
Enterprise 2.0 in Action: Potentials for Improvement
of Awareness Support in Enterprises

Hilda Tellioğlu
Vienna University of Technology

Institute of Design and Assessment of Technology
Multidisciplinary Design Group

Vienna, Austria
Email: hilda.tellioglu@tuwien.ac.at

Simon Diesenreiter
Vienna University of Technology

Institute of Design and Assessment of Technology
Multidisciplinary Design Group

Vienna, Austria
Email: simon@backlab.at

Abstract—In this paper we investigate conceptually and em-
pirically in a software development company whether Enterprise
2.0 components contain awareness mechanisms. As a result,
we introduce additional mechanisms to take the first step to
improve awareness in complex cooperative work environments.
After a short introduction to the concepts awareness, awareness
mechanisms, and Enterprise 2.0 we describe a case study to find
out patterns of awareness in collaborative work processes and the
missing awareness support. We approach the problem by trying
to understand which Enterprise 2.0 components are related to
which awareness mechanisms, and to which degree Enterprise
2.0 fulfills awareness requirements of complex collaborative work.
Our study results in the identification of two different categories:
system- and user-related awareness mechanisms. Search, exten-
sions, and signals – supporting system-related mechanisms – are
the most common components that are already established by
different tools. Authoring, links, and tags – assisting user-related
mechanisms – on the other hand, have not been utilized yet.
They are very powerful to create context and capture collective
knowledge. To support this, we introduce additional awareness
mechanisms like enter, annotate, rate, share, reference, select,
mark, and label, to show how these three components can be
implemented in enterprises. By doing so, we present the potential
of Enterprise 2.0 to support awareness in cooperative work. The
new map of awareness mechanisms to Enterprise 2.0 inform not
only the developers of tools supporting (aware) collaboration but
also practitioners working in teams to define their requirements
to such tools.

Keywords–Awareness; Enterprise 2.0; distributed software de-
velopment; cooperative work; CSCW

I. INTRODUCTION

Enterprise 2.0 was introduced by McAfee to show how
Web 2.0 technologies can be used in enterprises [21]. He fo-
cused on how to make work practices and efforts of knowledge
workers visible. When introduced, the Web 2.0 technologies
have fascinated almost everyone but unfortunately not the
enterprises. To take these emerging technologies (or also
any other) seriously, companies needed real case studies, in
which the application of Web 2.0 has been already studied
and analyzed from such perspectives which are relevant for
enterprises, like business, cost and benefit factors as well
as security, consistency, or scalability, to name some. They
also needed best practice descriptions and guidelines showing
how to introduce and apply Web 2.0 technologies in their
organization.

How was Enterprise 2.0 discussed and studied in other
areas? In Computer Supported Cooperative Work (CSCW)
research Enterprise 2.0 was not really studied, understood, or
accepted. Hence, there are no in depth qualitative analysis on
Enterprise 2.0 in work context and its impact on work. Studies
on social network systems (SNS), especially about Facebook
and Twitter, on the other hand, exist in each direction, detail,
quality, and format. In the meanwhile there are even qualitative
studies available dealing with their application and real use.
In the last years, some managerial journals published new
results of applied Enterprise 2.0, some related books have been
published with an emphasis on providing how to guidelines
for management in enterprises. However, they did not really
exhaustively and qualitatively describe how and in which areas
such technologies are more efficient and of additional value
to cooperative work. The research literature still lacks of in-
depth studies and analysis of cooperation processes in complex
development environments. We claim that to better understand
the real use of Web 2.0 technologies in enterprises, we need
to investigate these settings by basing the analysis on central
concepts of CSCW, like awareness, trust, openness, sharing,
etc. And, exactly that investigation is what we are presenting
in this paper. Here we only focus on the aspects of awareness.

Enterprise 2.0 is a big chance for enterprises to learn from
successful collaboration and cooperation patterns shown by
Web 2.0 platforms [20]. We claim that Enterprise 2.0 basically
builds a bridge between SNS and groupware. Using Enterprise
2.0 we can start applying SNS components in enterprises to
meet groupware requirements. We can start to think about links
and transitions between person-oriented and group-oriented
communication, bottom-up and top-down implementation, vol-
untary and enforced participation, co-evolved conventions and
pre-planned ways of group work, large number of users with
no project limitation and small number of users over a limited
period of time. By doing so, we can make use of Enterprise
2.0 components as a guiding template for analysis of SNS
mechanisms and technologies in groupware infrastructures.
This helps in identification of additional enterprise specific
mechanisms, probably not considered in studies on SNS so
far.

Most of the enterprises do have an Intranet and special so-
lutions for their business and organization already established
for a very long time now. Convertino et al. [5] studied tools
and practices like the generation, sharing, and organizing con-

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254066



tent with Wikis. The so called collective intelligence contain
processes that allow users to adapt and control their social,
informational, and physical environment. Studies tell that Web
2.0 tools are mainly used for personal purposes. However, the
top-down structures of enterprises in compare to bottom-up
organization of personal environments of single persons work-
ing in these enterprises facilitate completely different types of
interactions when it comes to apply Web 2.0 technologies for
exchange and collaboration. Skeptical managers refused for a
very long time to include such SNS into their Intranet. They
were not convinced of its relevance, efficiency, and focus. SNS
would rather distract employees during work by occupying
their costly time for nothing without offering enough benefit
for the company as well as create a mechanism for leaking
confidential information about the company or its products or
services.

In the meantime Web 2.0 technologies have got the at-
tention of enterprises. Companies try to find incentives to
motivate their employees to participate in enterprise SNS.
Farzan et al. [9] developed a particular participation incentive
mechanism for employees at IBM to reward their commenting
behavior. The impact of a points-based system on motivation
was definitively high. Later on Thom et al. [30] studied the
application of the same awarding scheme on contributions
to lists, photos, and comments. Morrison [22] suggested that
geographically distant members of an enterprise use SNS as a
way to learn about their organizational culture and build one’s
reputation.

Given the fact, that Web 2.0 technologies and mechanisms
are well-studied and -understood by researchers and software
developers, now it is the time to map these mechanisms to
concepts relevant for enterprises, like awareness, efficiency,
organizational learning, knowledge management, trust, coop-
eration support, etc. This makes Enterprise 2.0 accessible
for managers and so for enterprises. In this paper, we try
to achieve this goal by focusing on awareness mechanisms
related to Enterprise 2.0 on an example of distributed software
development (DSD).

