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Abstract—Cloud computing is very useful for improving dis-
tributed applications performance. However, it is difficult to
manage risks related to trust when collaborating with unknown
and potentially malicious peers. Besides, trust evaluation is
the target of dishonest behaviors trying to disturb the control
process. In this paper, reputation-based trust management models
for cloud computing are proposed. These Peer-to-Peer (P2P)
reputation models are based on the interaction between peers.
Using evaluations and feedbacks, a central entity can estimate
the trust of a given peer. Three approaches are proposed to
estimate the trust: PerronTrust, CredTrust and CredTrust-trust.
They are studied, simulated and compared between them and to
two existing methods for trust under several attack scenarios. Our
analysis clearly shows that the third approach CredTrust-trust
combining the concepts of trust and credibility in an appropriate
way is the most efficient to avoid malicious behaviors and to guide
and advise future executions in the open cloud in term of selecting
the dependable and reliable peers in cloud environment.

Keywords—trust management; reputation; credibility; comput-
ing.

I. I NTRODUCTION

Cloud computing proposes efficient methods for service
delivery. It has however several security problems among
which the trust in the execution platform. In many cases,
customer doesn’t know how trustful the remote cloud peer
can be. According to [1], there are three major cloud service
models:
• Infrastructure-as-a-Service (IaaS): is a cloud computing
service offering on demand processing, network and storage.
Here the service provider role is to manage his machines.
He can provide controls in place regarding how machines
are created, memory used, time and performance measured
for clearing house procedures. Trust has to be given to the
provider as a whole.
• Software-as-a-Service (SaaS): is a software provided in the
form of service and not in the form of a computer program.
Cloud providers operate application software in the cloud and
users access the software from client frontends. Cloud users
do not manage the cloud infrastructure and platform where
the application runs. The trust problem is how to manage the
access to applications (establishing controls and policy models
and trusting the operator)
• Platform-as-a-Service (PaaS): is a platform service hosted
by an operator and accessed from internet. Cloud providers

deliver a computing platform that typically includes operat-
ing system, programming language execution environment,
databases, and web servers. The primary trust problem is on
protecting data (storage as a service) and the ability to encrypt
the data.
Cloud computing is usually deployed in one of three scenarios:
• Private clouds built for the exclusive use of one client,
providing the utmost control over data, security, and quality
of service. Here trust can be totally granted to the service.
• Public clouds include Amazon Elastic Cloud Compute,
Google App Engine, run by third parties and applications from
different customers, are likely to be mixed together on the
cloud’s servers, storage systems, and networks. Trust in this
case is to be built and is the main scope of our work.
• Hybrid clouds that combine both public and private cloud
models can help to provide on-demand, externally provisioned
scale services.
In a Cloud Security Survey [2], 32% of enterprises are
studying the opportunity of moving applications in hybrid
clouds (10% in production, 21% in implementation and 24%
piloting). However, the hybrid cloud is the most critical in
terms of identity management, open client, location awareness,
metering, management and governance. Cloud computing sys-
tems offer infrastructures for applications shared by multiple
tenants. These tenants are with different security domains.
Moreover, enterprises rely on the security processes and al-
gorithms put in place by providers, while not being able to
verify the security of their applications.

Systems like Cloud@Home [3] and Nebulas [4] discuss
deploying cloud services in a distributed volunteer way. In
fact, deploying cloud services in such systems comes with
advantages and drawbacks: Hybrid execution improves usage
of available resources. It provides scalability and low cost
deployment. But, malicious parties in public cloud may take
advantage of the system by deliberately performing poorly and
being dishonest or claiming more running time for monetary
benefits. Moreover, the job submission strategy must be wise
to choose the proper peers for submitting jobs. A malicious
group can also subvert the system and cause disastrous results.
These disadvantages can be addressed with a reputation based
trust management system, which can effectively filter out poor
performing and malicious nodes.

Trust management is increasingly attracting the attention of
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security experts. This concept has been studied in different
disciplines from economics to psychology, from sociology to
information and computer science. It is a major issue in the
open environment because participants are usually unknown
to each other since they belong to separate administrative
domains [5]. Trust can play an important role in the hybrid
cloud since it is an uncertain and a risky environment. Thus,
reputation based trust management is a specific approach to
evaluate and control the trust. For controlling trust, a good idea
is to use root trust entities. Amazon and eBay businesses [6],
rely on the broker network’s trustworthiness and reliability.
However, trust evaluation and control can be the target to
attacks. Adversaries with dishonest behavior can affect the
global trust evaluation process. That is why, we propose a
defense mechanism for trust evaluation.

