
A Collaborative Approach to Situational
Awareness for CyberSecurity

M. Lisa Mathews, Paul Halvorsen, Anupam Joshi and Tim Finin
Computer Science and Electrical Engineering

University of Maryland, Baltimore County
Baltimore, MD, USA

{math1, pmghalvorsen, joshi, finin}@umbc.edu

Abstract— Traditional intrusion detection and prevention sys-
tems have well known limitations that decrease their utility
against many kinds of attacks. Creating a new system that col-
laboratively combines information from traditional and nontra-
ditional sensors to produce new, relevant signatures is one way to
deal with these limitations. In this paper, we present a frame-
work that uses this collaborative approach, as well as the details
for a network traffic based classifier that shows promise for de-
tecting malicious traffic.

Keywords- cybersecurity; intrusion detection; situational
awareness; information extraction

I. INTRODUCTION
As we incorporate computers into more aspects of our lives,
security attacks that target these systems become more invasive
and damaging. Intrusion detection and prevention systems
(IDPSs) are one way to safeguard the cyber-systems we use,
but they have limitations. Current state-of-the-art IDPSs per-
form a simple analysis of host or network data and then flag an
alert. Only known attacks whose signatures have been identi-
fied and stored in some form can be discovered by most of the-
se systems. Many times an attack is only revealed after some
amount of damage has already been done. Also, traditional
IDPSs are point-based solutions incapable of utilizing infor-
mation from multiple data sources and have difficulty discover-
ing newly published or zero-day attacks. Recent security at-
tacks follow a low-and-slow intrusion pattern where, instead of
doing as much damage as quickly as possible, the goal is to
remain undetected for as long as possible and slowly weaken a
system’s defenses. Traditional intrusion detection and preven-
tion systems have difficulty discovering and stopping these
types of attacks.

To address these issues, we are developing a semantic ap-
proach to intrusion detection that uses traditional as well non-
traditional sensors collaboratively [1]. Traditional sensors in-
clude hardware or software such as network scanners, host
scanners, and IDPSs like Snort and Norton AntiVirus. Poten-
tial nontraditional sensors include sources such as online fo-
rums, blogs, and vulnerability databases which contain textual
descriptions of proposed attacks. After analyzing the data from
these sensors, the information extracted is added to a
knowledge base that contains rules or policies used to identify
the situation or context in which an attack can occur. By hav-
ing different sources collaborate to discover potential security
threats and create additional signatures, the resulting situation-

al-aware IDPS would be better equipped to stop creative at-
tacks such as those that follow a low-and-slow intrusion pat-
tern. This paper describes this collaborative approach to cyber-
security and details a specific module we have built to identify
potential attacks using a network traffic flow classifier.

II. BACKGROUND
An Intrusion Detection System (IDS) is a set of tools that runs
passively in the background to determine if components of a
system, as reflected in the network or host monitoring data, are
behaving maliciously. When an IDS runs passively, it notes
potential security breaches and logs them or notifies an opera-
tor but takes no action to prevent or mitigate the problem. For
example, if an IDS detects the unauthorized transfer of packets
over the network, it takes no action against the flow of traffic
or the hosts on the network. Active systems, referred to as In-
trusion Prevention Systems (IPSs), seek to stop malicious be-
havior and traffic before harm is done. These two systems usu-
ally work in conjunction to form and IDPS. Figure 1 shows the
general flow to current IDPSs.

The system architecture designed for the collaborative situ-
ation-aware IDS [1] comprises data streams from individual
sensors that are potentially deployed enterprise wide, and
sometimes even across enterprise boundaries. This data can be
used directly, or after some analysis, as will be discussed later
in this paper specifically for network traffic flow data. The
collaborative component is provided by a combination of an
ontology, knowledge base, and reasoner working together. The
data streams include the traditional and nontraditional sensors
and can be viewed as different channels that provide useful
information related to an attack. Relevant information and
events from these data streams are extracted and represented in
the ontology. These are asserted into the knowledge base. The
integration and reasoning over this aggregated data enables
collaborative detection of complex attacks.

Our ontology is an extension of one developed earlier by
our group [2, 3] to describe events related to cybersecurity.
The ontology consists of three main classes: ‘means’, ‘conse-
quences’, and ‘targets’. The ‘means’ class describes various
methods of executing an attack; the ‘consequences’ class de-
scribes the possible outcomes of an attack; and the ‘target’
class contains the information regarding the system under at-
tack.