Awareness mechanisms in the CSCW literature mainly
focus on system-related functions [28] [29]. They do not
consider additional possibilities given if users become part
of the system, like in the prosumer approach introduced by
Web 2.0. This paper shows how user interactions and user
involvement can improve awareness in enterprises. Based on
our in depth study in a software development company and the
literature research on concepts of Enterprise 2.0 and awareness
in the area of CSCW, we identified awareness mechanisms in
the utilization of tools. We could also identify new areas where
such support was lacking. We analyzed our findings with avail-
able state of the art literature about awareness and introduced
new awareness mechanisms that are embedded in some of the
Enterprise 2.0 components. We present our study and analysis
by putting our new ideas in a map (see Table I). In this map, we
show how awareness mechanisms including the new ones we
introduced are related to Enterprise 2.0 components. We claim
that this enhancement will inform not only the developers of
tools supporting (aware) collaboration but also practitioners
working in teams to define their requirements to such tools.

In the next section, we summarize the familiar awareness
mechanisms from the literature of CSCW to create a ground

for our case investigations. In Section III we present our
case – the setting, the processes, and the relevant tools. We
describe where we found Enterprise 2.0 components in our
case and what awareness mechanisms these contained. Finally
in Section IV we present our results in detail. We propose three
aspects – authoring, links, and tags – to enhance awareness
mechanisms provided by Enterprise 2.0 so far. Additionally
we map awareness mechanisms to Enterprise 2.0 components,
before we conclude the paper.

II. FAMILIAR AWARENESS MECHANISMS

In this section we want to introduce briefly which aware-
ness mechanisms we are dealing with in our analysis. We
mainly refer to concepts from the CSCW literature because
our focus is the collaboration support by computer systems.
Awareness can be defined as providing a context for team
members’ activities in order to understand each others work
[4]. It can be also considered as a mechanism to enhance
coordination and efficiency in team work [15]. Stretching its
definition, it has also been seen as an attribute of action, doing
it “heedfully, competently, mindfully, accountably” [26].

In coordination research in distributed software develop-
ment, awareness has been studied as a concept by considering
several aspects [27], like information regarding the tasks
of a project [10] [16], information on source code version
management repository [17], social network analysis [25],
visualization techniques [31], search for experts [8], tracking
artifacts and relationships [18], quality metrics results [24], to
mention few. There is still research needed on awareness based
on recent information [23], the use of social networks in DSD,
especially to maintain awareness on emerging and unplanned
interactions. In this paper, we try to focus on the latter by
using the concept of Enterprise 2.0 in DSD.

If we focus on group work dynamics during collaboration
we can identify five awareness types [23, p.511f]: informal
[12], group-structural [14], social [12], workspace [13], and
context awareness [32]. Identity is the most studied element
for workspace awareness, followed by (past) change awareness
with history tracking or real time changes, objects used,
and actions made [27, p.137]. Presence has been found as
important for informal awareness, availability feature for social
awareness, and roles and responsibilities for group structural
awareness in DSD.

When considering awareness as a mechanism to facilitate
its identification in Enterprise 2.0 components we have to
look at the concept of awareness from a different perspective,
namely as a mechanism with several elements enabling data
exchange (but not completely in the sense of [15]). First of
all we have to differentiate between the creation, share, and
presentation of awareness information [11]. In this context the
modes of active, passive, implicit, and explicit become relevant
because they have impact on the people and the systems
involved that deal with awareness information. If humans
create information they enter data, e.g., a status, actively into
a system. If data entry happens without involving a human
interaction, like by a sensor, the data is gathered passively.
The same differentiation can be made for the exchange of
information. But in that case we have to think in terms
of senders and receivers of data. Human can actively and



explicitly request or provide information from and to others or
systems. A passive distribution of information occurs when a
system forwards certain information to others or other systems
without having a human being involved. In data processing or
interpretation some data is explicit, e.g., status of something,
some can be understood only in a certain context and is, that
is why, only implicit, like data from the history of an artifact.

In the following we will briefly describe such awareness
mechanisms that we want to study in the context of Enterprise
2.0: pull, push, check, poll, display, monitor, subscribe, notify,
sensor, and filter.

• Pull occurs if data is actively accessed by a person or
a system because of its relevance. Pull can be executed
directly on an important object or an intermediary
hosting that information. So, only through an explicit
request an information exchange can take place.

• Push, on the contrary, means that information is
pushed to the person or persons automatically (due
to the configuration). Only if the receiver of the
information thinks that it is relevant, an information
exchange happens. The receiver can decide whether
s/he wants to make use of the information or not.
In a work environment, there is always a mixture of
both mechanisms, whereas the pushing mechanism has
been found more efficient [6].

• Checking means asking for clarification and verifi-
cation. It can be also seen as a limited, compact
version of pulling. It is like pulling information about
a previous communication or about an information
available from previous work. Check happens when
the context of available information is not clear, or
when the available information is not complete or is
not enough for the receiver. For less complex activities
checking is less needed than for more complex ones
[6] [7].

• Polling is also a type of pulling in which the request is
not defined by a person but by an information platform
where persons actively look for status of users or other
events [19].

• Transferring information about the work context is
called displaying and monitoring [1]. Monitoring
means observing the behavior of other colleagues or
changes done to an artifact, displaying means “the
implicit or explicit signals a given actor uses to show
specific aspects of his or her current situation, which
could be useful or relevant for the other actors in the
context” [1, p.193].

• Subscriptions allow consumers to register on servers
or data repositories for certain information or events,
in order to be informed automatically if something
is changed [2]. Changes can be notified to the sub-
scribers either immediately per document or summa-
rized over a certain period of time for one or more
documents. This avoids the information overflow for
the subscriber. Filters make possible to limit the areas
in which a subscriber wants to be informed by the
system automatically.

• Notifications are needed to be informed about the
changes in the awareness system. In this case email
or peripheral information displays are used. The latter
is visible as such – like as a sidebar on the display,
by taking a very small space on the screen, by dis-
appearing when there is no event. The information
can be transferred in real time and synchronously. The
amount of data transferred or displayed is also small.