In this paper, we develop a dynamic peer to peer reputation
model. We aim to detect possible cheating behaviors both
in the private and the IaaS public cloud scenarios. For this
purpose, we don’t use the reputation directly to identify
malicious peers but to feed three centralized trust models. The
first model uses directly reputation values to compute trust
vector. The other models consider the credibility to refine the
estimated trust and detect cheating on trust evaluation. Our
proposal is evaluated via simulations with potential attack
scenarios. The evaluation considers several attack scenarios
such as grouped attack, non-cooperation in trust evaluation and
falsification of trust results. We show that our refined algorithm
is resistant to all different behaviors of various kinds of peers.
Generally speaking, we believe that although our mathematical
models are tailored for a cloud context, they can be generalized
to other distributed peer to peer applications.

The rest of the paper is organized as follows: Section 2
exposes some contributions on trust and collaborative intrusion
detection. In Section 3, the system architecture is described.
Section 4 describes the proposed reputation model and algo-
rithms for trust management. Section 5 shows some simula-
tions results and comparison with existing works. Finally, the
paper concludes and lists some new ideas that can be fetched.

II. RELATED WORKS

In this section, we enumerate some contributions on trust
management and existing reputation-based trust models.

A. Trust Management

Trust can be seen as the general confidence in a person or
a thing. Generally, it is evaluated by values on a scale from
zero to one. In [9], authors explained that there are four major
parts concerning trust management:

• initial trust can find its root in social aspects. Marsh,
defining trust as a social phenomena, was one of the first
authors to introduce a computational model for trust [10].

• trust metrics: can be binary state to express trust and
distrust (0 and 1 or positive and negative), opinions or
probability metric. They can be global (evaluation from
all the users in the trust network) and local (evaluation
between two specific users in the trust network)

• trust propagation (how trust is managed when transitivity
is concerned), we can have two operations : concatenation
and aggregation,

• trust management architecture: trust can be implemented
as centralized, ad hoc or a mix of them.

In a trust system, nodes can rely on their own experience with a
given node to assess reliability. In addition to personal experi-
ence, a node can use the experiences from other peers (indirect
experience) obtained via recommendations. Recommendation
systems are hence important (social networks, e-commerce,
...etc.). This system seeks to predict the rating or preference
that users would give to an item they had not yet considered
[7]. This system helps in the evaluation and the propagation
of trust in various networks using trust management.
In general, collaborative filtering is the most popular approach
for building recommendation systems in social environment
[8]. Several trust management protocols [12], [13] and [14]
have been proposed for network security, data integrity, and
secure routing in different fields. In [14] a group-based trust
management scheme for clustered Wireless Sensor Networks
was proposed. This protocol reduces the use of memory for
storing trust scores and minimizes the cost associated with
trust evaluation of distant nodes compared to other works.
Fuzzy logic was introduced to trust models in [15] focusing on
the trustworthiness of sensor nodes. It was used to send trusted
data between sources and destinations but didn’t consider the
overhead due to trust in sensor networks.
Reputation is a concept closely related to trust. It is what is
generally said or believed about a thing. Reputation is seen
as one measurable means by which trust can be built, since
an entity can trust (distrust) another based on good (bad)
past experience and observation as well as collected referral
information about its past behavior.

B. Existing Reputation-based Trust Models

The aim of reputation-based trust models is to identify
the trusted nodes. These models use a simple process for
the selection of nodes. The first step is to rely on their
own experience with a given node to assess its reliability
(local trust). This trust can be directly assessed by taking
into account several factors such as: the quality of previous
interactions, their number and the satisfaction obtained after
each interaction. After that, nodes can use others reputation.

Recently, studies have focused on reputation mechanisms
and trust systems specific for P2P like applications [17]
(PeerTrust), [18] (EigenTrust) and others for social networks
like [16](Semantic Web). In eBay’s reputation system, a well
known system, buyers and sellers can rate each other after
each transaction, and the overall reputation of a participant is
the sum of these ratings over the last 6 months.

EigenTrust model computes a global trust metric using
system-wide information. The approach in [18] is based on the
notion of transitive trust and addresses the collusion problem
by assuming there are peers in the network that can be pre-
trusted. However, no credibility concept is proposed in Eigen-
Trust. In [17], authors calculate the credibility of peers based



on the feedback after each interaction and use trustworthiness
factors: the feedback received by other peers, the number
of transactions and the credibility of sources. CuboidTrust
[19] is a model of trust for global peer-to-peer based on
reputation, which is built around four relations based on three
trust factors: the peer contribution in the system (Resources),
peer trustworthiness (calculated from feedbacks) and quality
of resources. Each of these factors is represented by a vector
form of a cuboid coordinates x, y, z. Distributed models in
P2P face the problem of subjectivity as the parameters are
evaluated in peers.

