trees are based on the exact number of activated



neighbors. More details will be presented in the Evaluation
section.

IV. DIFFUSION WITH SILENCE MODEL

With the help of the previous section’s work, we can face
our final task: how to extend the traditional diffusion models so
that they can depict the silent user’s behavior? In this section,
we firstly introduce our Diffusion with Silence (DS) model and
then present the analysis to demonstrate both of its practical
and theoretical value.

A. Definition of Diffusion with Silence Model and its Practical

Value

Our proposed diffusion model, Diffusion with Silence (DS)

model, is based on the Independent Cascade (IC) model [1]
supplemented by the Linear Threashold (LT) model [1]. DS
model focuses on how to depict the silence evolution process,
which is neglected by traditional diffusion models. The exten-
sion has two different questions need to be answered: how to
identify silent users at first and what extra factors can motivate
silent users turning into activated ones. For the first question,
we can utilize the results generated by Similarity Interest
model. As for the second one, according to the findings in the
Section 3, it is reasonable if we combine LT model to simulate
the behavior of silent users. Due to the introduced Transient
Influence Principle, we do not incorporate other models like
Voter model [7] to simulate such behavior. More specifically,
in the Voter model, a user’s activation probability is propor-
tional to the faction of its activated neighbors. However, in the
LT model, a user’s activation probability is directly related to
the number of activated neighbors. As a result, our model is
described as follows.

Diffusion with Silence model: Before the information
propagation starts, each user v to the event e can have two
different labels: silent or inactivated. The label of v to e,
is determined by the classification result using the SI score
i(v, e). The classifier is trained on all SI scores except i(v, e)
and used to predict the label of v to e according to i(v, e).
Furthermore, there is an edge between every two connected
users v and w, and the edge has two different weight b

v,w

(b
v,w

� 0,
P

v

b

v,w

 1) and p

v,w

(0  p

v,w

 1). If v

becomes activated at time step t, it will be given one chance to
try to activate each of its non-activated (including inactivated
and silent) neighbor w. The probability to succeed equals to
p

v,w

. If the trial is successful, w will become activated as well
at the next time step, which is t+1. Otherwise, w stays in the
same state in t+1. If the neighbor w0 is a silent user, despite
that v can try to activate w

0 directly, v will also contribute
b

v,w

0 to s(w0). s(w0) is the accumulated influence from all
w’s activated neighbors. Formally, s(w0) =

P
u2A(w0) bu,w0

and A(w0) = {u|u is an activated neighbor of w

0}. Once
s(w0) � ✓

w

0 , w0 will also be activated at time step t+ 1. ✓
w

0

is a real number in (0,1] assigned to w

0. In the end, all the
remaining silent nodes become inactivated.

We use Fig. 6 to explain the Diffusion with Silence model
more vividly. In these figures, red nodes are the activated

(a) Initial Situation (b) Information Propagation to Inacti-
vated User

(c) Information Propagation to
Silent User

(d) The end

Fig. 6: Diffusion with Silence Model

nodes, white ones are silent nodes, and black ones are in-
activated nodes. Fig. 6(a) shows that before simulating an
influence process, these three types of nodes all exist. Fig.
6(b) demonstrates that an inactivated user can only be directly
activated by another active user with a certain probability. On
the other hand, in Fig. 6(c), a silent user can become activated
in two situations: directly activated by active neighbors or
s(w0) � ✓

w

0 , where s(w0) is directly dependent on the number
of activated neighbors around w

0. As shown in Fig. 6(d), in
the end of propagation process, there are no more silent users,
since they either become activated (v0) or inactivated (v).

Diffusion with Silence (DS) model combines the IC model
and the LT model in a natural way. This model describes that
a silent user can be activated through two different ways.
Firstly, it can be immediately activated by its surrounding
activated neighbors’ attempts. In addition, it can also become
activated directly under the influence of the number of its
activated neighbors. The former process is well depicted by
the Independent Cascade part of our model, while the second
case is modeled by the Linear Threshold part.