• Sensors are further mechanisms helping to register
or gather awareness information. They track certain
entities in an environment, gather changes occurred,
and deliver all data to a component which takes care
of the data visualization.

• To protect the privacy and self-determination in in-
formation sharing and provide users the possibility
to configure the visualization of the selected data we
need filters. Filters can be created automatically based
on the context or manually by single actors.

Here we presented the following awareness mechanisms: pull,
push, check, poll, display, monitor, subscribe, notify, sensor,
and filter. We will refer to these later in our analysis. In the
next section we will present our case.

III. THE CASE

Our case is about a software company – that we call
SoftCom – with the head office in North Germany (with 140
employees) and two branches in South Germany and Austria
(with 8 employees). Their product is a suite for insurance
companies. In SoftCom we mainly studied the family of
insurances like indemnity, liability, automobile, property and
casualty, legal protection, cargo, and credit insurances except
health insurance. Being part of the whole software suite, the
modules we studied are related to other modules like insurance
benefit or damage, document management system, etc. This
case is studied in the scope of a master thesis [3].

SoftCom uses water fall model with three project mile-
stones per year. Certain work packages are planned for
each milestone. The work is done in cooperation of several
departments. Each department has again groups responsible
for certain parts of the product and responsible persons for
certain components of the parts. The development process
mainly consists of four steps run at different departments:
product management, domain conceptualization, software de-
velopment, and tests. These processes are in general sequential,
but there are loopbacks possible to the previous steps. For
instance, release management is carried out during deployment
across all development processes.

Product management department together with the cus-
tomers are in charge of defining the requirements to the next
milestones. People from domain conceptualization take care
of detailing and specifying by conceptualizing the require-
ments gathered by the product management. They prepare the
user requirements for the software development department.
The result is called “domain concepts” containing detailed
descriptions of the functionalities of the product modules and
management together with test lists and test case descriptions
for the test department. Software is written in the software
department and released for testing in cooperation with the



release management people, before handed over to the test
department. They report the errors directly to the software
developers and domain concept creators.

A. Methods

By means of an ethnographic study we investigated our
users, their work environment, their individual and cooperative
work processes with all artifacts and tools they used. This is a
qualitative study and does not involve a comparison of different
work environments or systems. As a consequence, there are no
experimental numbers to present, but only narrative descrip-
tions of studied work processes. This way, one user site gives
us enough detailed insights on subjects of our attention.

Besides participatory observations (in the Austrian branch
over six weeks, where we documented 15 single days with
total 153 communication events) we carried out 17 in-depth
semi-structured interviews with the most of the key actors.
We also studied the Intranet and the tools used. For interviews
we selected actors from different departments in Austria and
in Germany. In total we needed 1,5 weeks for the interviews
whereas each interview was between 25 and 75 minutes long.
We audio and video recorded all observations and interviews
that we could analyze later on in detail.

B. Tools

In SoftCom, work is carried out by using technical infras-
tructures with network connections, computers, servers, shared
network spaces, local and online tools, and software like code
repositories and tools for continuous integration like Cruise
Control. The availability and proper functionality of these tools
must be given any time. The response time when accessing the
network is mentioned as an important factor by the developers.
We could observe that developers were talking about the status
of their technical environment several times.

SoftCom uses mainly two tools: Lotus Notes and JIRA. In
this paper we will shortly present the use of TTS, an internal
issue tracking system, and REA, the release management tool,
both based on Lotus Notes and developed by SoftCom for
internal use as well as off-the-shelf tool JIRA1.

Lotus Notes contains an email client, instant messenger,
and other intranet-based database applications (see Fig. 1). It
is a distributed database-based groupware with a client server
architecture. Besides ready to use applications, interfaces are
provided by Lotus Notes, which can be used to create the own
applications by integrating them with other modules easily
through the shared database. As a base infrastructure, Lotus
Notes hosts several applications used in SoftCom: internal
issue tracking system (TTS), release management tool (REA),
an application for database and system documentation, and
internal time recording system.

Email client of Lotus Notes shows the current status of a
sender of an email if logged in Sametime – the instant messen-
ger of the system. The visualization is colored. Additionally,
the tooltip displays the location of the sender. As usual, if a
new email has been received a symbol notifies the receiver at
the right bottom corner of the display, an example of peripheral

1www.atlassian.com

Figure 1. Lotus Notes with several views used in SoftCom.

awareness. Sametime displays the online status of people in
color (green – present and active, yellow – present but not
active). If one initiates contact with someone who is online, the
telephone number, the local time, the location, a status notifica-
tion (like “I am available”, “I am not available”, “in a meeting”,
“please don’t disturb”) appear. The status notification can be
adapted individually. One can also let to display an image of
the contact. Sametime is always visible and notifies people
who are online and using it. In the side bar of Lotus Notes
there is other useful information displayed: a list of the favorite
contacts, a display for RSS feeds, an overview of different
calendar entries (e.g., day view), activities to organize tasks
or todos with data of persons assigned, deadlines, documents
attached, chat log files, or emails connected. In our interviews,
we found out that these additional features are barely used by
the team members.

TTS is the internal ticket system that is developed by Soft-
Com. Bug reports are documented and managed by using TTS.
It shows an overview of all open tickets, which can be reduced
by applying filters defined by users, like “assigned to me”,
“opened by me”, “tickets for the customer XY”. The overview
page also shows the status of the tickets, like “open”, “closed”,
“reopened”, “waiting for customer’s feedback”, “ready to test”,
the author of the ticket and the person dealing with, the
responsible team, the program modules related, a priority (5
scales: 1, 3, 5, 7, 9, with 9 as the highest priority), an internal
– and if available an external – ticket id, a short description
of the failure, and other relevant information. The overview
can be adapted by users mainly by sorting some of the data
displayed. Users can see the single tickets also in detail and
edit view, which contain more data. One can easily create
an email related to a ticket opened in detail view, which is
sent to the person assigned to the ticket. The ticket id is
then used as the subject of the email, the description, the
external id, and a link to the ticket as message body. One
can also create new REA entries directly from TTS. So, TTS
uses email notifications as awareness mechanisms. Seeing all
tickets, also from other colleagues, in the overview makes all
team members aware of the work still open or already finished
in the whole team.