Several studies in research and industry combine trust
management and cloud computing environment [20]. Some
trust models in grid computing apply trust for enhancement of
resource allocation [21] [22]. In [23], authors include an inde-
pendent trust management module on the top of other security
modules. They provide trust strategies respecting cross-clouds
environments. In [24], the trust model for cloud resource is
based on a security level evaluator (by authentication type), a
feedback evaluator and a reputation evaluator.

The proposed trust management in cloud computing are
based on a simple arithmetic sum like in [24]. The models
proposed for P2P and distributed network have not been
tested in cloud computing environments. [25] presents a trust
model to solve security issues in cross-clouds environment.
The model is composed of three parts: trust decision for the
customer and the provider, recommendation and trust update.
The results of the presented works for trust management in
cloud are not based on solid theoretical foundation. It is neces-
sary to build a suitable solid foundation for trust management.
In [26], a formal trust model is given for grid computing.
The architecture combines trust based authentication, job
request and recommendation for trust update. This work is not
implemented. Previous work for trust management in cloud
computing are not specialized on how to take efficiently the
recommendation. In [27], we use some algebraic methods to
evaluate the trust in multi-domain cloud based applications.
Our model in this paper compute global trust needed for
submitting tasks in public cloud taking into consideration the
credibility factor and the history of previous interactions.

III. SYSTEM OVERVIEW

In this section, we first describe our network architecture.
Then, we describe the possible behavior of peers in the system
following the BAR (Byzantine, Altruistic and Rational) model.

A. System Architecture

We start from the assumption that IaaS cloud is used to
remotely execute some tasks of an application. Parameter
Surveys Applications (PSA) is an example of applications
executed in such hybrid environment. This application is
composed of many executed tasks, one part in the IaaS and
another one in the local resources of the enterprise (the private
cloud). So, let us assume that there are N peers (a finite
set of local resources of the enterprise and peers allocated

from the IaaS cloud computing) executing tasks for the same
application, a portal and a scheduler shown in Fig. 1 :

Figure 1. System overview

• The portal represents the interface to execute the appli-
cation. It brings the other parties together. The portal
distinguishes between two types of peers: local and
remote.
The local peers are supposed to be in a trusted and
protected location (but they can launch internal attacks
on trust evaluation (cheating)).
Remote ones are supposed to be in different domains,
that are not necessarily well protected.

• The scheduler organizes the application’s execution. It
makes the execution plan.

• The user submits the application and fixes the deadlines
and execution time with the portal.

Fig. 2 gives more details about the architecture of our
system. Reputation data is needed for the trust evaluation of
the peers are stored in the portal. It stores the database of
collected reputation. Its task is to compute the trust value for
each peer and make the decision. For that, the portal has three
modules:
• Reputation collector: responsible for retrieving local rep-

utation vectors.
• Trust manager: responsible for calculating the global trust

vector. We can notice in this module that the trust is
performed in a dynamic and centralized way (in a trusted
entity).

• Decision maker: responsible for deciding for current and
future execution. The decision is based on the final
trust vector. It consists on guiding the scheduler in the
application organization. It means that if the trust score
is good, the scheduler will keep the peer in the execution
plan.

In our system, each peer has three modules and local storage
on its executer manager:



Figure 2. Architecture Details

• Evaluation engine: responsible for a cyclic update of
evaluation using the model explained in the section IV-A.

• Execution engine: responsible for the task of execution
and result delivery to other peers.

• Reputation sender: responsible for sending evaluations to
the portal.

B. Some Possible Peers Behavior

The executer in our system can have two possible behaviors:
a normal behavior or a cheating behavior. We can clarify the
behaviors by using the BAR model recalled below.

Definition 1: BAR model [28], Byzantine Altruistic Ratio-
nal model (known as BAR) is a model of computer security,
distributed systems used to serve as an error detection model.
Currently it is mainly used in P2P systems. Thanks to this
model, a peer can be classified into one of three categories
that represent the BAR model, namely:

• Altruistic: the peer is considered as a peer working
accurately according to the protocol.

• Rational: the peer is only interested in optimizing the
use of its resources. It does deviate from the protocol
used if it considers that because of using this protocol,
its performances decrease.

• Byzantine: (or malicious) peer does not follow the used
protocol, either because it is compromised (or not well
configured) or because it follows a power optimization of
resources that is not the same as for rational peer.

