Collaborative Approach for Inter-domain Botnet Detection in Large-scale Networks

Hachem Guerid*, Karel Mittig*, Ahmed Serhrouchni'
*Orange Labs, Caen, France
{hachem.guerid, karel.mittig} @orange.com
YTelecom ParisTech, Paris, France
{hguerid, ahmed}telecom-paristech.fr

Abstract—The members of almost all botnets are distributed
between several networks. Such distribution hardens their
detection as the centralized approaches require to centralize
network data for their analysis, which is indeed not possible
in regard to the legacy and business constraints applied to
network operators.

In this paper, we propose a collaborative and inter-domain
botnet detection system which conciliates the requirements
of privacy and business preservation, while enabling real-
time analysis for large scale networks. The different probes
of our collaborative detection system exchange anonymised
information in order to synchronize the network analysis of
the members of botnets and to identify the malicious servers
controlling them.

We evaluated our system using anonymised traffic captured
on an operator’s network, and the results showed an improve-
ment of 31% of malicious servers detected resulting from the
collaboration, and this without significant performance impact
and bandwidth overhead (respectively 4% and 11kb/s).

Keywords-Botnet detection, Collaborative detection, Domain-
flux botnets, Bloom filters, Inter-domain detection

I. INTRODUCTION

A botnet is a network of infected hosts or bots controlled
remotely by attackers [1] usually through remote servers
called command and control servers (C&C). Botnets are
used to launch different types of network attacks [2] such
as: distributed denial of service attacks (DDoS), spams, and
data theft.

The members of a botnet contact their C&C servers in
order to receive commands to launch their attacks or to
report about ongoing ones. These infected hosts use common
protocols [3] such as DNS, HTTP or IRC in order to
hide the communication with their servers from network
administrators.

The members of a botnet are usually distributed between
different countries and administrative domains [4]. This
distribution harden their detection because each network
operator has only access to a part of the malicious com-
munications of the whole botnet. The largely spread botnets
are therefore very difficult to detect.

The current behavioural network botnet detection systems
are centralised [5], [6], which means that they collect and
analyse centrally the network data in order to detect the
C&C servers of the botnets. As the network operators cannot
share the network data of their users with other operators,

the previous approaches can only analyse the network traffic
of a single network operator.

This lack of collaboration implies that widely spread
botnets are generally not detected as their activity fall
beyond the detection thresholds. A collaborative detection
over several network domains would therefore allow the
correlation of much more information, thus improving the
time and accuracy of the detection.

However, such collaboration between administrative do-
mains must comply with several constrains. The exchanged
information between the different networks involved in the
detection should be anonymised in order to conciliate the
requirements of privacy and business preservation. User’s
privacy requires that information such as the identifiers or the
payloads of the infected hosts must not be shared with the
other operators participating in the detection process, while
business preservation additionally implies that information
like the number of infected hosts or network topology must
be also concealed.

As the regulation in most European countries [7] restricts
the storage of the network traffic of the internet users for
commercial use, the detection process must be performed
in real-time. This implies that a collaborative detection
system must be able to process in real-time the traffic of
large network operators. Such networks contain at each time
several million active users.

In this paper, we propose a fully distributed collaborative
and inter-domain botnet detection system for large scale
networks. Our collaborative detection system analyses the
network traffic of different networks in order to detect the
C&C servers of botnets. Our system detects in real-time the
C&C servers of botnets which are scattered between dif-
ferent administrative networks while preserving the network
operator’s privacy and business.

Our collaborative botnet detection system groups the
botnets’ members that are distributed between different
networks into communities. For each community, our system
detects their C&C servers by identifying their convergence
points.

The members of the same botnet can converge to the same
popular web sites. This convergence is either the result of
legitimate actions, or the result of a feature added by the
creators of the botnet [8]. such behaviour is added into mal-

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254051

ware in order to perform network attacks or to mislead the
security researchers. In our collaborative system, we filter
dynamically the popular web sites using the information of
the different communities.

In order to evaluate our collaborative botnet detection
system, we implemented the detection system of a type of
botnets called domain-flux [9]. We set up our collaborative
detection system between two network traces captured from
a large scale network. We demonstrate that the collabora-
tive detection botnets detects more malicious servers while
generating low network and processing overhead.

The main contributions of our work can be summarised
as follows:

« Proposition of a fully distributed collaborative and an
inter-domain botnet detection system.

o Preservation of the privacy and the business of
the domain during the collaboration by exchanging
anonymised information.

o Real-time processing of the network traffic of large
scale network.