REA is another self-developed tool in SoftCom. Tickets,
which are related to customers and need to be communicated
with them, are managed in REA. This way, a new delivery



agreement is negotiated with the customer. It consists of
one or more ticket ids, the related software components, the
software version(s) that need to be modified, and a status
(like “opened”, “accepted”, “rejected”, “withdrawn”, “ready to
build”, “executed”). Also in REA there are overview and detail
views with a similar filtering and sorting function, which allow
to monitor a project. By means of automatic email notifications
the people are informed about changes.

JIRA is in fact the Enterprise 2.0 system established in
SoftCom (see Fig. 2 and Fig. 3). It is the web-based issue
tracking system used mainly by the developers. JIRA helps
to organize and manage projects, tasks (issues), and subtasks
(subissues). Additionally, there are possibilities to order the
data by details (specified further as “subjects” or “domain
concepts”), persons (identity of the author or person who is
currently working on the task) and time and date (of creation
and modification of tasks, or finishing a task), attachments (file
size, date of upload), tasks (mandatory or optional comments,
time records of people related, change history with date,
person, comments), and subtasks (name, type, status, person
assigned). Versions can be created or assigned easily, either
to single entities or to the development stage as general. Each
project gets a version number. Projects or tasks can be searched
easily by entering keywords. Tasks and solutions have status,
like “open”, “processing”, “finished”, or “not finished”. Tasks
can be rated and monitored by all. All system users know who
has rated and who is monitoring a certain task. JIRA allows
integration with other software development tools like code
repositories or build systems. If it is configured it shows the
repository commits or results of build processes on the status
bar.

Figure 2. JIRA used in SoftCom: A project overview.

The main function of JIRA is to assign tasks to persons
or groups as well as to add status to tasks. Status can be
configured by users. Assignment is done partly automatically
(the creator is always referenced to the task s/he creates)
and manually. Each task is connected to a person. Persons
or groups must be logged in the system before accessing
the JIRA data. Each user must be registered and have a
profile. The link between tasks and persons makes task-related

Figure 3. JIRA used in SoftCom: A task overview.

browsing through persons possible. Dashboards offer an addi-
tional overview of data generated by registered users by using
widgets. Widgets are small tables, diagrams, calendar views, or
similar things, which can be located easily on the dashboard.
They visualize the data that is filtered by person, status, or
date. In JIRA, workflows can be modeled and implemented,
to manage actions to and status change of tasks depending on
their types. Several business rules can be integrated into the
system by using workflows.

IV. RESULTS

There are six important components of Enterprise 2.0, the
so called SLATES [21]: search, links, authoring, tags, ex-
tensions, and signals. Considering the awareness mechanisms
briefly presented in Section II (pull, push, check, poll, display,
monitor, subscribe, notify, sensor, and filter) and investigating
our case (especially the cooperative work practices and the
use of tools in Section III) from the awareness point of
view, we identified Enterprise 2.0 components used in our
case. Furthermore we found out that there are additional
awareness mechanisms embedded in some of the Enterprise
2.0 components, like authoring, links, and tags, which were
also partly present in SoftCom. In this section we present the
main results of our analysis that we try to justify with empirical
evidence.

A. Enterprise 2.0 components comprise awareness mecha-
nisms.

Finding information is essential in projects, especially if
time or other resources are limited. Search algorithms and
the definition and handling with search criteria depend among
others on data format. Structured data is mostly indexed,
key worded, and stored centrally or replicated. Unstructured
data is tagged, ranked, annotated, and can also be stored
distributed. The availability and reliability of enterprise data
are completely dependent of the success of search mechanisms
established. Persons can initiate a search process and pull the
result lists if they want to ask something someone verbally and
explicitly (pulling) or they want to search an artifact in the



system to access particular data (polling). These might happen
event driven, which uses notification mechanisms to inform
the persons sending the request. Persons might also check
with others if there are questions and needs for clarification.
Filter mechanisms help users in searching, by providing them
configurable environments. They also help configuring views
based on certain filter parameters of their choice. Changes in
JIRA views or overviews in TTS created by user-selected filters
trigger events showing changes in data. This invokes attention
of the observers and they initiate consequently an active pull
of information to catch up. This can only be done if observing
happens regularly. Otherwise they cannot recognize a change
in the state of the data, or own or others’ work progress. REA
provides different views (overview or detail view) to common
data by means of filters and sort algorithms that facilitate
monitoring of projects. This type of monitoring is very well
established in SoftCom. In the following, one of the developers
describes how he is using the filter view on a daily base:

“Exactly, yes, this is the main view that I am working
with. What is still open, what is in progress, and what
is already in quality assurance. And how many. I can
use the number to compare it with my performance, I
know then approximately ‘ok, where are you, is there
something new’. If I check it in the evenings, how
many issues I have still open, and see ‘how many, I
did not have 25 tasks today, there must be something
new added to my list.’ Something like that. And that
is all actually. It is only an overview for me.”

Extensions are systems that capture and follow users’ interests
by analyzing their behavior. Based on that information, they
then recommend users certain actions or access onto specific
information in particular areas. Extensions are in general re-
lated to artificial intelligence and semantic analysis. Displaying
can be implemented as an extension to show particular pre-
defined information about all types of content captured in the
system. Displays can be triggered explicitly, or implemented
peripheral for monitoring of users’ activities and any kind of
relevant changes in the (common) system. Capturing relevant
data by using sensors to delegate systems certain business
logic, complex analysis and filtering are normally needed
to poll data for users, which they might subscribe. Specific
visualization forms must be provided. All these mechanisms
are facilitated by extensions.

In SoftCom, we could find several extensions in place.
Information about tasks are essential for developers, domain
concept creators, and testers for several reasons. First of all,
their own work is defined practically by changes and new
requirements addressed to tasks. They must actively carry out
these tasks modified or arrived newly. Background information
is needed to estimate the work load or possible problems
which can occur during the implementation. Such consider-
ations (doubts, questions, etc.) are also communicated with
the corresponding team coordinator. Information about team
members are important because they need to know who to
contact in case of questions and uncertainties about the tasks,
or coordination of activities in the team. Knowing who has
initiated a change or added a remark to a task is mostly used
to assess the importance of the task and has direct impact on
the priorities to set. The status of a task shows whether a task is
tested and the results are positive to publish for a new release.

Programmers need to know what testers found out. If needed,
they need to rework on the task they have already finished.