In our system:
• Normal behavior: this corresponds to the behavior of

Altruistic peers.
• Cheating behavior: Peers that are rational or byzantine. This
type of peer adopts resource optimization strategy or will not
respect the reputation management model. they can choose not

to cooperate in the evaluation process. The probability to have
cheating local peers is less than to have cheating remote ones.

IV. PROPOSED TRUST MANAGEMENT SYSTEM

In this section, we propose a reputation model and three
trust management algorithms based on algebraic calcula-
tions: PerronTrust (can be called Power trust), CredTrust and
CredTrust-trust.

The first approach is basically a power method to compute
the trust vector. Since the convergence of the algorithm is
based on Perron-Frobenius theorem, we call it PerronTrust.
To make PerronTrust more resistant to attacks, we add a
credibility parameter. So, the trust is calculated based on the
credibility of peers. This idea will be illustrated in CredTrust
model. To take into account more sophisticated attacks, a
further enhancement is proposed leading to CredTrust-trust
model. Details will follow in Section IV-B.

All these trust models use the same reputation model de-
scribed in Section IV-A. The reputation values are maintained
in the trusted entity "Portal" that can compute the credibility
and the trust in an efficient and objective way. The advantage
is that this entity is a trusted one and can decide the future of
the application (avoid the peer subjectivity problem).

A. Proposed Reputation Model

The reputation of peers can be estimated based on local ob-
servations of their behaviors. So, after the interaction between
peers, each peer will give reputation values to the verified
peers.

This reputation value in the context of execution on clouds
is based on each interaction in the past. We can notice the
importance of some factors in the evaluation process: the
performance of the peer in terms of time taken, the correctness
of the returned results and the crashes experience. Cloud peers
can be prone to errors or may be byzantine or rational. When
each peer ensures that the returned results are correct and the
time respected, the risks are reduced. If the results are not
correct and the peer is cheating, the task is resubmitted to other
peers. This ameliorates the quality and security of execution.

Definition 2: Let T be a reputation matrix. In order to have
the global view of the reputation management, we construct
this matrix of peer to peer reputation scores. It is initialized
to be 0.5 (ignorance).
The result of the reputation evaluation process is this matrix,
T containing peer to peer reputation values between peers.

Definition 3: The P2P reputation scoreTij(t) is the evalu-
ation of peeri to peerj at time t. Tij(t) depends on time.

Definition 4: dij(t) is the direct evaluation of behaviors.
dij(t) is updated through verifications like challenge sent
periodically: it represents the fraction of positive results when
peer i verifies peer j. As we said before , the verification is
in term of time taken to do a job, crashes of a node, and
correctness of returned results. For example after verifications
between two peer 1 and 2 with 4 positive results and 5 negative
results, the evaluation score is 4/4+5=0.44. So,dij(t) = 0.44.

Definition 5: δt is the update period



The reputation value is evaluated following the Eq.1.

Tij(t) =
{

p.Tij(t− δt) + (1− p).dij(t), if i verifies j;
Tij(t− δt), else.

(1)

In equation (1), we want to assign more weight to recent
interactions and less weight to the previous ones. So, p is used
for that purpose.

B. Proposed Trust Models

Let first introduce some definitions and notations needed
for our models. Then, we describe the proposed algorithms to
compute the trust.
||.||1 and ||.||2 respectively stand for thel1-norm andl2-

norm of vectors.
T t is the transpose of the matrixT .

Definition 6: Let π be the trust vector of sizeN . Initially,
all peers are equally trusted, i.eπi = 0.5 wherei = 1, 2, ..., N .
It is represented as a real number in the range of [0, 1] where
1 indicates complete trust, 0.5 ignorance, and 0 distrust.

Definition 7: ε is the convergence threshold.
Definition 8: Threshold is the trust limit used by the portal

in the "decision maker" module.
1) PerronTrust Model : The PerronTrust algorithm is a

power method. Notice that the power method is used in
different areas including, for example, the computation of the
PageRank of web documents [29]. PageRank represents a way
of ranking the best search results based on a page’s reputation.
It ranks a page according to how many other pages are pointing
to it. To derive a reputation score, they combine the collection
of hyperlinks to a page seen as public information. Google’s
search engine is based on this PageRank.

Using the reputation matrixT , and the current trust vector,
we get a new approximation of the trust of each peerj through
a combination of the reputations ofj:

πj ←
∑N

i=1(Tij .πi)
||π||1 . (2)

If a peeri has a high trust score, then it is natural to give
more importance to the reputation values that it is assigning
to other peers. Writing Eq.2 for each peer leads to Eq.3:

π ← T t.π

||π||1 . (3)

The trust will then be iteratively computed by repeating
Eq.3 until the trust vector becomes stable. The convergence
of Algorithm 1 is based on the Perron-Frobenius theorem that
we recall here for sake of completeness. The Perron Frobenius
theorem asserts that a real square matrix with strictly positive
entries has a unique largest real eigenvalue and that the
corresponding eigenvector has strictly positive components.