II. RELATED WORK

Several anomaly based approaches have been proposed to
detect botnets according to their network activity. Botsnifer
[10] detects the C&C server of a group of infected users
inside a small network while Karasaridis A. et al. [6]
proposed an approach based on common servers of a group
of identified infected users in a wide-scale network.

Since the DNS protocol [11] is used by most botnets,
several DNS-based botnet detection approaches have been
proposed. Chois H. et al. [12] proposed an approach that
detects the change of the domain names of the C&C servers
of a botnet. The DNS errors have been used by several
approaches [13], [14], [15] to identify the members of a
domain-flux botnet [9].

Unlike these centralised approaches, our collaborative sys-
tem is distributed between different networks. Each network
analyses the network traffic of its own hosts and exchanges
anonymous information with the other networks. The actors
of our system collaborate in order to detect the servers of
botnets scattered between their networks.

Wang H. et al. [16] proposed a collaborative architecture
in order to detect botnets. In their architecture, different
administrative domains share information with different
granularity in order to coordinate the detection of botnets.
Unlike the previous architecture, the different administrative
domains of our system anonymise the exchanged informa-
tion to comply with the constraints of privacy and business
preservation of inter-operators communication.

Locaster et al. [17] proposed with Worminator a collab-
orative P2P intrusion detection, where the different actors
share Bloom filters [18] storing ”‘watch-lists”’ or lists of sus-
pected IP addresses of each actor. Our collaborative botnet
detection system doesn’t exchange watch-lists of suspected

99¢

Domain B

Probe B

Figure 1.
domains

Overview of a collaborative botnet detection system between 3

IP addresses. It uses Bloom filters in order to exchange an
aggregated network activity of several members of a botnet
distributed between different administrative domains.
Unlike centralised collaborative intrusion detection sys-
tems [19] [20], our detection system is fully distributed. It
doesn’t rely on a central server that receives and correlates
alerts from multiple detection nodes. In such architecture,
the server constitutes a single point of failure for the system.
This centralised architecture is not acceptable for distinct
operators which have legal and business constraints.

III. ARCHITECTURE OF OUR COLLABORATIVE
DETECTION SYSTEM

In our collaborative detection system, each probe is
associated with a network, see figure 1. The probes are
interconnected with each other in order to distribute and
to coordinate the analysis of the traffic of the different
networks. Each probe correlates the network traffic of its
network and the anonymised data received from the other
networks. The result of the detection is distributed between
the different actors of the collaboration.

A probe is constituted of two layers, a communities
construction layer and a C&C server detection layer. The
communities construction layer detects the infected hosts
and groups the members of the same botnet into communi-
ties. These communities are sent to the C&C server detection
layer which identifies their associated malicious servers.

The probes of the system exchange anonymised informa-
tion in order to compare between the network activities of
their infected hosts and to coordinate the construction of the
communities whose members are distributed among different
networks. The probes coordinate the detection of the C&C
servers of these communities.

The detection of the C&C servers for each community
is coordinated by an elected probe. The election process

ensures that the computation and the network overhead
needed for the coordination of the analysis of the different
communities is divided between the different probes of the
network.

In our collaborative system, the C&C detection layer is
common to all types of botnets, unlike the communities
construction layer that depends on the type of botnet or its
generated attacks. In this paper we validated our system with
the collaborative detection of domain-flux botnets.

We detail the two layers in the following sections.

IV. COMMUNITIES CONSTRUCTION LAYER

The probes of our collaborative system detect members of
the same botnets and groups them into communities. This
detection is based on the participation in the same ongoing
attacks or in the similarity of their abnormal network traffic.

As communities can be distributed between several do-
mains, different probes monitor the network traffic of the
same community. Thus, the communities construction layer
associates a unique identifier among the different probes
to each constructed community in order to avoid different
communities sharing the same identifier which can distort
the detection. This identifier is used by the C&C servers
detection layer to coordinate different communities inside a
probe.

In the case of the detection of a community of the same
botnet participating in a distributed denial of service attack
(DDoS), the probes assign independently the same identifier
to this community. This identifier is computed from the IP
addresses or the domain names of the victims which are
accessible by the different probes.