This research was partially supported by MURI award FA9550-08-1-0265
from AFOSR. The work of M. Lisa Mathews was supported by the National
Science Foundation Scholarship for Service program.

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250794

 The information extracted from the different data streams
is asserted using the terms in the ontology. The entities col-
lected from different data sources can be properties of a class in
the ontology (e.g., port number, IP address, OS version, hard-
ware platform etc.) or objects of the classes defined in the on-
tology. The knowledge base is built up by encoding the infor-
mation as Web Ontology Language (OWL [15]) and Resource
Description Framework (RDF [16]) assertions. We serialize
these using Notation-3 (N3 [17]) triples of the form (subject
predicate object) that asserts that the relation p holds between s
and o.

For example, Figure 2 shows the free text description from
the CVE-2012-2557, which is available from the National Vul-
nerability Database1 (NVD). Our text processing module can
analyze this description and assert the fact that the software
product Internet Explorer 6 has the use-after-free vulnerability
into the knowledge base. In our ontology, the ‘user-after-free
vulnerability’ is an instance of the class ‘Backdoor’, which is a
subclass of ‘MaliciousCodeExecution’, which in turn is a sub-
class of ‘Means’ class. The reasoner would be able to automat-
ically deduce that it was looking at the means of some potential
attack. The sensor information is used to continuously update
the knowledge base.

The reasoning logic module takes inputs from different data
streams, the knowledge asserted into the knowledgebase, and
rules expressed in the security ontology to infer the possibility
of a threat or attack. The rules typically come from domain
experts. For example, computer forensics experts detect many
complex attacks by combing evidence from various different
logs and traces. Such rules can be expressed in our ontology
and an appropriate rule language (in our case, Jena [18] rules).
The reasoner logic looks at the rules from the knowledge base
and information gathered to flag an alert, giving the means,
consequences, and targets of the potential attack. The
knowledge base that is built up by asserting the ontology is
used by these rules to derive chains of implications. Instances
are asserted into the knowledge base as events occur. For in-
stance, consider the IE6 vulnerability described in Figure 2. A

1 http://nvd.nist.gov/

rule that accounts for this threat, like the one in Figure 3, could
say that if an affected version of Internet Explorer is running
(as detected by a host based sensor), that the user has visited a
previously unvisited site (as detected by an application level
gateway) that has a negative reputation (as reported by com-
mercial providers such as Symantec), and that a connection has
subsequently been opened to machine in a known range of
zombie addresses (as detected by a Wireshark and SORBS), an
attack is likely occurring.

The knowledge base can also be dynamically queried by an
analyst using the SPARQL [19] RDF query language.
SPARQL queries consist of triple patterns consisting of a sub-
ject, predicate and object that are URIs, literals or variables
(terms beginning with a '?', along with conjunctions, disjunc-
tions, and optional patterns. If there are any triples in the
knowledge base that match the query either as the result of an
assertion of a fact or a derivation of rules resulting from the
chain of implication, the value of those triples will be returned.

Let us now focus on the sensing modules that form ele-
ments of this collaborative system. Traditionally, most of the
signatures used by IDSs/IPSs are static and will only look for a
very specific pattern in the traffic (i.e. a packet every three se-
conds), but will miss anything not in that specific signature (i.e.
a packet every five seconds). Due to this limitation, a large
number of signatures are needed to block a wide range of mali-
cious traffic. Snort comes preconfigured with 16,000 rules and
currently has over 20,000 additional signatures available for
download [5].

These signatures can be labeled as traffic or data signatures
depending on what information is extracted from a packet.
Traffic signatures observe patterns in a traffic flow in order to
detect anomalies using patterns that fall into two primary cate-
gories: header information and flow information. Typical ele-
ments of header information used are ports, IP addresses, and

{ IDPS:scannerLog IDPS:hasBrowser ?Browser
 IDPS:gatewayLog IDPS:hasURL ?URL
 ?URL IDPS:hasSymantecRating “unsafe”
 IDPS: scannerLog IDPS:hasOutboundConnection “true”
 IDPS:WiresharkLog IDPS:isConnectedTo ?IPAddress
 ?IPAddress IDSP:isZombieAddress “true”}
=>
{ IDPS:system IDPS:isUnderAttack “user-after-free
 vulnerability”
 IDPS:attack IDPS:hasMeans “Backdoor”
 IDPS:attack IDPS:hasConsequence “Unautorized
 RemoteAccess”}

Figure 3. This rule, serialized as N3, asserts RDF triples describing a potential
attack based on the presence of triples representing the state of the system and
recent events.