THEOREM 1: Algorithm 1 will converge to the trust vector
resultπ after a certain number of iterations.

Proof: Since we can assume thatT is the real square
matrix with positive entries, then we know that by a repetitive
application of the previous iterative formula, the vectorπ
will converge to the unique eigenvector associated with the
largest eigenvalueλmax(T t) = λmax(T ). Notice that we
will get ||π||1 = λmax(T ). The convergence is guaranteed
if the starting point (the first approximated score vector) is
not orthogonal to the eigenvector. This is clearly satisfied by
the positive vectorπ = (0.5, 0.5, 0.5...) since the eigenvector
is also positive by the Perron-Frobenius theorem.

The iterative computation in Algorithm 1 continues until
the total difference betweenπ(t) and π(t − 1) becomes
smaller thanε. We have proved this convergence before. The
convergence threshold is often predefined by the portal of the
application. The threshold can be adapted depending on the
precision wanted by the portal.

Algorithm 1 PerronTrust algorithm
Require: ε, N
Ensure: π

1: Retrieve reputation values (inT )
2: Initialize the trust vectorπ
3: while ||π(t)− π(t− 1)||1 > ε do
4: Calculate trust vector :π ← T t.π

||π||1
5: end while

2) CredTrust Model :In the previous model, some peers
might have a good trust score while they are not really able
to give a good estimation of the reputation of the other
peers. Then, it is important to assign less importance to their
evaluation. For that, we want to introduce a parameter that can
measure this ability. This parameter is called credibility.

If a peer gives wrong evaluation about other peers, its
credibility value is decreased and its evaluation values have a
reduced impact on the trust of other peer. Similarly, if a peer’s
evaluation is good and in agreement with other evaluation
peers, its credibility should be high. The credibility of a peer
is used to weight the feedback it reports.

Let us first add some definitions:
Definition 9: Let Cred be the vector containing the ability

to evaluate correctly the trust of peers (credibility).Credi

corresponds to the credibility of peeri. Cred values are
normalized so that they lie between0 and1.

Given the reputation value of peerj seen by peeri and the
trust estimated for peerj in the portal, we can evaluate the
global credibility of the peeri using the following formula
(4):

Credi = 1−




N∑
j=1

|πj − Tij |2

N∑
j=1

|πj − [1− πj ]|2




α

(4)

where[1− πj ] denotes the nearest integer to1− πj andα
is fixed number. Observe that[1−πj ] is equal to0 if πj > 0.5
and to1 if πj < 0.5.



The credibility ofi is equal to0 if the evaluation given byi
is always the farthest possible evaluation that can be accepted
by the system. Conversely, ifTij is equal toπij for eachj,
thenCredi is equal to1.

Given these credibilities scores of each peeri in the system,
it is now natural to estimate the global trust vector using the
formula (5). To have trust between0 and 1, we divide by
||Cred||1.

π ← T t.Cred

||Cred||1 (5)

The algorithm CredTrust performed by the portal is sum-
marized below.

While we have not a formal convergence proof of Algorithm
2, all our simulations show that convergence is obtained. We
might add that (5) can be written in the formπ ← f(π) where
f is a function obviously defined by combining (5) and (4).
The functionf is clearly continuous. Each vectorπ belonging
to the convex hull of the rows of the matrixT (columns ofT t)
is mapped to a vectorf(π) belonging to the same convex hull.
Using Brouwer fixed-point theorem, we can deduce thatf has
at least one fixed point: i.e., a vectorπ such thatf(π) = π. A
deeper study of the functionf is required to deduce that the
iterative processπ ← f(π) converges to a fixed point.

Algorithm 2 CredTrust algorithm
Require: ε, N
Ensure: π

1: Collect reputation evaluationT
2: Initialize the trust vectorπ
3: Initialize the credibility vector Cred
4: while ||Cred(t)− Cred(t− 1)||1 > ε do
5: for i ∈ {1, ..., N} do

Credi = 1−




N∑
j=1

|πj−Tij |2

N∑
j=1

|πj−[1−πj ]|2




α

6: end for
7: π ← T t.Cred

||Cred||1
8: end while

3) CredTrust-Trust (CredTrust2) Model : As it will be
shown in the simulation section, while the CredTrust approach
is generally more efficient than the PerronTrust approach, there
are some situations where it gives less precise results. This
happens if there are some malicious peers who decide to
correctly evaluate most of the other peers except one chosen
malicious peer who is intentionally given a good evaluation.
Since the malicious peers are giving the right evaluation
in almost all cases, they will have a high credibility. This
means that the evaluation given by these malicious peers will
have more impact on the final result. Since these malicious
peers decided to over-estimate a chosen malicious peer, this
malicious peer will have a final trust higher than the one
obtained by PerronTrust approach.