There were generally four aspects actors were interested
with respect to tasks:

1) The question of “what”: Are there modifications to
a task? Are there new requirements added to a task?
Are there new domain concepts added which need
to be implemented next? Are there tasks discarded
completely?

2) The question of “why”: Why has been a task mod-
ified? Why is there a new version of a domain
concept?

3) The question of “who”: Who has created a task or a
ticket? Who was the tester of a ticket? Who has been
working on a task?

4) The question of “status of the task”: What is the
progress of the implementation of a task? Is there
any task already completed? Which subtasks are still
open and need to be finished next?

Whereas team members are mainly interested in information
about their individual tasks, team coordinators need to have
an overview of the status of all tasks carried out by their
teams. They are in charge of managing the new requirements
and changes notified and to meet the expected deadlines for
delivery. Reassigning tasks, redefining priorities, estimating
the effort needed and risks which may occur, planning the
time of development, etc. are their responsibilities. In case of
contingencies or unclarity, they initiate meetings with actors
related to the issue to solve, no matter from which department.
Direct communication is usually the main approach of team
coordinators in such situations. The following quote by a team
coordinator describes this very well:

“I prefer in principle the direct exchange with the
colleagues. Of course we get the emails by JIRA if
something is added, changed, assigned, or if certain
things were changed, or new versions of documents
are created. We get all information automatically by
the tools. That is very useful. Nevertheless, we prefer
rather the direct contact, if something defers, or if
there is a new requirement to the tool documented.
This is then for me a sign to initiate contact to the
colleague and arrange a meeting. It is not enough
for me to read in the tool “ok, the version 3 has
been created”. I need to know what the reasons
of the change are, whether we can cover it in our
ongoing process, whether it was really necessary or
not, whether it is possible to prioritize it differently in
order not to disturb the ongoing development process
in the team, etc. etc. etc. The main problem that we
usually have is that the deadlines are always planned
beforehand and we cannot modify them. That is why
everything which is supposed to be different than
the plan is a huge problem that we have to solve in
the process. And that is the reason why the direct
interaction with our colleagues is the best.”

The question about the background reasoning for events and
states in the project is not always of same size and importance.
If status changes of tasks are planned, developers do not ask for



a reason. But if something is changed unexpectedly, everyone
involved starts asking questions about why. The timing of
the events is also very crucial: Conceptual changes at the
beginning of production phases are perceived as normal. If
they occur close to the delivery date, then they represent a
risk or probably a problem.

Peripheral displaying of information is coupled to no-
tification and subscription mechanisms. In SoftCom, several
mechanisms have been established for this purpose: small
visualization of relevant data in case of communication, i.e.,
by using tooltip to display the location of the sender of a
message in Sametime; color- and short-text-based notification
mechanism of Sametime, i.e., the online status of people;
tickets created by TTS. It does not mean that notification
is always useful and is welcome by the team members. The
content notified must be relevant for others, e.g., when they
trigger certain actions, or provide crucial work- or activity-
related information. Several notification functions of Lotus
Notes are not even used in SoftCom except the online status
information of persons in the team. We could observe that
the most of the emails, sent as notification of some events or
changes, landed in some mailboxes without being read by the
addressed people. Still, the number of the unread emails in
the mailboxes made them peripheral aware of the increasing
number of the actions taken.

Subscriptions as extensions are densely used in SoftCom.
In JIRA, the subscription to a content (like a task or a ticket)
is done automatically for its owner or modifier. With an email
notification the information is sent to the relevant persons by
the system. No one makes use of the monitoring feature of
changes in JIRA. But everyone uses the explicit subscription
possibility connected to a person by stating that one wants to
be informed if an artifact is ready to hand over by this person.
The following quote shows how the product manager expects
that the team leader of the domain concept department notifies
him about any possible delay in the project.

“I have the team leader in my Sametime contact
list. Of course. But I prefer to ask him explicitly
what is the status of the development, are you still
on schedule. If he seems that they will not be able
to deliver at the right time, then I expect that he
contacts me and informs me about it. Because we
are also responsible to the customers. We have to
inform them too. Otherwise we have problems.”

Signals are notifications sent to users to inform them about
news in the system. Traditionally, emails are used for this
purpose [21]. Unfortunately the increasing number of emails
makes email exchange more and more unpleasant for users.
The overhead spent for the management and maintenance of
emails and mailboxes is becoming a serious problem for a
lot of users. RSS feeds and feed aggregators are taking over
the role of tracking changes and triggering user notification.
Pushing information means, on the one hand, the direct verbal
mediation of data by a person to another person or group.
On the other hand, entering information into the system (e.g.,
into an artifact) is a way of transferring data by pushing.
Notifying the recipients of such information automatically or
active polling the relevant information by receivers are only
possible if signals are implemented in the IT infrastructure.

Polling needs to be supported by identification and monitoring
of changes transferred to recipients.

In SoftCom, pushing can be triggered by events or done
regularly by persons, e.g., the daily reporting of time records
by all. Tasks and work progress of the developers are moni-
tored and signals are invoked in case of overdue of any task,
new entry of a new task, or the occurrence of a problem. In
very problematic cases, oral exchange is initiated to assure
the reception of the information by the recipient. Everyone
knows that being notified by an automatically created email
is not enough to get really the attention of a person, e.g.,
to fix a problem. A direct active information push is better
than the exchange based on pulling in cases of clarification
and justification of the information exchanged, e.g., if details
are needed to understand an issue, reasons for its creation, or
clarify its urgency or accuracy.

In JIRA, notification happens via emails and RSS feeds.
No one we have interviewed mentioned explicitly that they
use RSS. Emails need to be checked by single persons, but
this is obviously no problem at all. What they on the other
hand confessed is that they trash automatically the most of
the emails they receive or they filter them directly and move
to a specific mailbox without reading. The reason is the large
amount of emails they receive. Some said that they can judge
an email by just reading its subject. In case of relevance they
change from the email client to JIRA and check the detailed
information about the issue. The following quote describes
what a developer answers to the question how often and when
he accesses JIRA:

“Hmm, actually only when I get emails. So, always
when any task is assigned or changed you get an
email. · · · Usually, you receive a set of tasks, like
‘test prove’, ‘concept’, etc., a lot actually, instead to
read all, I think it makes no sense, I delete all and
think then, ok, something has happened in JIRA, I
will have a look. · · · Normally I check evenings JIRA
to plan the next day. What is to do next, what is still
open for me, did I already finish a task but not closed.
Yes, I do it once every evening.”