In order to facilitate the coordination of the detection and
to decrease the network overhead, we assign each commu-
nity to a single probe. This probe correlates the network
traffic of the members of the same community in order to
detect their C&C server. Our detection system requires that
the network analysed by the elected probe contains some
members of the community. The network traffic of these
members is analysed in order to find convergence points
corresponding to C&C servers.

On our system, we distribute the management of the
communities between the different probes. This distribution
avoids single points of failure of the system and balances
the computation and the network overhead needed for the
coordination. The independence of the network operators
consolidate the fair distribution of the monitored communi-
ties.

V. COMMAND AND CONTROL SERVERS DETECTION
LAYER

Within this layer, each probe receives information about
the communities identified in the communities construction
layer. It contains the identifiers of the members of the
community of the network monitored by the probes along

with the identifier of the elected probe. The elected probe
coordinates the network analysis of the members of the
community in order to detect the associated command and
control servers (C&C).

Virtually the whole network traffic of a user can only
be accessible by its network operator. Since the network
operators can’t share the network traffic of their users
with other operators, each probe analyses the traffic of the
infected hosts of the monitored network in order to detect
the malicious servers.

The command and control servers detection layer is
divided into three phases: (1) the traffic analysis of the
infected users, (2) the coordination of the probes, and (3)
the detection of the malicious servers. The different phases
of detection are depicted in figure 2.

We use during our analysis probabilistic data structures in
order to represent the network activity of the infected users.
These probabilistic data structures are Bloom filters [18]
which are binary vectors of a predefined length associated
with k£ hash functions [21]. The Bloom filters represent
elements of a set in a fixed memory space which is the
size of the associated vector.

The Bloom filters don’t generate false negatives, which
means that a membership test of a represented element
is always positive. On the other hand, they generate false
positives with a certain probability. This probability depends
on the size of the vector, the number of elements in the set,
and the number of hash functions.

A. Traffic analysis of the infected users

In order to preserve the privacy of the users and to
optimise the memory usage of the probes, we associate a
Bloom filter with each infected user. The Bloom filters are
used to represent the network activity of the members of an
identified community. We use the same parameters for all
the Bloom filters of the system e.g. the vector size, the type
and number of hash functions in order to be able to compare
them afterwards because if two similar sets are represented
by Bloom filters with the same parameters, they produce
similar Bloom filters.

We reset periodically the vectors of the Bloom filters
associated with the infected hosts in order to represent
only their latest network activity. The representation of the
latest network activity preserves the privacy of the users and
decreases the number of generated false positives related to
popular web sites.

We filter from the analysis proxies i.e. several users using
the same public IP address because their network activities
converge in multiple legitimate points and thus generate
several false positives. The proxies are the multiplexing of
the network traffic of several users sharing the same public
IP address.

On our system, we use Bloom filters with a small vector
size in order to optimise the memory usage of the system and

Communities
Construction

Elected Probe

Command and Control
Servers Detection

Network
Analysis

v

Detection of communities

Communities
Construction

Non elected Probe

Command and Control
Servers Detection

Network
Analysis

v

Coordination

Coordination

v

Malcious Servers

Aggregated Bloom filters

Malcious Servers

Detection

/
Malicious
Domain Name

Figure 2.

to decrease the time needed for their correlation. A size of
about one thousand bits is enough to represent the network
activity of users regarding the period of time considered until
resetting the filters. Moreover, the Bloom filters with a small
size allow the identification of proxies because their Bloom
filters are filled more quickly.

B. Coordination of the analysis

During this phase, each probe coordinates the analysis
of the members of the constructed communities. For each
community, the non elected probes construct periodically an
aggregated Bloom filter in order to represent the common
freshest network activity of the members of the same com-
munity that belongs to the monitored network.

The aggregated Bloom filter of a community is computed
according to the Bloom filters of its members, see algorithm
1. In the aggregated vector, we set an element of index
i to 1 if the rate of the elements of the same index in
the vectors of the members of the community exceeds a
threshold. Otherwise, we set the element to 0. For example,
if the elements of index ¢ in all the vectors of the Bloom
filter are 1, the element of index ¢ in the aggregated vector
will be set to 1.

This aggregated Bloom filter represents the convergence
points of the network activity of the members of the commu-
nity monitored by the probe. The small binary Bloom filters
preserve the privacy of the users because it is nearly impos-
sible to recover the elements that filled it. The aggregation
enhances the privacy preservation of the users because it
represents the network traffic of several users.