Use-after-free vulnerability in Microsoft Internet Explorer
6 through 8 allows remote attackers to execute arbitrary
code via a crafted web site that triggers access to a deleted
object, aka "cloneNode Use After Free Vulnerability."

Figure 2. This note from CVE-2012-2557 is a example of the kind of text that
can be analyzed to detect concepts, entities, events and relations that are rele-
vant to intrusions.

Figure 1. Current state-of-the-art intrusion detection and prevention
systems perform relatively simple analyses over a stream of data col-
lected by custom hardware or software systems to detect potential secu-
rity breaches and alert an operator or users.

Time to Live (TTL) values. Ports and IP addresses are used to
identify a flow, which is a grouping of packets that are sent or
received by the same application.

Data signatures examine all of the contents of a packet to
detect malicious code. This has an advantage over traffic sig-
natures since some attacks only require very few packets or can
hide by mimicking benign traffic. However, the deep packet
inspection (DPI) required for these signatures to detect mali-
cious activity is a time-consuming process involving data col-
lection followed by string comparisons. The information pro-
duced by this type of inspection could also lead to privacy con-
cerns.

Another limitation of IDSs/IPSs relying heavily on signa-
tures is that they only look for very specific patterns in traffic.
New attacks will not be discovered efficiently since the corre-
sponding traffic has not been observed before, meaning the
appropriate signature has not been created. Attacks can also be
tailored to either mimic legitimate traffic or to circumvent these
signatures.

III. RELATED WORK
IDPSs have been around for some time, and new ones continue
to appear for commercial use. Some of these are open source,
such as Snort, and some are commercially available, such as
Norton AntiVirus by Symantec. In order to identify different
traffic flows, IDSs generally use signatures that are basically a
set of rules that determine whether network traffic can be la-
beled as benign or malicious.

Many data sources on the Web today are composed of in-
formation related to intrusions and attacks in different levels of
verbosity. Mulwad et al. [6] described a system for extracting
information about vulnerabilities and cyber attacks from differ-
ent unstructured data sources like vulnerability description
feeds (CVE, CCE, CPE, CVSS, XCCDF, OVAL), hacker fo-
rums, chat rooms, blogs, etc., and informing the expert about it.
Khadilkar et al. [7] explain the importance of a semantic model
for information representation and present an ontology for the
National Vulnerability Database. They demonstrate the build-
ing of a knowledgebase from a structured data set and its usage.
Undercoffer [8] presents a host based intrusion detection sys-
tem, making use of ontological representation of the intrusions
and attacks, which performs better than the conventional signa-
ture-based intrusion detection system.

 In their research Wright et al. (2006) perform traffic classi-
fication between different protocols, including FTP, HTTP,
HTTPS, SSH, SMTP, etc. They were able to achieve an aver-
age true positive detection rate of 99.66% detection rates with
an average false positive rate of 1.2% [9]. Using their tech-
nique, Zhang et al. (2011) were able to achieve an average de-
tection rate of 92.26% with an average false positive rate of
1.29% [10]. The authors achieved this by collecting data pas-
sively on a wireless local area network for 60 seconds and ap-
plying a hidden markov model.

Both Auld et al. (2007) and Li et al. (2007) present research
that classifies traffic using stateful collection and classification

[11, 12]. Stateful, in this context, refers to the fact that the traf-
fic flows consist of both inbound and outbound connections,
where stateless connections refer to only a single direction.
Auld et al. (2006), using a Bayesian Neural Network and 28
classifiers, were able to achieve an average detection rate of
96.6% with an average false positive rate of 1.02%. Li et al.
(2007), using support vector machines and nine classifiers,
were able to achieve an average detection rate of 96.92% and
an average false positive rate of 6.59%.

IV. TRAFFIC FLOW CLASSIFIER
We have designed a situationally-aware IDS that gathers data
from traditional and non-traditional sensors and performs anal-
ysis over this data. This can produce new facts and information
from which the context or situation of the system can be de-
duced. This in turn would be used by rules or policies that
would flag an alert during a potential intrusion. In this work,
we sought to build upon this framework by incorporating a
network traffic flow classifier. Figure 4 depicts the system
architecture of the combined frameworks.