B. Enter, annotate, rate, and share are identified as emerging
awareness mechanisms related to authoring.

Authoring means in Web 2.0 the possibility of collaborative
creation and editing of text in the Internet. Examples are Wikis
and Blogs [21]. Authoring has positive impact on information
update and linkage of related content in enterprises. In this
sense, authored text must be published immediately. Handling
with tags and links belong to authoring if these are dealt
with by humans. There are two means of capturing a new
entry: active generation of awareness information by users and
passive generation by the authoring platform. Besides entering
whole entities, annotations can be added to existing content,
in collaborations usually by several people. In some areas it
can be more useful to capture the opinion of people by using
a rating mechanism. This can vary in form and range. By
sharing the captured data in enterprises, common information
spaces can be built and maintained.

Team members in SoftCom are authors of several entities
in JIRA, like tasks. They need tasks not necessarily for the



coordination of the team, rather to manage their own work, as
one developer states in the following quote:

“· · · There was a new requirement, he said ‘we would
like to have a search function here’. And then he
entered this into JIRA, to avoid to write this down
on a piece of yellow paper. And one can then add
sometimes a comment to it, and it is very handy,
because everyone can see it. This doesn’t happen
often, but still now and then. In this case it was a
comment that referred to the time when he is going
to deal with the ticket, or that the ticket will not
be handled at all, until the server is restructured.
And such things · · · The best is that I know that
RMM DB 2 will receive an email when I close it.
Or if I comment something. Then he knows exactly
what I have done.”

C. Reference is an awareness mechanism for links.

Links are crucial for effective search. Through automatic
analysis of links and their modifications over time, systems
can be used to identify emerging topics or interesting subjects
in a work environment [21]. Links make contents and relations
visible and, through this, provide context awareness in orga-
nizations. In order to build context from content references
are created, which enable access from one point (source) to
another point of content (target). If links are a collection of
data in documents they are called cross-references. By exter-
nalizing context information into links, information amount
and informational benefit of contents can be influenced both
positively and negatively.

D. Select, mark, and label are awareness mechanisms for tags.

Tags are keywords that are used to categorize available
information to improve the search process in common in-
formation spaces. Tagging supports user involvement and
participation, which enriches the knowledge capturing process
in enterprises. Tags can be predefined and stored in the system,
or defined ad hoc during tagging process by users. The latter
makes patterns and processes in knowledge work visible.
Active generation of tags means active generation of context
information which of course produces at the same time context
awareness in the work environment. Tagging requires, first,
marking an entity. The object selected can be a piece of text,
image, or a relation between two entities. Besides adding a
term or a keyword to label the marked entity, supplementary
data can be attached, which helps identify and categorize
certain content. Lightweight tags are pointers to a specific
comment, whereas annotated tags can be composed. Tags can
be shared if they are pushed to a server after their creation.

E. From the awareness point of view, Enterprise 2.0 compo-
nents are interrelated to each other.

Some awareness mechanisms are included in more than
one Enterprise 2.0 component, like polling in extensions and
signals. Considering context and real use of Enterprise 2.0
in enterprises, some mechanisms need the others to make
sense and to be useful at all. Extensions contain composed
elements, that are built in cooperation of several Enterprise 2.0
components. Search enables configuration and personalization

before accessing the common data and delivers the results in
a preferred format. Extensions use generally both search (i.e.,
filter and pull) to retrieve data from the common information
space and signals (i.e., notifications) for capturing events
caused by changes. The combination of the results of search
and signals must be of course presented in a useful way, mainly
by applying display and monitoring mechanisms. Tags and
links are kinds of authoring. They are created by humans as
authors or by systems semi-automatically if defined properly,
usually by means of rules.

F. Intranet solutions established in enterprises are mainly
system-related and system-driven.

Intranet infrastructures established by medium and large
enterprises are utilized by enterprise software, covering several
areas like content management, customer relationship manage-
ment, supply chain management, enterprise resource planning,
business intelligence, project management, financial manage-
ment, human resources management, manufacturing, etc., as
well as, accounting software, office suites as a collection of
productivity programs used by knowledge workers, multimedia
editing and storage software, and much more. The most
common collaborative client-server software platforms used
by enterprise systems are, e.g., SAP’s NetWeaver, Oracle’s
Fusion, IBM’s Lotus Notes, and Baan’s ERP. All these system
are customized and prepared for use in different departments
by different work groups. Employees are registered and access
those parts of the system, which are permitted to them. In
some environments users can personalize their interface. Func-
tionality, usability, efficiency, evolution, communication, and
business intelligence are in fact predefined and configured by
the system, and cannot be modified by single persons or (work)
groups. Changes required need to be communicated to system
administrators and further on to system vendors. Humans
are only consumers of the data and functions tailored. This
has been seen as stabilizing, consistent, trustworthy managing
body of an enterprise, as long as humans feed the system
with syntactic and semantic correct data and use the system
for their daily work continuously so that no data is missing
for reporting. Such environments are not flexible, not (easily)
adaptable, not scalable without huge additional effort. Single
person cannot change anything in the system’s structure –
related to communication, workflow, or data. These are the
reasons, why we call such Intranet solutions in enterprises as
system-related and system-driven.

G. Awareness mechanisms can be categorized into system-
related and user-related mechanisms.

As presented above, several Enterprise 2.0 components em-
brace certain awareness mechanisms which are either system-
or user-related. So, we differentiate between two categories and
assign Enterprise 2.0 components with their related awareness
mechanisms to one or the other (Table I). System-related
mechanisms are triggered by systems configured to capture,
save, retrieve, and display awareness data. Search, extensions,
and signals are system-related. On the other hand, user-related
mechanisms are under control of users. Users can capture,
select, edit, share, refer, label data they find interesting. Au-
thoring, links, and tags are user-related.



TABLE I. AWARENESS MECHANISMS SUPPORTED BY ENTERPRISE 2.0.