Another thing needs to be mentioned is that the value of
each p

v,w

, b

v,w

0 and ✓

w

0 is not directly defined by the DS
model. This is similar to the definition of the original IC model
and LT model. In [1], p

v,w

, b
v,w

0 and ✓

w

0 are all dependent
on the history of the successful propagative process related to
these nodes. We use the same definition of p

v,w

, b
v,w

0 and ✓

w

0

in the proposed DS model.
The practical value behind DS model is that unlike the

original IC and LT model, we will be able to identify the
silent users according to their interest towards the event before
simulating an event’s propagation process. Actually, these
silent users usually have higher interest score (related results
are demonstrated in Evaluation section), and they are directly
influenced by the increasing number of activated neighbors
around them. Therefore, they have a higher chance to be
activated than other usual users. As a result, DS model should
depict the influence process in a more accurate way than the



IC or LT model. In order to show that, we simulate a real
event’s propagation process, which has the most shared users
in our dataset. The experiment show that starting from the
same seed set (early shared people), the final activated set
generated by DS has higher precision and recall than the
activated set generated by IC and LT. More details of this
case study will be presented in the Evaluation section.

B. Analysis of the Diffusion with Silence Model and its The-

oretical Value

One of the best properties DS model has is that it pre-
serves the submodularity, which the original IC and LT model
have. Submodularity is important, since it guarantees that
when solving the influence maximization problem on the DS
model, the greedy algorithm will always have a constant-factor
approximation [1]. Such property let the DS model can be
directly used in the influence maximization problem. Formally,
we present submodularity as follows:

Definition 4.1: If we have a function f(⇤) which maps from
a set to a real number, f(⇤) has submodularity property if and
only if for any sets S, T , S ✓ T and any node v, the following
equation always holds: f(S[{v})�f(S) � f(T[{v})�f(T )

The reason why the submodularity is important is that for
problems like social influence maximization, it can guarantee
that the result of the greedy algorithm has a lower bound of
(1� 1/e) of the optimal solution [1].

In order to prove DS model preserves submodularity, we
first need to prove that it is equivalent to two sequential
processes. Moreover, the second process is dependent on the
first one and they are running on two different networks.
Formally, we have:

Lemma 1: Diffusion with Silence model is equivalent

to two sequential and dependent parts. First part is a

Independent Cascade model running on a network having

the same structure as the Diffusion with Silence model does.

And the second part is a Linear Threshold model running

on a derived subnetwork.

Proof: Firstly, let us define G = (V,E) is the online
social network used in DS model, where V is the set of
nodes representing the users, and E is the set of edges
representing the connections among users. Furthermore, we
define G

0 = (V 0
, E

0), where V

0 = {v0|v0 is a silent user}[
{u0|v0 is a silent user and u

0
v

0 2 E} and E

0 = {u0
v

0|u0
v

0 2
E, u

0 2 V

0
, v

0 2 V

0
, and v

0
is a silent user}. To put it in

a simpler way, V 0 contains all silent users and their neighbors
in G, while E

0 contains each edge between one silent user and
one of its neighbors. We define that the direction of edge in E

and E

0 is exactly the direction how the information propagate.
For example, uv 2 E means that v “follows” u so that v

can receive influence from u. We should notice that given a
set of initial activated users, S, the information propagation
process depicted by the original DS model is equivalent to
the following processes: (1) Running IC model on G started
from S, and the resulting set of final activated users is S

0.
(2) Running LT model on G

0 started from S

0 \ V

0 , and
the resulting set of final activated users is S

00. (3) The final
activated users are S

0 [ S

00.

We believe that after we derived G

0 from G, it is straight-
forward to see that the DS model is equivalent to the above
processes. This is because that in the DS model, LT part only
works on silent users and their neighbors. In other words, we
are giving a “second chance” for those silent users to become
activated. Therefore, it is natural to extract this process from
DS model. Of course, after such extraction, the remaining part
is exactly the original IC model.