Each probe participating in the detection sends aggregated
vector to the elected probe of the community according

Malicious Domain Name

Detection

A collaborative botnet detection between two probes

to a period 7. In order to minimise the network and the
computational overhead, the probes exchange an aggregated
vector only when it has been modified during the last period.

Algorithm 1 Aggregated vectors construction

I: Va0 > Initialise the aggregated vector
2: for i < 1, N do > N: Size of the vector
3 nbr < 0

4 for j + 1,n do > n: Size of the community
5 if V;[i] =1 then

6: nbr < nbr + 1

7 end if

8 end for

9: if nbr > o * n then > o infection threshold
10: Vali] + 1

11: else

12: Va [Z] 0

13: end if

14: end for

C. Detection of malicious servers

This phase is executed only by the elected probe of each
community. The elected probe analyses the Bloom filters of
the members of the community of its monitored network and
the aggregated Bloom filters received from the other probes.
It correlates their network activity in order to identify their
command and control servers.

When a member of a monitored community has a connec-
tion to a remote server, we check if the other members of the
community connected recently to this server. We perform a
membership test of the server in the Bloom filters of the

members of the community monitored by the probe and
the received aggregated Bloom filters. If the membership
test is positive on most Bloom filters, most members of the
community connected recently to the server. This imply that
the server is highly popular or is the C&C server of the
members of the community.

The difference between the malicious and the popular
servers is that the popular servers are also popular within
all the communities of the system i.e. also requested by
members of other botnets than the one that triggered its
detection. On the other hand, the C&C servers of a botnet
are much more popular within the communities that contain
members of the botnet than within the other communities.

Each probe is responsible for several communities, there-
fore it represents at each time the network activity of
different communities. It perform a membership test of the
detected server on the Bloom filters of these communities in
order to filter the popular servers. The detected C&C servers
are shared with the other probes monitoring the community.

VI. THE DOMAIN-FLUX BOTNET DETECTION USE-CASE

In order to validate our collaborative botnet detection
system, we implemented and evaluated our system for
botnets of domain-flux type. Different network operators can
collaborate in the detection of botnets because it doesn’t
reveal the internal information of their networks and it
preserves the privacy of its users.

In a domain-flux botnet, the infected hosts generate pe-
riodically a list of domain names. The members of these
botnets request the generated domain names until they reach
their C&C servers which is reserved by the botnet operator
beforehand. This technique allows botnets to bypass static
black-lists because network administrators ignore which
domain names will be generated and reserved before it
occurs. Some well-known botnets used this technique, such
as Conficker [22], Zeus [23] and PushDo [24].

The main characteristic of these botnets is that the infected
hosts generate an abnormal amount of requests toward non
existent domain names. Thus, the infected hosts receive
an abnormal amount of NXDomain replies from the DNS
servers. The members of the same domain-flux botnet gen-
erate requests to a similar set of non existent domain names.

In order to detect the domain-flux botnets, the probes of
our collaborative system are located between the users and
the DNS servers. Such position allows the differentiation
between the hosts generating requests to the DNS server.
The probes analyse in real-time the DNS traffic of the hosts
of the network in order to detect the C&C servers.

Since most DNS traffic between the members of the net-
work and the DNS servers stay inside the network, a probe
has only access to the DNS traffic of the monitored network.
Thus, the collaboration between different networks allows
the system to have access to more information comparing
to a standalone detection of each probe. We described the

standalone domain-flux botnet detection system in detail in
[15].

A. Communities Construction of a domain-flux botnet

This layer detects and groups the members of the same
domain-flux botnets distributed in different networks into
communities. The probes of these networks exchange anony-
mous data in order to compare between the network traffic
of their users.

Within this layer, the probes analyse the NXDomain
replies of the users in order to identify the infected users
and to construct the communities of users requesting the
same set of non existent domain names.

The construction of communities is performed in two
phases: the identification of the suspicious users and the
construction of suspected communities.

1) Suspicious users identification: The detection of the
suspected communities is executed independently in each
probe. It identifies the users generating an abnormal number
of requests to non existent domain names which correspond
to a domain-flux behaviour.

In order to preserve the privacy of the users and to speed
up the analysis, we associate a small Bloom filter of less
than a thousand bits with each user. This Bloom filter will
represent the freshest requested non existent domain names
extracted from the received NXDomain answers.

Since we compare these Bloom filters later in our analysis,
we use the same parameters in the Bloom filters on all the
probes of the system in the communities construction layer.
These parameters are the size of the vector, the type and the
number of hash functions.