One particular sensor is the network traffic data of a ma-
chine. We have developed an analysis routine that is in essence
a traffic flow classifier – it looks at only the packet headers to
decide if the traffic is likely a part of some malicious activity.
In this way, the users' privacy is protected because the data
portion of a packet is where the sensitive information, such as
user names, passwords, email contents, or page contents, will
transported. In traditional systems, where the intent is to di-
rectly detect a specific attack, not including this information
could lead to decreased detection rates if the IDPS misses mali-
cious payloads. However, in our approach this is just one of
the pieces of evidence that goes into the collaborative decision
making.

A key goal of our work is to develop a generic, high-level
approach that can generate evidence for potential intrusions and
use that evidence to detect malicious traffic. This is unlike
current IDSs, which are looking for very specific forms of at-
tacks, such as botnets or security fuzzers. This research brings
together several different techniques in order to detect several
forms of attacks. Each of these techniques is used in conjunc-
tion with one another to produce a single classification, which
is simply a decision on whether the traffic indicates an attack.
To do this, we observed the following different patterns in the
traffic: the number of unique ports being accessed, the number
of lower value ports being accessed, how periodic the packets
are, how rapid the packets are being observed, the average time
to live (TTL) value, and the standard deviation of TTL values.

While each of these indicators has been used before, this is
the first time they have been brought together in a single pack-
age and used with a machine learning component. The work
done for this paper has produced a proof of concept collector
and classifier. Our experiments were performed on a closed
network, using several virtual machines (VMs) with the host
running the collector and classifier.

The current techniques that only use traffic signatures [11,
12] are stateful detectors, whereas the method chosen here is
stateless. Stateful detectors observe a single flow of data going
in both directions. This requires a greater amount of pro-
cessing, as an inbound packet must be connected to an out-
bound packet, which may introduce false positives or false
negatives into the set, if they are not properly matched. With a
stateless detector, our research does not need to make this con-
nection and thus will not include the extra variable of attempt-
ing to match inbound and outbound connections.

The IP header contains most of the information that will be
needed to classify the traffic as benign or malicious. The ver-
sion number is needed to determine the format of the header
and IP address; the total length is useful since certain attacks
require a certain pattern of data, leading to patterns in data size;
the TTL is utilized with the understanding that smaller TTLs
are indicators of malicious activity; and the source and destina-
tion addresses are used to help determine the session and the
malicious agent. The source and destination ports are the only
fields needed from the TCP header (which are also in the UDP
header) to help identify sessions and determine whether many
ports are seen in a short period of time, which might indicate
malicious activity. Using these protocol headers, packets can
be grouped together into sessions, which can then be analyzed
to determine if they are malicious or benign.

V. SYSTEM SETUP

A. Network Traffic Simulation
The network used in this research was made up of several VMs
and a single host for monitoring the traffic. The VMs were a
mixture of Ubuntu 12.04 and Debian 6.0.5 hosted on Virtual
Box. The host for the VMs is Ubuntu 12.04. The VMs were
used to send and receive malicious traffic and the host was
used to monitor and classify the traffic. Benign traffic was sent
by some of the VMs, but was mostly obtained from browsing
known benign websites, ssh (secure shell, used to established
remote command line access) sessions, and games.

Malicious and benign traffic were simulated through sever-
al different tools described below. The malicious traffic was
simulated using tcpreplay [13] and a Backtrack VM [14], while
the benign traffic was simulated using tcpreplay and perform-
ing normal tasks that involve sending and receiving packets.
All of this traffic is collected by the machine hosting the VMs
and is then processed to determine if the traffic is malicious or
not. For both the simulated malicious and benign traffic, tcpre-
play was automated using python scripts.

The traffic simulated via tcpreplay was automated with two
python scripts and a configuration file. The first python script
prepared the new pcap files (the pcap files containing the IP

Figure 4. Our architecture supports situation awareness by integrating and analyzing data extracted from multiple sources, both traditional and non-traditional.
The results are represented in a knowledge-based system and reasoned over to detect potential attacks.

address to be used for the test), and the second replays the
packets described in the new pcap files. The configuration file
describes which pcap files to use and what IP addresses to send
them from. Since tcpreplay can simulate traffic from multiple
IP addresses while residing on a single host, only one VM is
needed to send the different pcap traces.