To overcome this problem, we are going to re-introduce
again the trust in the iterative process. Instead of using only

the credibility (as in CredTrust) or the trust (as in PerronTrust),
we combine both of them.

Algorithm 3 CredTrust-Trust algorithm
Require: ε, N
Ensure: π

1: Collect reputation evaluation (inT )
2: Initialize the trust vectorπ
3: Initialize the credibility vector Cred
4: while ||Cred(t)− Cred(t− 1)||1 > ε do
5: for i ∈ 1..N do

Credi = 1−




N∑
j=1

|πj−Tij |2

N∑
j=1

|πj−[1−πj ]|2




α

6: end for
7: π ← T t.(Cred⊗π)

||Cred⊗π||1
8: end while

More precisely, we modify the Eq. 5 to have the new
following formula :

π ← T t.(Cred⊗ π)
||Cred⊗ π||1 (6)

whereCred⊗π denotes the componentwise product ofCred
andπ. It is now clear that even if a peers has a high credibility,
the impact of its opinion is attenuated if he has a low trust.

The same convergence remarks related to the previous
algorithm apply also for Algorithm 3.

4) EigenTrust Model :Algorithm 4 presents a reminder of
EigenTrust.

Algorithm 4 Basic EigenTrust algorithm
Require: ε, N
Ensure: π

1: Retrieve reputation values (inT )
2: Normalize the values in T to have stochastic matrixT2
3: Initialize the trust vectorπ
4: while ||π(t)− π(t− 1)||1 > ε do
5: Calculate trust vector :π ← T2t.π
6: end while

5) AverageTrust Model :This method is used for eBay and
some models in cloud computing [24]. Algorithm 5 presents
this simple method.

Algorithm 5 AverageTrust algorithm
Require: ε, N
Ensure: π

1: Retrieve reputation values (inT )
2: Initialize the trust vectorπ
3: Calculate trust vector : For each iπi ← Average(Ti)

V. SIMULATION ANALYSIS

In this section, we analyze the performance results of the
three approaches described in the previous section. After
presenting the main simulation parameters, we show by simu-
lation the benefit of trust in jobs affectation. We describe a set



of attacks and behaviors that are considered here. Then, we
compare the three models PerronTrust, CredTrust, CredTrust-
trust, AverageTrust and EigenTrust under illustrated attacks.

A. Simulation Parameters

We first consider an hybrid execution with20 peers in an
IaaS cloud and80 peers running on local resources. So, the
total number of peers in the system isN = 100. Peers can be
either normal or cheating. The behavior of each peer is chosen
randomly depending on: 1/ whether the peers is a local one or
it belongs to the IaaS, 2/ the attack scenario (peers behavior)
described below.

B. Attack Models: Cheating Peers’ Behaviors

In this section, we present some the possible behaviors of
the peers that are considered in our experiments.

1) Byzantine Peers’ Behaviors:

• Inverting peers: This type of peers always inverses
the scores of reputation obtained after interaction with
others (gives a good evaluation to honest peers and a bad
evaluation to malicious peers).

• Coalition peers: Peers form a malicious group by assign-
ing a high reputation value to most of the other peers
except one malicious peer who is intentionally given a
good evaluation.

2) Rational Peers’ Behaviors:

• Less efficient peers:Partially altruistic peers are rational,
they want to optimize resources of interaction with the
evaluated peer. They are less efficient and affect the
computation of the reputation.

C. Results and Comparison Analysis

We focus in this section on the simulation of the different
attack scenarios described before and try to analyze the results.
We compare the results of our scheme with the EigenTrust [18]
scheme and AverageTrust under these scenarios. We compare
the final trust assign to cheating peers and the difference
between normal peer and cheating peer of our three schemes
with AverageTrust scheme and EigenTrust. The second metric,
the difference in term of trust between normal peer and
cheating peer, is the ratio of trust assign to cheating peers over
trust assign to normal peers, is used to evaluate the accuracy
of the decision based on trust.

1) Byzantine Peers’ Behaviors: Inverting Peers:We sup-
pose here that all peers cooperate in the evaluation of reputa-
tion values. the reputation values given by peers in the system
are as follow:

• inverting peers estimate other inverting peers with 0.8 and
altruistic peers with 0.2,

• altruistic peers estimate inverting peers with 0.2 and
others with 0.8.

