

Method for Two Dimensional Honeypot in a Web

Application
N. Nassar

1
, G. Miller

2
1
IBM, Somers, NY, US nnassar@us.ibm.com

2
IBM, Arvada, CO, US millerg@us.ibm.com

Abstract—Web applications Security is an ongoing
dilemma as hackers and bots are getting more and more
innovative bypassing the various defensive tools
implemented to enforce security. e-Commerce
Applications, such as those used for the check-out
process, could be in a position of not providing a fair
chance to all consumers. This is especially true when a
commerce site offers hot inventory items where many
traders are competing to get a limited supply item.
What happens is the e-Commerce sites security is
compromised when some of the traders utilize pre-
formatted scripts/ spiders to place orders, thus giving
them an unfair advantage The problem is: how to
eliminate scripts/spiders in a given web application flow
by using a solution that is non-practical to crack with
no additional actions taken by the end user. Our paper
introduces an innovative multilayer approach to
honeypots cashing or bypassing it is technically
impractical, resulting in well secured web forms.

Keywords-Honeypot; e-Commerce; Security;
Vulnerability; web Applications

I. INTRODUCTION
A honeypot is a trap set to detect, deflect, or in

some manner counteract attempts at unauthorized use

of information systems. Generally, it consists of

a computer, data, or a network site that appears to be

part of a network, but is actually isolated and

monitored, and which seems to contain information

or a resource of value to attackers [1]. A honeypot

works by fooling attackers into believing it is a

legitimate system; they attack the system without

knowing that they are being observed covertly. When

an attacker attempts to compromise a honeypot,

attack-related information, such as the IP address of

the attacker will be collected. This activity done by

the attacker provides valuable information and

analysis on attacking techniques, allowing system

administrators to “trace back” to the source of attack

if required.

In this paper we will provide a background about

existing security solutions that is been used in the

enterprise to limit bots and malicious scripts, and the

limitation of these tools. We will introduce our

proposed solution and illustrate its effectiveness. We

will also describe the recommended architecture for

the proposed methodology. Finally, we will

demonstrate various embodiments to our proposed

solution
.

II. BACKGROUND
There are many known methods to protect e-

Commerce / flow based websites from bots [2][3][5].

Bots are used to gain access to shopping carts to

quickly purchase limited items, such as concert

tickets, before a human shopper can do so. All

solutions to prevent bots are geared toward

identifying who is submitting the requests: a

machine or a human. Some of existing solutions are,

A. CAPTCHA
Completely Automated Turing test to tell

Computer from Human Apart. This technique is

based on providing a challenge in the form of

distorted image of letters and numbers used to

prevent automated use of websites. CAPTCHA

solutions (comes in a verity of flavors [4]) requires a

person to read the distorted letters and type them into

a field, something a bot cannot do. This proves that

the page is being accessed by a person. Figure 1

shows examples of CAPTCHA.

Figure 1. CAPTCHA

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250743

The existing solution counts on generating a

combination of letters and numbers that are distorted

and displayed as an image a person must interpret

and re-type into a field. The approach can be

problematic for users, as they cannot always read the

letters or numbers because of too much distortion.

The main drawback is that hackers developed smart

spiders where it builds a library of images that would

allow figuring out the content of the CAPTCHA.

B. Form Honeypot
 Another existing solution is using Form

honeypots. However, this solution is trivial and easy

to crack given the sophisticated form of scanners and

experienced hackers. Form honeypot is based on

providing a 'fixed' one or multiple invisible fields

serving as a honeypot where they get populated by

the spider then using the backend, server logic would

be capable of identifying the spider made request by

looking the value of these fields(s) [16].

While using a honeypot trap sounds promising

and interesting, advanced code scanners and

experience hackers easily crack this single

dimensioned honeypot approach by creating a simple

analysis of request/response of a given form to

identify the proper fields expected by the server.

Using try and error, honeypots could be easily

identified and defused. As a result, the key issue is

that existing honeypot solution is not providing the

right/ expected protection from bots [15].

III. PROPOSED SOLUTION
The idea of this concept is to provide a unique

way of discriminating human involvement in a

transaction that would occur on a computerized

experience that utilizes internet or network connected

interactions that require an endurance of actual

human intervention and not a "pseudo intervention"

that could be performed by an automated system or

application in the realm of computer technology. We

propose using two dimensional honeypot for security

access which eliminates the vitality of form scanning

automation so that the spider will not be able to

identify which form and which field is the honeypot.

Our proposal revolves around limiting the bot's

ability to determine the honeypot Based on the

implementation of our proposed solution, spiders

building a library of fields will be computationally

impossible as each fields and each form are different

every time the page is loaded.

This methodology requires human interaction

because any script or automated agent will not be

able to identify the 'valid' form and corresponding

fields. Instead, it will fall into the honeypots, figure 2.