B. Traffic Collection
To collect the traffic, C++ with a MySQL back-end server was
used. C++ was chosen over Java and scripting languages be-
cause it is much faster due to the fact that it runs natively after
compilation, rather than in a VM. It was also chosen due to its
ability to manipulate memory, which allows for fast parsing of
the incoming packets that is necessary to keep up with the vol-
ume of traffic. C++ was chosen over C for its ability to manip-
ulate strings. For C++ to collect the data, libpcap is utilized,
which is the same library used by Wireshark and other traffic
collection programs and provides the raw bytes for all traffic on
a given interface. The ability of C++ to manipulate memory is
then applied to pull out all of the different parts of the packet.
Utilizing libmysqlcppconn, these parts are then added to the
MySQL back-end server to be saved for further processing.
The collection aspect for this research only deals with details
from the IP header and the port numbers from the protocol
headers.

C. Traffic Learning and Classificiation
The learning and classification of the traffic is done using Java
and Weka, an artificial intelligence (AI) training tool that takes
formatted data files to train a number of AI algorithms used for
classifying data. Weka has a java interface that allows a devel-
oper to use Java to implement systems to train and classify
data. Using Weka, various AI techniques were implemented in
conjunction with several signatures to classify the traffic as
either benign or malicious.

The signatures that were used included looking at the ports
used, the time to live (TTL) values, the timing of the packets,
and the domain of origin for the packets. Regarding the ports,
the number of unique ports observed and the number of unique
ports specifically observed below port 1024 (the reserved ports)
were calculated. A higher number of ports observed indicates
malicious traffic. The reason this assumption can be made is
that legitimate traffic will remain on a small number of ports
for communication, as this is more efficient then switching
ports. Malicious users may want to touch more ports to dis-
cover which ones are vulnerable.

TTL values are checked for anomalous patterns as well.
For the TTL, the number of TTL values below 50, the number
of unique values, the mean value, and the standard deviation of
the TTL values are calculated. The idea here is that most ap-
plications set the TTL value to the highest possible value. Oth-
er than mapping a system, there are very few applications

where a low TTL value is an advantage. The reason that legit-
imate traffic would not use a low TTL is to prevent it from
dropping packets on their way to the client, whereas a mali-
cious user may want to map the network.

The timing of the packets is also monitored. Here the num-
ber of packets within a given amount of time, the average
number of packets per second, the total time a session was
open, and the mean time between packets are calculated. The
idea behind this is that legitimate traffic tends to be more ran-
dom and spaced out while malicious traffic will be concentrat-
ed. It is concentrated because in order to exploit most vulnera-
bilities, a burst of packets is needed. A malicious user may
also want to get the payload uploaded as quickly as possible
before their traffic can be blocked or the system patched. Le-
gitimate traffic tends to be slower and more random. Most
traffic will be user generated, such as browsing web pages.

After all the data has been classified, python is used to
graph the results. The matlibplot library is used along with
python to graph the true positive vs. false positive rates of the
classification algorithms.

VI. SIMULATIONS & RESULTS
Three primary classifiers where chosen for this research along
with sub categories for each. The classifiers use features based
on ports, the timing of the packets, and time to live (TTL). The
classifiers were first looked at individually, then as a whole.

The traffic was first broken into sessions which were then
classified as either malicious or not. These sessions were de-
termined by three factors: the source and destination IP ad-
dresses, the source port, and the timing of the packet. Only the
source port is used to determine sessions since an application
will usually run on a single port but may be routed to multiple
ports on the destination for load balancing. Attackers will also
touch multiple ports as they attempt to scan a remote host for
vulnerabilities. The start and end of sessions are also deter-
mined by a 60 second gap between sent or received packets.
This research also focuses on stateless detection. Stateful de-
tection determines sessions by using traffic that goes both to
and from a host. With stateless detection, this algorithm only
needs to observe one-way traffic saving computational time.

The first classifier looked at the ports that were accessed.
The results are displayed in Figure 5. Using just the ports as an
indicator, high true positive rates are only possible with high
false positive rates. This is noted when the highest observed
true positive rate of 0.846 only occurs when there is a false
positive rate of 0.598. When reducing the false positive rate to
acceptable levels, the true positive rate also drops significantly.
If the false positive rates are reduced to below 0.100 the true
positive rates are reduced to below 0.388.