Theorem 1: (Submodularity) Diffusion with Silence
model preserves submodularity property.

Proof: In order to prove this theorem, let us first define
�(⇤) as a function, which maps a set of nodes to a real
number. More specifically, �(S) is the expected number of
activated users at the end of influence process, given S as the
set of initial activated users. Our job is to prove that under
the DS model, �(⇤) has the submodularity property. To avoid
confusion, let us denote �

DS

(⇤) as the function on the DS
model, while �

IC

(⇤) is on the IC model and �

LT

(⇤) is on the
LT model. Then we have:
�

DS

(S [ {v})��

DS

(S) = (�
IC

(S [ {v})� �

IC

(S))+

(�
LT

((S0 \ V

0) [ {v})� �

LT

(S0 \ V

0))
(3)

Eq. (3) holds because of Lemma 1. From Lemma 1, we
can get that the margin gain of adding a node v into the
initial set S is always equal to the sum of the margin gains
of the corresponding IC model and LT model. We should also
notice that for any S ✓ T , we have S

0 ✓ T

0. As same as the
previous definition, S0 and T

0 are the final activated sets from
the IC model starting from the initial set S and T , respectively.
Therefore, we also have S

0\V

0 ✓ T

0\V

0. The submodularity
of �

IC

(⇤) and �

LT

(⇤) have already been proved in [1]. As a
result, we have:

�

IC

(S [ {v})� �

IC

(S) � �

IC

(T [ {v})� �

IC

(T )

and
�

LT

((S0 \ V

0) [ {v})� �

LT

(S0 \ V

0) �
�

LT

((T 0 \ V

0) [ {v})� �

LT

(T 0 \ V

0)

Thus, we have �

DS

(S[{v})��

DS

(S) � �

DS

(T [{v})�
�

DS

(T ). The DS model therefore preserves the submodularity.

V. EVALUATION

In this section, we present the experiment results obtained
from two real-world datasets. These two datasets are generated
from the raw data we crawled from the Twitter network.

A. Description of Datasets

Our datasets are retrieved through API provided by Twitter.
The statistics of them are presented in Table II. The first
network has users who followed the news account of a
university. Unsurprisingly, most of the users are the current
students, employees and alumni of the university. The second
network contains all the users that the Twitter’s official account



Dataset1 Dataset2

Users 1,113 748
Tweets 17,075 14,432

Friendship connections 10,546 53,639
Silent User-Event Pairs 103,357 905,500

(759 activated silent) (3,892 activated silent)
Activated User-Event Pairs 863 10,021

(excluded activated silent pairs)
Inactivated User-Event Pairs 226,515 2,689,198

(excluded inactivated silent pairs)

TABLE II: Statistical Results of Datasets

has followed. Most of these users are the employees or closely
related people to Twitter company. Taking a look at the number
of edges between these users, we can see the connections
among them are very dense. In addition to the relationship
network, we also collect all the tweets they have published in
the year of 2011 and the time stamps associated with them.

In order to check how an event propagates through the
network, we use the URL at the end of each tweet as the
identifier of the tweet’s content. This is the same as the method
used in [12]. In other words, we consider if two tweets have the
same URL, they are both talking about the same event. Those
tweets containing a URL that only appears in the dataset once
are removed, since there is no successful propagation related
to them. In the first dataset, we have 1,113 users and 17,075
tweets. As for the second one, we have 748 users and 14,432
tweets.

B. Case Study of Diffusion with Silence Model

First of all, let us use an experiment on the datasets to
show that the that the proposed Diffusion with Silence model
can depict the real-world information propagation with higher
accuracy than the Independent Cascade model and Linear
Threshold model. We use the three models to simulate the
propagation process of a real event and compare the results.
In order to include as many users as possible, we select an
event having the most shared users in our dataset and use
different ratio of the first shared users as initial seeds. The
event we have chosen is shared by several hundreds of users
in our first dataset. In the experiment, we use the first 10,
15, 20, 25, 30 users who shared this event as the different
initial seed set to generate the cascading process through the
three different models, separately. For each seed set and each
model, we compare the generated set of final activated users
with the real set of activated users in the network. The results
presented here are the average ones of 50 times simulations.