It is clear that there is a trade-off between how much
pre-defined and controlled mechanisms, implemented in the
systems used, are needed in an enterprise and how much
flexibility and configurability have to be provided for the users,
by enabling them to be prosumers of data used in the enterprise
mainly for awareness purposes. In general, awareness infor-
mation can be captured and prepared by systems established.
This makes sense in several areas, like if the log data of user
actions represent certain crucial issues in work processes, or
lack of actions in a workflow can be monitored by just having
the system configured properly for monitoring and notifying
the right persons to take action. In some work environments
and for certain critical work processes it is essential to use
the system for gathering and communicating awareness infor-
mation with other systems or humans. In more human centric
areas it is a disadvantage if systems used are still in charge
of dealing with awareness data. In such settings users are the
active ones to capture, select, edit, share, refer, label data they
find relevant and interesting. Their motivation to create and
share data is the main reason why others can be aware of their
actions, knowledge, or purposes. The communication between
human actors can be most supported if users see the benefit
and affordance of creating text or other type of data related to
the work on different levels, relating data connected to work
processes or products with other data available but loosely
coupled in the system, adding semantic to the references
they introduce to create a context which makes the captured
data accessible and usable for others, tagging existing data to
modify their relevance to address others explicitly sharing the
same environment, and so on.

JIRA is a powerful Enterprise 2.0 system in SoftCom.
Searching and linking are mainly used to enable and im-
prove navigation within the system and offer an interface to
other systems. Authoring is provided by different commenting
functions. Registered users can create and manage their own
projects and issues. They can provide access to others by using
filters. Tags are both pre- or user-defined. Extensions are facil-
itated by widgets and visualizations. Signals are implemented,
e.g., with email notifications if tasks are modified.

JIRA implements all system- and user-related awareness
mechanisms. Push is initiated by events, which occur in case
of changes in tasks and projects. Usually it is a notification

via email or RSS feed. Notifications contain data about the
task and mainly about the modifications: who changed what
at what time. User can register – subscribe – for notifications
and the system executes automatically the notification process
as configured. Through subscription monitoring has been made
possible. Users also can access awareness information stored
in JIRA by pulling, like status data of tasks in detail view,
change history of tasks showing the reason, the old and new
values of changes. Filters and widgets enable overview pages
and customization for pulling, by configuring the dashboard.

V. CONCLUSIONS

In this paper we summarized the familiar awareness mech-
anisms from the literature to create a ground for our case in-
vestigations (Section II). Then we presented our case (Section
III) and used several observations to explain and justify our
findings and results (Section IV). We proposed three Enterprise
2.0 components – authoring, links, and tags – to enhance
awareness mechanisms. We ended up with additional aware-
ness mechanisms like enter, annotate, rate, share, reference,
select, mark, and label (Section IV). We tried to explain what
we mean with all components and awareness mechanisms
assigned to them. We came up with two different categories
of awareness mechanisms in Enterprise 2.0: system- and
user-related mechanisms. We concluded our results with the
following: Authoring, linking, and tagging are very powerful
mechanisms to create context and capture collective knowledge
in enterprises. Intranet solutions for enterprises have to con-
sider authoring, linking, and tagging as essential mechanisms
for knowledge management and coordinated collaboration.

Our study is qualitative. We captured the cooperative
endeavor in a software development company and studied their
tools and work practices by focusing on the mechanisms of
awareness. The main reason was to understand what really
is going on in such environments. We do not claim that this
is always the same in all other enterprises. We know that
some companies are switching to cloud-based collaboration.
This changes a lot in the ways how people collaborate with
each other. In these cases the user-related awareness happens
automatically because of the features provided by the systems
they use, like Google Docs. The prosumer approach is in
most cases implemented and people have to use them to make
collaboration easier among the collaborators. In this paper
we address the enterprises who are still using their Intranet
solutions for collaboration. It is a fact that cooperation – no
matter for which purposes and under which circumstances –
requires certain parameters and establishment. We have just
started to think about awareness mechanisms that became
relevant because of the development of Web 2.0. The main
contribution we make is to introduce the user-related awareness
mechanisms for Enterprise 2.0 and stress out that Intranet
solutions need to include these possibilities into their portfolio.

To sum what has been already done is to understand the
technology and mechanisms applied in enterprises. What we
have done in this paper is to understand these mechanisms
by using concepts relevant for enterprises like awareness. We
tried to introduce the differentiation between system- and user-
related awareness mechanisms and aligning mechanisms to
Enterprise 2.0 components (see Table I). In the future, these
mechanisms need to be integrated into existing enterprise



IT systems, to enhance their functionality and application
in new use contexts. The goal is among others to improve
the data consistency, integrity, availability, sharing, and user
participation. Furthermore, we also want to mention that the
newly introduced systems in enterprises need to be evaluated
qualitatively, which again would inform all stakeholders about
further development and improvements in use and technology.

ACKNOWLEDGMENT

We thank all members of SoftCom for their openness, pa-
tience, and cooperation during our study. We are also grateful
to all constructive comments of the reviewers of this paper.

REFERENCES

[1] J. E. Bardram, and T. R. Hansen, “The AWARE architecture: Supporting
context-mediated social awareness in mobile cooperation”, Proceedings
of the 2004 ACM Conference on Computer Supported Cooperative Work
(CSCW ’04). New York, NY, USA: ACM pp. 192–201, 2004.

[2] A. J. B. Brush, D. Bargeron, J. Grudin, and A. Gupta, “Notification
for shared annotation of digital documents”, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’02). New
York, NY, USA: ACM, pp. 89–96, 2002.

[3] S. Diesenreiter, Awareness im Enterprise 2.0. Master thesis. Institute of
Design and Assessment of Technology, Vienna University of Technology,
2013.

[4] P. Dourish, and V. Bellott, “Awareness and coordination in shared
workspaces”, Proceedings of the 1992 ACM Conference on Computer-
supported Cooperative Work (CSCW ’92), pp. 107–114, 1992.

[5] G. Convertino, A. Grasso, G. De Michelis, D. R. Millen, and E. H.
Chi, “Clorg: Collective intelligence in organizations”, Proceedings of the
16th ACM International Conference on Supporting Group Work (GROUP
’10). New York, NY, USA: ACM, pp. 355–358, 2010.

[6] G. Convertino, H. M. Mentis, M. B. Rosson, J. M. Carroll, A. Slavkovic,
and C. H. Ganoe, “Articulating common ground in cooperative work:
Content and process”, Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’08). New York, NY, USA: ACM,
pp. 1637–1646, 2008.