 When observing the ports, this algorithm determines the
number of unique destination ports and the unique number of
reserved ports observed per session. The reserved ports are
those below port number 1024. This is to detect scanners that
look for security holes and for specific applications running on
a remote host. The low detection rates could result from the
fact that only scanners will cause this classification to trigger.

Most attacks focus on a single port and a single application
running on the remote host. Benign traffic will sometimes span
multiple unique ports for load balancing on remote hosts. Be-
tween malicious and benign traffic, the number of unique ports
is fairly equal at 1.004 unique ports for malicious traffic and
1.338 unique ports for benign traffic. Benign traffic also had a
greater number of unique ports below port number 1024 at an
average of 0.611 unique ports for benign traffic and 0.187
unique ports for malicious traffic.

Looking at just the timing of the packets, there is a noticea-
ble increase in accuracy. These results are displayed in Figure
6. To achieve the highest observed true positive rates of 0.906
the false positive rates are 0.786. In comparison to the port
only classification, a true positive rate of 0.812, there is a false
positive rate of 0.567. To reduce the false positive rate below
0.100, the true positive rate is reduced to 0.521.

The timing of the packets was determined by observing the
average time between packets, the standard deviation (a unique
statistic to this research) of the time between packets, the num-
ber of packets observed in the connection, and the total dura-
tion of the session. Using these classifiers produces a better
detection rate than the ports classifier. The timing classifiers
work since initial attacks tend to be very short lived bursts of
traffic going in one direction. Previously, it was stated that this
is stateless detection, but the single direction is important since
benign traffic tends to have to wait for acknowledgments peri-
odically which will slow the transmission timing. Benign traf-
fic sessions also tend to be longer and contain more packets.

Malicious traffic tends to have a more regular interval be-
tween packets compared to benign traffic. The average stand-
ard deviation for malicious traffic is 0.209 seconds, and the

average standard deviation of benign traffic is 3.334 seconds.
Malicious traffic tends to be more consistent for the following
two reasons. First, the attacker will send a large amount of
traffic all at once aiming to exploit a target as fast as possible.
The second reason is that if a host is calling back to an attacker,
the traffic involved tends to be fairly evenly spaced so the at-
tack knows when the host will call back. Benign traffic tends
to be more random as it usually is determined by human inter-
action.

The third classifier used observed the TTL values and con-
tinues to show improvements over the other two, as shown in
Figure 7. To achieve the highest true positive rate observed of
0.972, there is an observed false positive rate of 0.671. To
compare with the other classifiers, achieving a false positive
rate of less than 0.100 means the true positive rate is reduced to
0.921. The TTL values showed the greatest accuracy in detec-
tion among the three primary classifiers. This classifier ob-
served the TTL value of the packet by calculating the number
of unique TTL values, the average TTL value, and the number
of TTL values below 20 hops. Looking at the raw data, the
only real classifier that played any significant role was the av-
erage TTL value. The majority of the sessions only had a sin-
gle TTL value used. Simulated malicious traffic for this re-
search contained an average TTL value of 64.647 hops, while
benign traffic had an average of 72.805 hops.

After combining all three classifiers, there is a significant
increase above the others individually. These results are dis-
played in Figure 8. To achieve the highest true positive rate
observed of 0.999, the false positive rate is 0.742. Compared
with the individual classifiers with a true positive rate of 0.846,
the false positive rate is 0.033. This is the lowest false positive
rate of the individual classifiers. To achieve a false positive
rate less than 0.100, the true positive rate is 0.933.

Putting all three classifiers together yields the greatest accu-
racy. Each classifier provides values that are unique to differ-
ent types of attacks and different types of benign traffic. By
combining the values in each of these classifiers, a more specif-
ic signature is created for benign and malicious traffic. The
more specific the signature, the greater the detector accuracy.

Figure 5. Port Only Classification Figure 6. Timing Only Classification

VII. CONCLUSION
We presented a collaborative approach to detecting attacks that
integrates information from multiple sources and represents it
in a knowledge base. Each source is analyzed, and correspond-
ing facts are described using terms from an ontology which are
inserted into a common knowledge base. These facts, along
with rules that are similar to forensic analysis, are used to de-
tect potential attacks. We also described a new analysis of traf-
fic flow information to flag potential attacks using parameters
including the number of destination ports, the number of re-
served ports observed per session, the timing of packets, and
the TTL values of packets seen in incoming network traffic.