Of course, before the simulation, we need to first generate
each p

v,w

for the IC model, and b

v,w

, ✓
v

for the LT model.
Firstly, according to the original models described in [1], we
set p

v,w

= 1�(1�r

v,w

)t, where r

v,w

is a randomly generated
small number between (0, 0.005], and t is the number of
former successful transitions from v to w. According to the
definition of p

v,w

, if node v has activated w more often in
the history, node v can have more powerful influence on w,
which means its trial to activate w in the future will have
a higher probability to succeed. The interval that we use to
generate r

v,w

is the one that can generate the best result that
the IC model can reach among all the different ranges we

have tried. Nonetheless, since the DS model uses the same
p

v,w

generated in this step, the range of r
v,w

is not relevant to
the comparing result of the DS model and IC model. Secondly,
b

v,w

= 1/|N (w)|, where N (w) is the set of neighbor w

has followed. Under this definition, we consider each person
followed by w has the same impact on w. Furthermore, ✓

v

is randomly generated from (0,1]. Similarly, we can also
change the values of b

v,w

and ✓

v

, but since the DS model
uses the same b

v,w

and ✓

v

, the changes will not influence
the comparison results. At last, the DS model is generated
according to our description in Section 4. Whether a user is
in the silent state at the beginning is classified by the C4.5
algorithm using the Similarity Interest score. The p

v,w

, b
v,w

and ✓

v

are the same as those in the IC and LT.
Our comparison is on the quality of the generated final

activated users starting from different initial seed set and under
the simulation of three diffusion models. We compare the
precision and recall of each set of generated activated users
given the ground truth of the final activated users. According
to the detailed results shown in Table III, starting from every
initial seed set, the DS model always generate final activated
users with the highest precision and recall. This is especially
the case for smaller number of initial seeds. For example, with
10 seeds, the recall under DS is 25% higher than the IC model
and 64% higher than the LT model. The reason behind this
is already explained in the previous section: the silent user
identified by the DS model has a potential interest towards
the event, so that they can be more easily activated than
normal users. The improvement of DS model comes from two
parts: SI model to identify silent cases, and transient influence
principle to discover that silent users can be directly activated
because of the number of its activated neighbors. Therefore,
we further introduce the experiments to evaluate these two
parts separately.

C. Evaluation of Similarity Interest Model

In order to evaluate whether the SI model can be used to
identify silent cases, we train classifiers using i(u, v) obtained
by the SI model as a feature to predict the label of user-
event pair u, v (silent or inactivated). Obviously, we need to
first extract two kinds of user-event pairs: silent user-event
pairs according to Def. 2.7 and inactivated user-event pairs
excluding inactivated silent case (for simplicity, we refer them
as inactivated user-event pairs later). It is straightforward to get
all silent user-events, since we already have the timestamp of
each tweet. As for the inactivated cases, we initially extract all
the user-event pairs according to Def. 2.2, and then exclude
the inactivated silent pairs among them according to Def.
2.6. As shown in Table II, the number of activated silent,
inactivated silent, inactivated cases, and activated cases are
highly unbalanced. This is caused by a common phenomenon
in the online social network datasets, which is the observable
successful propagations among users are rare comparing to
the unsuccessful ones. Therefore, in order to demonstrate
reasonable prediction results, we have to control the number
of the three types of cases to prevent silent cases being
overwhelmed by inactivated ones or the activated silent cases



10 Seeds 15 Seeds 20 Seeds 25 Seeds 30 Seeds
Precsion Recall Precsion Recall Precsion Recall Precsion Recall Precsion Recall