This module filters the proxies i.e. multiple users sharing
the same public IP address, because our system will as-
sociate the requests of these users to the same Bloom filter
which will be filled quickly. We filter from the analysis these
Bloom filters because they build communities that generate
several false positives.

This module identifies the suspicious users using the
filling rate of their associated Bloom filters. The Bloom
filters of suspicious users have a filling rate that exceeds non
infected users’ because the members of a domain-flux botnet
generate a high number of requests toward non existent
domain names. We use this threshold in order to filter the
users making legitimate errors.

We reset periodically the vectors of the Bloom filters
associated with the users of our system because the binary
Bloom filters used on our system don’t allow the deletion of
old elements. Thus, we represent only the freshest requested
non existential domain names.

2) Communities Construction: The communities con-
struction phase groups the suspicious users received from
the suspicious users identification module into communities.
The network traffic of members of botnets distributed be-

tween different networks is correlated in order to construct
communities distributed between different networks.

In a domain flux botnet, the infected users of the same
botnet generate requests to the same set of non existent
domain names. Since the Bloom filters represent the freshest
requested non-existent domain names, we only need to
compare between these Bloom filters in order to identify
the users that requested the same set of domain names.

We compare periodically the Bloom filters of the sus-
picious hosts using a similarity ratio which we derived
from the Hamming distance. Our similarity ratio counts the
number of ones of the result of the binary AND operation
between two elements where the Hamming distance uses a
binary XOR operation.

Similarity ratio between two strings a and b of the same
length.

weight(XOR(a,b))
mazx(weight(a),weight(b))

similarity(a,b) =

We fix the minimum size of a suspicious community to
a given threshold in order to minimise the false positives
induced by the Bloom filters. The larger the community
is, the higher the probability is that its members belong to
the same domain-flux botnet. On the other hand, a small
community can be the result of users requesting the same
misspelled domain names.

If the size of a group of similar hosts inside the same
network does not reach the threshold of a creation of a
community, the probe creates a sub-community. An aggre-
gated Bloom filter is created in order to represent the similar
requested non existent domain names of the members of
a sub-community. This aggregated Bloom filter is used to
identify similar sub-communities whose members belong to
the same domain-flux botnet.

The probes exchange information about the created sub-
communities in order to construct a community. They ex-
change the identifier of the sub-community, the identifier of
the probes, and the aggregated Bloom filter of its members.

The collaborative construction of a community is a four
step operation, see figure 3:

o The probes receives and sends broadcasts to the other

probes about constructed sub-communities.

e A probe becomes the elected probe for the commu-
nity and sends a notification to the other probes. For
domain-flux botnets, the process of electing a probe
amongst others simply relies on the community identi-
fication time, with the first probe sending a notification
about an identified community becoming the elected
one.

o The other probes reply to the notification by an ac-
knowledgement.

o The elected probe sends a confirmation to the other
probes and creates the community.

When a sub-community is created, its aggregated Bloom

filter is compared with the aggregated Bloom filters repre-

senting sub-communities received from the other probes. If
it finds similar Bloom filters, the probe sends notifications to
their probes in order to create a community. The notification
contains the identifiers of the sub-communities. Otherwise,
the probe sends the information about the created sub-
community to the other probes.

The probes keep information for a certain duration about
their created sub-communities i.e. their identifiers, aggre-
gated Bloom filter, and associated members. When a probe
receives a notification about the creation of a community, it
replies by an acknowledgement if it has data about its sub-
community. Afterwards it waits for a confirmation of the
creation the community.

The probe that sent the notification for the creation of
a community to the other probes is the elected probe of
the community. If it receives enough acknowledgements
for the creation of a community, it sends the identifier
of the community to the C&C detection layer along with
the identifiers of the sub-communities acknowledged by
other probes. It sends a confirmation of the creation of a
community to the probes that sent an acknowledgement.

At this stage, we considered that all the collaborating
probes can be trusted, and we did not introduced the
possibility of a probe to be compromised. The consequences
of such assumption and how it can be prevented will require
additional features that will be considered in a future work.

When the probe receives a confirmation of the creation of
a community, it sends the information about the community
to the C&C detection. It sends the identifiers of the members
of the sub-community that are monitored by the probe,
the identifier of the community, and the identifier of the
elected probe. The identifier of the constructed community
is assigned by the elected probe.