The trust values estimated for inverting peers are shown in
Fig. 3.

When the proportion of malicious peers is about10%,
the three algorithms give almost the same estimation for the

Figure 3. Trust under byzantine peers’ behaviors: inverting peers

trust of malicious peers. When the fraction of malicious peers
increases, the trust values increase for the three models.

Not taking into consideration the credibility factor, Per-
ronTrust and AverageTrust can not punish the peers that give
wrong reputation values. While CredTrust is doing better
than PerronTrust since it is considering the credibility of
peers, CredTrust-trust outperforms PerronTrust, CredTrust and
AverageTrust. This is again due to the fact that CredTrust-trust
penalizes more the inverting byzantine peers.

Suppose that we want to compare our three algorithms
to EigenTrust and AverageTrust in term ofRTI =
Trust of invertingpeers
Trust of altruistic peer

Figure 4. RTI under inverting byzantine peers’ behaviors

Results are shown in Fig. 4 where we consider the three
algorithms CredTrust-trust, PerronTrust and CredTrust com-
pared to EigenTrust and AverageTrust, with different densities



of malicious peers.
Observe that CredTrust-trust outperforms PerronTrust,

CredTrust, EigenTrust and averageTrust. This is again due
to the fact that CredTrust-trust penalizes more the inverting
byzantine peers. It is clearly that our three methods compared
to EigenTrust and AverageTrust help in taking secure decision
and then assure trusted execution of tasks in the public cloud.

2) Byzantine Peers’ Behaviors: Different Level of Mali-
ciousness:We consider that we have two types of byzantine
peers:

• Group 1: Peers inverse the reputation of others. They
estimate peers from group 1 and 2 with 0.8 and altruistic
peers with 0.2,

• Group 2: Peers different from altruistic peers and peers
from group 1 (They don’t inverse the scores). They
estimate peers from group 1 and 2 with 0.6, altruistic
peers with 0.2.

We will assume that20% of the peers belong to group 1,
20% belong to group 2 and60% of the peers are altruistic.

We consider also ratios:
• R1 = Trust for group 1 peers

Trust for altruistic peers • R2 =
Trust for group 2 peers

Trust for altruistic peers
Obtained results are shown in the table I:
In this scenario, we affirm that:

• the credibility of peers from group 1 is clearly less
important in CredTrust-trust than in CredTrust,

• the credibility of peers from group 2 is clearly less
important in CredTrust-trust than in CredTrust,

• the credibility of peers in group 1 is less important than
the credibility of peers in group 2,

• the trust assigned to peers from group 1 is clearly less
important in CredTrust-trust than in PerronTrust and
CredTrust and AverageTrust,

• the trust assigned to peers from group 2 is clearly
less important in CredTrust-trust than in PerronTrust ,
CredTrust and AverageTrust,

• altruistic peers are more recognized in the CredTrust-trust
model than in PerronTrust, CredTrust and AverageTrust,

• R1 is less important in CredTrust-Trust than in Aver-
ageTrust, CredTrust and PerronTrust,

• R2 is less important in CredTrust-Trust than in Eigen-
Trust, AverageTrust, CredTrust and PerronTrust,

• EigenTrust can’t detect the byzantine peer in this case
since ratios R1 and R2 are equal to 1.

In this case also, CredTrust-trust (CredTrust2) outper-
forms PerronTrust, CredTrust, AverageTrust and EigenTrust.

3) Byzantine Peers’ Behaviors: Coalition:We consider that
malicious peers select one attacker of the coalition. They
assign to this attacker good reputation (= 1). Malicious
collusive peers provide true reputation to hide their essences.
The attacker evaluates peers in a consistent way (like an
altruistic peer) in order to increase his credibility.

We will focus on the trust value of the attacker chosen by
the coalition. We still use the three algorithms, EigenTrust and
AverageTrust to compute the trust vectors.

Results when we vary the fraction of malicious peers are
given in Fig. 5. We can see that it is still possible to detect
the cheater with all algorithms especially for CredTrust-trust
and PerronTrust. For CredTrust and averageTrust, when the
fraction of malicious peers reaches44%, it becomes difficult
to detect the attacker chosen by the coalition since its trust is
above the threshold of decision is0.5.

Figure 5. Trust under coalition

Observe that CredTrust and AverageTrust give almost the
same estimation of trust for the chosen attacker.