[7] G. Convertino, H. M. Mentis, M. B. Rosson, A. Slavkovic, and J. M.
Carroll, “Supporting content and process common ground in computer-
supported teamwork”, Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’09). New York, NY, USA: ACM,
pp. 2339–2348, 2009.

[8] K. Ehrlich, C.-Y. Lin, and V. Griffiths-Fisher, “Searching for experts in
the enterprise: Combining text and social network analysis”, Proceedings
of the 2007 international ACM conference on Supporting group work
(GROUP ’07). New York, NY, USA: ACM, pp. 117–126, 2007.

[9] R. Farzan, J. M. DiMicco, D. R. Millen, C. Dugan, W. Geyer, and
E. A. Brownholtz, “Results from deploying a participation incentive
mechanism within the enterprise”, Proceedings of CHI2008. New York,
NY, USA: ACM, pp. 563–572, 2008.

[10] W. Geyer, H. Richter, L. Fuchs, T. Frauenhofer, S. Daijavad, and S.
Poltrock, “A team collaboration space supporting capture and access
of virtual meetings”, Proceedings of the 2001 International ACM SIG-
GROUP Conference on Supporting Group Work (GROUP ’01), C. Ellis,
and I. Zigurs, Eds. New York, NY, USA: ACM, pp. 188–196, 2001.

[11] T. Gross, and N. Koch, Computer-supported cooperative work. Ger-
many: Oldenbourg Wissenschaftsverlag, 2007.

[12] T. Gross, C. Stary, and A. Totte, “User-centered awareness in computer-
supported cooperative work-systems: Structured embedding of findings
from social sciences”, International Journal of Human-Computer Inter-
action, vol. 18, nr. 3, pp. 323–360, 2005.

[13] C. Gutwin, S. Greenberg, and M. Roseman, “Workspace awareness in
real-time distributed groupware: Framework, widgets, and evaluation”,
Proceedings of HCI on People and Computers XI (HCI ’96), Germany:
Springer-Verlag, pp. 281–298, 1996.

[14] C. Gutwin, Workspace awareness in real-time distributed groupware.
PhD Thesis, Department of Computer Science, University of Calgary,
1997.

[15] C. Gutwin, and S. Greenberg, “Effects of awareness support on group-
ware usability”, Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’98), pp. 511–518, 1998.

[16] C. Gutwin, K. Schneider, D. Paquette, and R. Penner, “Supporting
Group Awareness in Distributed Software Development”, in R. Bastide,
P. Palanque, and J. Roth, Eds., Lecture Notes in Computer Science, vol.
3425, pp. 383–397, 2005.

[17] L. Hattori, M. Lanza, and R. Robbes, “Refining code ownership with
synchronous changes”, Empirical Software Engineering, vol. 17, nr. 4–5,
pp. 467–499, 2012.

[18] J. Helming, M. Koegel, H. Naughton, J. David, and A. Shterev,
“Traceability-Based Change Awareness”, in A. Schürr and B. Selic, Eds.,
Lecture Notes in Computer Science, vol. 5795, pp. 372–376, 2009.

[19] A. King, and K. Lyons, “Automatic status updates in distributed
software development”, Proceedings of the 2nd International Workshop
on Web 2.0 for Software Engineering (Web2SE ’11). New York, NY,
USA: ACM, pp. 19–24, 2011.

[20] M. Koch, “CSCW and Enterprise 2.0 – Towards an integrated perspec-
tive”, 21st Bled eConference eCollaboration: Overcoming Boundaries
Through Multi-Channel Interaction. Bled, Slovenia, June 15-18, 2008.

[21] A. P. McAffee, “Enterprise 2.0: The dawn of emergent collaboration”,
MITSloan Management Review, vol. 47, nr. 3, pp. 20–28, 2006.

[22] E. W. Morrison, “Information seeking within organizations”, Human
Communication Research, vol. 28, nr. 2, pp. 229–242, 2002.

[23] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood “Using Developer
Activity Data to Enhance Awareness during Collaborative Software
Development”, Computer Supported Cooperative Work, vol. 18, nr. 5–6,
pp. 509–558, December 2009.

[24] T. Proenca, N. Moura, and A. Hoek, “On the Use of Emerging Design
as a Basis for Knowledge Collaboration”, in K. Nakakoji, Y. Murakami,
and E. McCready, Eds., Lecture Notes in Computer Science, vol. 6284,
pp. 124–134, 2010.

[25] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract:
Interactive visual exploration of socio-technical relationships in software
development”, Proceedings of the 31st International Conference on Soft-
ware Engineering (ICSE ’09). Washington, DC, USA: IEEE Computer
Society, pp. 23–33, 2009.

[26] K. Schmidt, “The problem with ‘awareness’: Introductory remarks on
‘awareness in CSCW”’, Computer Supported Cooperative Work, vol. 11,
nr. 3–4, pp. 285–298, 2002.

[27] I. Steinmacher, A. P. Chaves, and M. A. Gerosa, “Awareness support
in distributed software development: A systematic review and mapping
of the literature”, Computer Supported Cooperative Work, vol. 22, pp.
113–158, 2013.

[28] H. Tellioğlu, and I. Wagner, “Software Cultures. Exploring Cultural
Practices in Managing Heterogeneity within Systems Design”, Commu-
nications of the ACM, vol. 42, nr. 12, pp. 71–77, December 1999.

[29] H. Tellioğlu, “About Representational Artifacts and Their Role in En-
gineering”, Chapter in the IGI book on Phenomenology, Organizational
Politics and IT Design: The Social Study of Information Systems. G.
Viscusi, G. M. Campagnolo, and Y. Curzi, Eds., IGI Global, pp. 111–
130, 2012.

[30] J. Thom, D. Millen, and J. DiMicco, “Removing gamification from an
enterprise SNS”, Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work (CSCW ’12). New York, NY, USA: ACM,
pp. 1067–1070, 2012.

[31] E. Ye, L. A. Neiman, H. Q. Dinh, and C. Liu, “SecondWATCH: A
workspace awareness tool based on a 3-D virtual world”, Proceedings of
the 31st International Conference on Software Engineering (ICSE 2009),
pp.291–294, 2009.

[32] Webster, Unabridged dictionary. Springfield: Merriam-Webster, 2006.