Compared to existing approaches, we use less information,
which is the result of the choice to make this algorithm state-
less. This means it is only collecting and analyzing the traffic
moving in one direction, helping to reduce detection time as it
requires less processing to not have to relate incoming and
outgoing packets. Compared to others, this new algorithm is
also more generic, suggesting when traffic is potentially mali-
cious and indicative of an attack. This fits into our collabora-
tive system, since this is just one of the sources of evidence
used to detect a potential attack. Several of the other proposed
techniques observe specific protocols or search for specific
types of attacks. Further, by looking at stateless information of
network traffic flows, and not examining the data payloads, we
are also more respectful of privacy. Despite these design
choices that have the potential to make detection less accurate,
we obtain a true positive rate comparable to a recent work by
Zhang et al. [10] (92.45% vs. 92.26%) though our false posi-
tive rate (7.09% vs. 1.29%) was a bit higher.

REFERENCES
[1] S, More, M. Mathews. A. Joshi, and T. Finin; , "A Knowledge-based

Approach to Intrusion Detection Modeling," IEEE Symposium on
Security and Privacy Workshops, pp.75-81, May 2012.

[2] J. Undercoffer, A. Joshi, T. Finin, and J. Pinkston, “Using DAML+OIL
to classify intrusive behaviours,” The Knowledge Engineering Review,
vol. 18, pp. 221– 241, 2003.

[3] J. Undercoffer, A. Joshi, and J. Pinkston, “Modeling Computer Attacks:
An Ontology for Intrusion Detection,” in Proc. 6th Int. Symposium on
Recdent Advances in Intrusion Detection. Springer, September 2003.

[4] “Microsoft Internet Explorer 6 through 8 vulnerability cve-2012-2257”,
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-2557.

[5] Sourcefire. Snort. http://www.snort.org/, 2012.
[6] V. Mulwad, W. Li, A. Joshi, T. Finin, and K. Viswanathan, “Extracting

Information about Security Vulnerabilities from Web Text,” in Proc. of
the Web Intelligence for Information Security Workshop. IEEE
Computer Society Press, pp. 257-260, Aug. 2011.

[7] V. Khadilkar, J. Rachapalli, and B. Thuraisingham, “Semantic web
implementation scheme for national vulnerability database,” Technical
Report UTDCS-01-10, Dept. of Computer Science, Univ. of Texas at
Dallas, 2010.

[8] J. Undercofer, “Intrusion Detection: Modeling System State to Detect
and Classify Aberrant Behavior,” Ph.D. dissertation, Univ. Maryland,
Baltimore County, February 2004.

[9] C. V. Wright, F. Monrose, and G. M. Masson, “On inferring application
protocol behaviors in encrypted network traffic”, J. Mach. Learn. Res.,
vol. 7, pp.2745-2769, Dec. 2006.

[10] F. Zhang, W. He, X. Liu, and P. G. Bridges, “Inferring users' online
activities through traffic analysis,” in Proc. of the fourth ACM conf. on
wireless network security, New York, NY, 2011, pp. 59-70.

[11] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural networks for
internet traffic classification," Neural Networks, IEEE Transactions on,
vol.18, no.1, pp.223-239, Jan. 2007.

[12] Z. Li, R. Yuan, and X. Guan, “Accurate classiffcation of the internet
traffic based on the svm method,” in Communications, 2007. ICC '07.
IEEE International Conference on, pp. 1373-1378, June 2007.

[13] Tcpreplay. Tcpreplay. http://tcpreplay.synfin.net/wiki, 2010.
[14] BackTrack. Backtrack linux. http://www.backtrack-linux.org/, 2011.
[15] OWL Web Ontology Language Overview. http://w3.org/TR/owl-

features
[16] RDF. Resource Description Framework. http://www.w3.org/RDF/
[17] N3. Notation 3 Logic. http://www.w3.org/DesignIssues/Notation3.html
[18] Jena. Apache Jena. http://jena.apache.org/index.html
[19] SPARQL. SQARQL Query Language for RDF.

http://www.w3.org/TR/rdf-sparql-query/

Figure 7. TTL Only Classification

Figure 8. Combining Port, Timing, and TTL Classification