Suppose that we want to compare our three algorithms
to EigenTrust and AverageTrust in term ofRTC =
Trust of the chosen attacker peer

Trust of altruistic peer .
Results are shown in Fig. 6 where we consider the three

algorithms CredTrust-trust, PerronTrust and CredTrust com-
pared to EigenTrust and AverageTrust, with different densities
of malicious peers. Observe that CredTrust and AverageTrust
show high value of RTC because the attacker evaluates peers
in a consistent way (like an altruistic peer) in order to increase
his credibility. As CredTrust is only based on credibility the
gap between altruistic and the attacker is small.

However, EigenTrust, PerronTrust and CredTrust-Trust are
performing well but CredTrust-Trust considering credibility
and trust gives better value of RTC.

4) Rational Peers’ Behaviors: Less Efficient Peers:In this
attack, we have byzantine inverting peers and rational less
efficient peers. IT means that we simulate the inverting attack
and we suppose that in the system we have efficient and 20 %
less efficient rational peers. Less efficient peers are cooperative
but they are not able to evaluate correctly malicious behaviors:
they give 0.4 as an estimation for malicious behaviors (0.8 for
altruistic and other less efficient peers). In addition, we have
efficient altruistic peers that evaluate correctly other peers:
estimating inverting peers with 0.2 and others with 0.8.

First, let’s focus on the credibility seen in CredTrust and
CredTrust-Trust. In Fig. 7, we show that the credibility of



Table I
RESULTS UNDER DIFFERENT LEVELS OF MALICIOUSNESS

PerronTrust CredTrust CredTrust2 Eigen Average
Trust for group 1 peers 0.3204 0.3239 0.2364 0.4020
Trust for group 2 peers 0.3216 0.3265 0.2371 0.4040
Trust for altruistic peers 0.6833 0.6794 0.7670 0.6020

Credibility for group 1 peers 0.2922 0.2587
Credibility for group 2 peers 0.5844 0.5173
Credibility for altruistic peers 0.8164 0.9523

R1 0.468 0.476 0.308 1.002 0.667
R2 0.456 0.480 0.309 1 0.671

Figure 6. RTO under coalition

the altruistic efficient peers are more important in CredTrust-
trust than in the CredTrust. We favorite these peers in the
computation of the trust scores in the system.

Figure 7. Comparison of credibilities

Second, results of the trust of malicious peers under
this efficiency problem are shown in Fig. 8. We can notice
that CredTrust-trust outperforms PerronTrust, CredTrust and

AverageTrust. This model gives the most significant trust
to potential malicious peers under 40% of malicious ones.
This is due to the credibility effect. In fact, the credibility of
less efficient peers is considered in the computation of the
trust. Hence, the model considering credibility can efficiently
distinguish efficient peers from less efficient ones.

Figure 8. Comparison under efficiency problems

Third, suppose that we want to compare our three algo-
rithms to EigenTrust and AverageTrust in term ofRTL =
Trust of byzantine peers
Trust of altruistic peer . Results are shown in Fig. 9.

We can notice that CredTrust-trust outperforms PerronTrust,
CredTrust, EigenTrust and AverageTrust. In this case, we can
notice again the benefit of credibility to make clear decisions
between behaviors. That is why, CredTrust and CredTrust-
Trust outperform PerronTrust, EigenTrust and AverageTrust.

VI. CONCLUSION

In this paper, we designed new algorithms to detect rational
and byzantine (malicious) peers in the context of hybrid
cloud. We considered a dynamic reputation as a peer to peer
evaluation. Three models are proposed and compared under
different cheating strategies. First, PerronTrust, a model con-
sidering the computation of trust based on Perron algorithm.
Second, CredTrust improves the first approach by introducing
the concept of credibility when the trust vector is updated.
A third model, CredTrust-trust is proposed by combining the



Figure 9. RTL under under efficiency problems

trust and the credibility parameters in the iterative updating
process.

Simulations and comparison with two well-known existing
works are performed. The results of the first part of experi-
ments show that the proposed model selects the dependable
and reliable peers in cloud environment. Second part of
simulations confirms also that the credibility is well suited
to clarify the behaviors of malicious (byzantine) and rational
peers.

We also noticed that many collective attacks and compro-
mised peers can be clearly detected with high accuracy and
low false alarm probability. This is particularly true when
CredTrust-trust is used. It outperforms the well-known Eigen-
Trust scheme and AverageTrust significantly. The combination
of trust and credibility improves the performances of the
method in a very significant way. Moreover, the complexity
of the algorithm is very limited allowing it to be used in large
scale systems.

Our framework results can help in making decision on
whether to purchase execution in resources from an unknown
supplier or not.

One possible future research direction is to propose a
gossip-based algorithm for reputation aggregation in a com-
pletely distributed system.
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