DS model 0.481 0.512 0.466 0.496 0.486 0.523 0.485 0.571 0.478 0.534
IC model 0.440 0.409 0.439 0.429 0.447 0.442 0.452 0.454 0.446 0.459
LT model 0.379 0.312 0.382 0.332 0.405 0.382 0.417 0.386 0.409 0.486

TABLE III: Comparison Results of the Final Activated Sets of Different Diffusion Models

Precision Recall F-Measure

Dataset #1 #2 #1 #2 #1 #2

Silent cases 0.829 0.89 0.533 0.445 0.649 0.593
Inactivated cases 0.631 0.629 0.879 0.945 0.735 0.755
Weighted Average 0.735 0.76 0.698 0.694 0.69 0.674

TABLE IV: Detailed Prediction Results of Two Datasets
Dataset 1 Dataset 2

Mean Median Mean Median
Silent cases 0.968 0.337 0.214 0.173

Inactivated cases 0.171 0.083 0.138 0.137

TABLE V: Statistics of SI Scores of the Datasets

being overwhelmed by the inactivated silent ones. Thus, we
use down-sampling to force the number of inactivated silent
user-event pairs to be approximately the same as activated
silent ones. Similarly, we down sample the inactivated user-
event pairs to be approximately equal to the silent ones (union
of inactivated and activated silent cases).

In the experiment, we set R, the iterations of Similarity
Interest algorithm, to 30, since the results obtained by in-
creasing R are similar to what we present here. We use the
decision tree (C4.5) and the obtained SI score as the sole
feature to predict the label of user-event pairs. Since we do
not have any previous models to compare with, we use the
random classifier as the baseline. The results are obtained by
using 10-fold cross validation, and the accuracy in the first
Dataset is 69.77%, while 69.43% in the second dataset. Other
details of this prediction task are shown in Table IV. From
these details, we can see that the weighted precisions, recalls
and F-Measures are all around 70%. Moreover, the results
demonstrate that we obtain higher precision than recall for the
silent cases. However, the recall is higher than the precision
for inactivated ones.

Furthermore, we draw the generated decision trees from
these two datasets in Fig. 7. By looking at the details in these
two trees, we find that among all the instances contained in the
right node (who has higher SI score) of Fig. 7(a), 85.3% are
silent user-event pairs. Similarly, 91% of the cases contained
in the rightmost node (who has highest SI score) of Fig. 7(b)
are silent cases. Together with the statistical results in Table
V, we can conclude that user’s interest towards the event in
the silent case is usually higher than the one in the inactivated
case. This confirms the intuition that silent users may be more
interested to the incident than normal inactivated users.

D. Activated Neighbors and Silence Evolution

As introduced in the Section 3, other than the intrinsic
interest of the user towards the event, another factor motivating
a silent user to become activated is the increasing number of
the activated neighbors. In addition to the supporting statistical
result in Section 3, we use decision trees generated by a binary
classification task to further demonstrate that. In the datasets of

(a) Dataset 1 (b) Dataset 2

Fig. 7: Decision Tree Based on SI Score

(a) Dataset 1 (b) Dataset 2

Fig. 8: Decision Tree Based on Activated Neighbors’
Number

previous experiments to evaluate Similarity Interest model, we
already have the balanced number of activated silent user-event
pairs and inactivated silent ones. Actually, these two types of
cases are silent user-event pairs ending in different final states
(activated or inactivated) after the evolving process. Therefore,
we can directly use activated silent state and inactivated silent
state as the two different labels to formulate the classification
problem. Furthermore, according to the Transient Influence
Principle, we use the number of activated neighbors instead of
the proportion of activated neighbors (the prediction accuracy
is much lower) as the sole feature to train the decision tree.