B. C&C Servers Detection

The network traffic of the members of a botnet converge
to their command and control server. In order to identify this
convergence point, we analyse the successful DNS answers
(NOERROR) of the members of the botnet. The convergence
point correspond to the domain name of the command and
control server of the members of the community.

The Bloom filter associated with the user represent its
freshest requested existent domain names. We use the same
parameters for the different Bloom filters of the system in
order to aggregate them later.

The successful DNS traffic of the members of a com-
munity monitored by a non-elected probe is aggregated in
order to highlight the convergence points. Periodically, the
Bloom filters of these members are aggregated in order to
create a Bloom filter representing the similar successful DNS
requests. The aggregated Bloom filter is sent periodically to
the elected probe of the community.

When a member of a suspicious community monitored
by an elected probe receives a successful DNS reply, it

—@
© ©

—@
© ©

@
© ©

(1) Information broadcast

(2) Election & Notification

(3) Aknowledgement

(4) Confirmation

Figure 3.

adds the domain name in the Bloom filter associated with
the member. The probe performs a membership test of
the domain name on the Bloom filters associated with the
members of the community.

If the ratio of the members that requested the domain
name exceeds the infection threshold, the probe checks the
latest aggregated Bloom filters received from other probes. If
the membership test of the domain name on the aggregated
Bloom filters is successful, it means that the domain name
has been requested by the users of other networks that con-
structed the aggregated Bloom filters. If the domain names
has been requested by most members of the community, it
is the domain name of a C&C server or a highly popular
website.

Unlike the C&C servers domain names, the popular do-
main names are requested by most communities monitored
by the probe. Thus, we filter the domain names that are
requested by at least one member of most communities.
The elected probe sends the detected domain name of C&C
server to the other probes.

VII. EVALUATION

In order to validate our collaborative botnet detection, we
implemented the collaborative domain-flux botnet detection
use case between two probes. The probes analysed a DNS
traffic of 12 hours from a large operator captured in 2009
between the DNS server and the users. It contains the
DNS requests and replies of the users. The capture was
anonymised such as each IP address was converted into a
unique and non reversible identifier.

We divided the capture in several parts according to
the identifiers of the users of the network. Therefore, the
network traffic of a user will be analysed by a single probe.

In order to allow the network administrator to monitor
the exchanged information between different administrative
domains, we used on our implementation IODEF format [25]
to encapsulate messages exchanged by the different probes.
We encoded the binary vectors of the aggregated Bloom
filters in Base64. The XML format and the Base64 encoding
adds some overhead to the exchanged information.

Four steps process for collaborative construction of a community

The number of malicious domain names according to the size of the network
200 T T T

T T
‘Without Collaboration —+—
With Collaboration ---8---

150 |

100 |

Number of malicious domain names

0¥ L L L L L J
200k 300k 500k 800k 1.2M 1.6M 2.5M
Number of users

Figure 4. Number of malicious domain names detected according to the
size of the network in probe 1

We evaluated the impact of the collaborative detection
between two probes compared to stand-alone detection. The
evaluation of the performance of the stand-alone detection
has been published in [15].

To evaluate the benefits of enabling the collaborative de-
tection in the domain-flux detection use-case, we measured
the number of detected malicious domain names and false
positives in the following cases:

o Each probe analyses independently the traffic capture.

o The probes collaborate in the analysis of the traffic

captures.

We varied the size of the network in the captures analysed
by the probes in order to measure the benefits of the
collaboration, see figures 4, 5, 6, and 7. We see clearly in the
figures that the smaller is the network, the more it benefits
from the collaboration.

The large networks benefits less from the collaboration
because we used in our evaluation captures originating from
the same network operator. Each large capture contained
enough infected traffic in order to detect the malicious
domain names without collaboration.

We see clearly that the second probe detected less ma-

The number of malicious domain names according to the size of the network
200 T T T

Without Collaboration —+—
With Collaboration -

Number of malicious domain names
= I
1 Q
3 3
T T
.

a
3
T

—

L L L
800k 1.2M 1.6M
Number of users

300k 500k

Figure 5. Number of malicious domain names detected according to the
size of the network in probe 2

The number of false positives names according to the size of the network
6 T T T

Without Collaboration —— /
With Collaboration -

Number of false positives

1 L L L A
200k 300k 500k 800k 12m 1.6M 2.5M
Number of users

Figure 6. Number of false positives detected according to the size of the
network in probe 1

The number of false positives names according to the size of the network
6 T T T

T T
Without Collaboration ——
With Collaboration /

Number of false positives

L L L L
300k 500k 800k 12m 1.6M
Number of users

Figure 7. Number of false positives detected according to the size of the
network in probe 2

Network Overhead Generated
12 T T

T
Overall Overhead —+—
Command and Control Detection Layer Overhead ---x---
Communities Construction Overhead ---%-

Overhead (kbls)
B
T
¥
.

.
0 10 20 30 40 50 60
Time period (s)

Figure 8. Network overhead generated by the system, command and
control detection and communities construction layers

licious domain names than the first probe without collabo-
ration. Therefore it benefited more from the collaboration,
implying that the second part of the capture contained less
infected users.

The detected false positives are all subdomains from
popular domain names ranked in the top sites by Alexa
[26]. They were not filtered by our system because these
subdomains were not popular within all the communities of
our system. Since we have only access to the DNS traffic, we
can’t assert that these domain names were requested during
a botnet activity or requested legitimately by the users.

We computed the variation of the average network over-
head generated by messages exchanged between the probes
of the communities construction layer and the C&C detec-
tion layer according to 7 the period of update of the C&C
layer, see figure 8. We also represented the overall network
overhead the sum of the two values. We see that when 7 is
2 seconds, the overall network overhead is maximal and is
11.32 kb/s which represents 3.6%10~* of the overall network
traffic.

The C&C layer overhead decreases with the increase of
T because the probes update their aggregated Bloom filters
according to 7. This overhead depends also on the number of
communities on the system. On the other hand, the overhead
generated by the communities construction layer is constant.

Our collaborative domain-flux detection use case doesn’t
scale to several thousands nodes. It is meant to be deployed
between administrative domains. In our implementation of
the collaborative domain-flux detection use case, we base
our detection of the communities on the similarity of the
network activity at a given moment using the comparison
of the vectors of bloom filters. This implementation scales
reasonably to few dozens probes, but is limited by the
overhead associated to the broadcast of information during
the communities construction. This limitation can be over-

come in two ways: by enhancing the election process; by
compressing the exchanges which would help to reduce the
overhead by two orders of magnitude.

Architectures of DHT type (distributed hash table) [27]
doesn’t fit our collaborative system for the domain-flux use-
case because we compare directly between the vectors and
because the value of the vectors sent are very short lived.

Regarding the performance, activating the cooperation has
a very limited impact over the processing capabilities of the
probes. We measured the average number of transactions
per second processed by the different probes when enabling
the cooperation. It decreases by less than 4%. It is therefore
largely counter-balanced by the benefits observed regarding
the detection accuracy. With a resulting processing speed
of around 500 thousand transactions per second, this speed
exceeds the bandwidth of the captured DNS traffic. This
performance allows to consider a real-time application of
our system in the network.

VIII. CONCLUSION

In this paper, we proposed a fully distributed collaborative
and inter-domain botnet detection approach that complies
with the privacy, business and performance constraints of
network operators communications. In order to validate our
detection system, we analysed the network traffic of a large
scale operator. We showed that the collaboration improves
the detection rate with a low network and processing over-
head.

ACKNOWLEDGEMENT

This work was partially supported by DEMONS, a re-
search project supported by the European Commission under
its 7th Framework Program. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the DEMONS
project or the European Commission.

REFERENCES

[1] E. Cooke, FE. Jahanian, and D. McPherson, “The zombie
roundup: Understanding, detecting, and disrupting botnets,” in
Proceedings of the USENIX SRUTI Workshop, vol. 39, 2005,
p. 44.

[2] G. Ollmann, “Botnet communication topologies,” 2009.

[3] M. Feily, A. Shahrestani, and S. Ramadass, “A survey of
botnet and botnet detection,” in Emerging Security Infor-
mation, Systems and Technologies, 2009. SECURWARE’09.
Third International Conference on. 1EEE, 2009, pp. 268—
273.

[4] D. Barroso, “Botnets-the silent threat,” European Network
and Information Security Agency (ENISA), vol. 15, p. 171,
2007.

[5] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee,
“Bothunter: Detecting malware infection through ids-driven
dialog correlation,” in Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium. USENIX
Association, 2007, p. 12.