The values of accuracy of both datasets in this prediction
task are around 70%, and the decision trees are drawn in Fig.
8. One should notice that the reason we do not have a branch
of activated neighbors equaling to 0 in Fig. 8 is that all the
events here are shared by at least one of user’s neighbors.
This is because of the data here are generated according to
the definitions in Section 2. The generated decision tree in
dataset 1 shows that 86.9% of the silent case in the rightmost
leaf (has the largest number of activated neighbors) will transit
to activated state later on, and the percentage in the second
dataset is 81.4%. This confirms that the number of activated
neighbors is one of the motivations that the silent user becomes
activated.

VI. RELATED WORK

Silence is a behavior that has been widely studied in man-
agement research and other areas [4], [5]. Some researchers
from these fields are very interested in the consequences of an
individual’s silence behavior [5], while articles like [4] focus
on the reason why people would choose to remain silence.



However, we have found no paper in the data mining area
explicitly modeling this behavior when describing the social
influence process. Different from the empirical studies in [4]
and [5], we focus on providing the quantifiable definition of
“silence” and how to incorporate the silent concept into social
influence process.

To identify the silence behavior in online social networks,
we need an algorithm to approximate the user’s interest to-
wards an event. Collaborative filtering is a major area that stud-
ies event recommendation for users. Generally speaking, these
algorithms can mainly be divided into user-based one [13],
item-based one [14], and the combination of them [15].
Unfortunately, none of them is suitable for our task because
these models do not contain the relationships among users.
Unlike these studies, Nearest Neighborhood model proposed
in [8] utilized rates from friends to predict a user’s own rate
to the same item. Its non-iterative calculation is suitable to
predict the rate, but it can not be directly applied in our setting.
This is due to that the cascading essence of interest diffusion
process can not be captured. Inspired by the neighborhood
model, we design an iterative algorithm named Similarity

Interest (SI) model to depict the user’s interest towards
the event, and the similarities in this model are computed by
SimRank [10].

The social influence process is a popular topic that has been
studied for many years. It inspired many valuable applications,
such as viral marketing [16]. Social Influence Maximization
problem is the key algorithmic problem behind the viral mar-
keting, which has been shown that several greedy or heuristic
methods can provide an approximately good result [1], [17],
[18]. The most widely used diffusion model in solving this
problem is Independent Cascade (IC) and Linear Threshold

(LT) [1]. However, their generality will not be able to depict
specific real-world phenomena, such as silence behavior. As
complementary work, there are several papers trying to ex-
tend these models to describe more specific phenomena in
the influence process. The model from [19] can depict the
responding delay after one user is activated by its neighbors.
In this model, after each user is activated, it will have a delay
of time t to actually respond to the event. However, this model
is unsuitable to depict the silence behavior, since all these
”delayed” users will still become activated later. Silent users,
on the other hand, can turn into inactivated state. We fix this
problem by introducing an extra silent state into diffusion
model and use the combination of the SI model, IC model,
and LT model to capture the silent user’s evolving process.

VII. CONCLUSION

In this paper, we introduce the silence concept from social
science into computational area by providing a mathematical
definition of “silence”. Furthermore, in order to extend dif-
fusion models, we accomplish two prerequisite tasks: silent
user identification and examination of silent users evolving
process. To accomplish the first task, we design the Similarity
Interest (SI) Model to estimate the interest of a user towards
the event and further use it to discover silent users. In order to
demonstrate how Similarity Interest Model identifies possible

silence behavior, we conduct experiments on two real-world
datasets. As for the second task, we use both statistical and
experimental results to show that the number of activated
neighbors can be a motivation to increase the activation proba-
bility of silent users. At last, based on the experimental studies
for these two tasks, we extend the traditional diffusion models.
The proposed Diffusion with Silence (DS) model, includes
an extra silent state and incorporates the Similarity Interest
model, Independent Cascade (IC) model and Linear Threshold
model. The proposed DS model preserves the submodularity
inherited from the IC and LT models. To show that it depicts
the actual social influence process more precisely, we use the
DS model and two baseline models (IC and LT) to simulate the
propagation process of a most shared real event in our dataset.
Starting from a same seed set, the set of final activated users
generated by DS model has a higher precision and recall.
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