[6] A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-scale
botnet detection and characterization,” in Proceedings of
the first conference on First Workshop on Hot Topics in
Understanding Botnets, vol. 7. Cambridge, MA, 2007.

[7]1 E. Kosta, J. Dumortier, H. Graux, R. Tirtea, and D. Ikonomou,
“Study on data collection and storage in the eu,” ENISA,
European Network and Information Securiy, Tech. Rep.,
2012.

[8] G. Jacob, R. Hund, C. Kruegel, and T. Holz, “Jackstraws:
Picking command and control connections from bot traffic,”
in USENIX Security Symposium, 2011.

[9] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szyd-
lowski, R. Kemmerer, C. Kruegel, and G. Vigna, “Your botnet
is my botnet: analysis of a botnet takeover,” in Proceedings of
the 16th ACM conference on Computer and communications
security. ACM, 2009, pp. 635-647.

[10] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet
command and control channels in network traffic,” 2008.

[11] P. Mockapetris, “Domain names - concepts and facilities,”
http://www.ietf.org/rfc/rfc1034.txt.

[12] H. Choi, H. Lee, H. Lee, and H. Kim, “Botnet detection
by monitoring group activities in dns traffic,” in Computer
and Information Technology, 2007. CIT 2007. 7th IEEE
International Conference on. leee, 2007, pp. 715-720.

[13] N. Jiang, J. Cao, Y. Jin, L. Li, and Z. Zhang, “Identifying
suspicious activities through dns failure graph analysis,” in
Network Protocols (ICNP), 2010 18th IEEE International
Conference on. 1EEE, 2010, pp. 144-153.

[14] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-
Nimeh, W. Lee, and D. Dagon, “From throw-away traffic to
bots: detecting the rise of dga-based malware,” in Proceedings
of the 21st USENIX conference on Security symposium, ser.
Security’12, 2012, pp. 24-24.

[15] H. Guerid, K. Mittig, and A. Serhrouchni, “Privacy-preserving
domain-flux botnet detection in a large scale network,” in
Communication Systems and Networks (COMSNETS), 2013
Fifth International Conference on. 1EEE, 2013, pp. 1-9.

[16] H. Wang and Z. Gong, “Collaboration-based botnet detection
architecture,” in Intelligent Computation Technology and Au-
tomation, 2009. ICICTA’09. Second International Conference
on, vol. 2. 1EEE, 2009, pp. 375-378.

[17] M. E. Locasto, J. J. Parekh, A. D. Keromytis, and S. J. Stolfo,
“Towards collaborative security and p2p intrusion detection,”
in Information Assurance Workshop, 2005. IAW’05. Proceed-
ings from the Sixth Annual IEEE SMC. IEEE, 2005, pp.
333-339.

(18]

(19]

[20]

[21]

B. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Communications of the ACM, vol. 13, no. 7, pp.
422-426, 1970.

G. Vigna and R. A. Kemmerer, “Netstat: A network-based
intrusion detection system,” Journal of Computer Security,
vol. 7, no. 1, pp. 37-71, 1999.

S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T.
Heberlein, C.-L. Ho, K. N. Levitt, B. Mukherjee, S. E.
Smaha, T. Grance et al., “Dids (distributed intrusion detection
system)-motivation, architecture, and an early prototype,” in
Proceedings of the 14th national computer security confer-
ence. Citeseer, 1991, pp. 167-176.

A. Broder and M. Mitzenmacher, “Network applications of
bloom filters: A survey,” Internet Mathematics, vol. 1, no. 4,
pp. 485-509, 2004.

(22]

(23]

[24]

[25]

[26]

(27]

F. Leder and T. Werner, “Know your enemy: Containing con-
ficker,” The Honeynet Project, University of Bonn, Germany,
Tech. Rep, 2009.

“Zeus gets more sophisticated using p2p techniques,”
http://www.abuse.ch/?p=3499.

Damballa, “Pushdo evolves again: Enhances evasion with
domain generation algorithm,” 2013.

R. Danyliw, J. Meijer, and Y. Demchenko, “The incident
object description exchange format,” RFC 5070, Tech. Rep.,
2007.

“Alexa top sites,” http://www.alexa.com/topsites.

C. V. Zhou, S. Karunasekera, and C. Leckie, “Evaluation of
a decentralized architecture for large scale collaborative in-
trusion detection,” in Integrated Network Management, 2007.
IM’07. 10th IFIP/IEEE International Symposium on. 1EEE,
2007, pp. 80-89.