A. How it works
Our proposed solutions, as shown in figure1,

take the concept of honeypot, but go further with it.

In a given web application,
• Each page upon generation includes

multiple copies of the form, with minor

differences (timestamp is different, a unique

identifying hash, etc).
• Initially all forms are 'hidden' via CSS

1
.

• Upon rendering the page, a JavaScript

function performs a callback to the server,

asking which form is the valid one.
• The valid form's CSS is modified to make

the form visible.

Figure 2. Existing vs. Proposed solution

When the page is rendered, the order of the forms and

the number of honeypot forms will always change so

that it is never detectable by a screen reader or a

spider.

Looking inside page 2, as seen in figure 3,

below, we will find that there will be n number of

honeypot forms and each form would have the same

field number and field type as the original form. The

only different is that all of these fields represent the

second dimension of our proposed two layer

honeypot. In addition, field names are generated

with added randomness so that the spider wouldn’t be

able to store the actually / valid field name to re play

it. This technique will be orchestrated by a server

chirographer layer that decipher the field names and

understand which form and which field is the bot.

Figure 3. Solution details

A. Solution Architecture

As shown in figure 4, the system to provide such

a solution consists of two main engines. A Form

Builder Engine is to build honeypot forms similar to

the original form. A Form Manager Engine is

targeting the randomization and the management

process.

The two dimensional protection is created by

shuffling the honeypot forms with the original form

in a random order, so that when the page is refreshed,

it is never the same order any more. The second

dimension is shuffling honeypot fields with in the

original form itself. Naming each field and each

form with in each form is a key to create the right

level of protection.

The Form Manager Engine maps which form is

which and which field is which and stores this

relationship in the database so that when the form is

sent back from the browser, validation engine would

be able to decode form and field IDs in order to

identify the original form and its corresponding

fields.

Figure 4. Solution Architecture

B. Solution Implementation

Implementing this idea could be very interesting

as spiders need to be fully in the dark of what is

original and what a honeypot is. For example, using

field Type attribute, figure 5, as hidden may be a very

easy indication for the automated script to identify

what not to fill which may defeat the purpose.

The better approach in this case would be

manipulating cascaded style sheets, CSS, files in such

a way the screen reader/ spider would be unable to

build a history of events which make it as secure as

intended. With CSS manipulation, and using display

attribute, the end user will be able to fill only the

Figure 5, Field Type Attributes (1)

form/fields marked with display(block)

while sections with display (none) will be hidden the
user, but visible to the bot. As seen in figure 5, the top
div will be hidden from the end user while the bottom
one will be visible. However, the script would fill up
any field marked with type ‘text’ and that could
indicate spider/auto form filler.

While figure 5 illustrates a simple honeypot
structure, our proposed two dimensional honeypot
includes

• Dynamic Form Id/name,
• Dynamic field Id/name
• Use of display attributes with in a CSS file
• Dynamic class Id with in CSS.

The combination of these four items will make it
almost impossible for the spider to detect a honeypot,
and be ready to detect it.

Figure 5. Simple honeypot example

As described in the solution architecture, each

form will have an Id that is dynamically assigned
every time the page is rendered, figure 6. While there
are four forms with random names in page 2, below,
three of these forms are meant to be honeypots.

1 http://www.w3.org/Style/CSS/

If the page is refreshed, the page is re rendered
with different number of forms, and each form
will have a different/randomized Id and name

attributes. In this case any spider or screen reader
will have no chance to keep history of the html

layout and the page behavior.

Figure 6. Sample form honeypot (first dimensional)

The second dimensional to this proposal is
implemented within the form itself which is a typical
honeypot fields, but hidden from the front end user
via CSS. The same dynamics applied in the form Id,
applies for the field Ids, div Ids, and class Id. The
random generation of these Ids grants a high level of
security which is untraceable / undetectable by
spiders. As illustrated in figure7b, below, the
implementation of one page according to our
approach would result in a random number similarly
generated forms wrapped by CSS governed divs, but
the front end would reflect no signs of the honeypot
as shown in figure 7a.

Figure 7a, Two dimensional honeypot implementation as seen by

the browser

Figure 7b. Two dimensional honeypot implementation

While the source of the page shows the multiple
identical forms. In figure 7b, form Id 01500 is the
original form, but within that form itself, the second
dimensional honeypot resides which is “Maiden
Name” field.

C. Solution Security

The key difference here is that in this process all
fields are potentially honeypot fields, even ones that
were legit in a prior request cycle.
 For example, in Request #1, Form #8 was valid, but
if the user reloads the page generating Request #2,
Form #3 would be the valid one. Unless the bot
process actually runs the JavaScript to determine the
correct field, it will have a statistically significant
chance of entering the wrong fields. For a blanket-
fill bot, that chance is practically 100%.

By the same token, the use of brute force
will also not be so practical since the hacker doesn’t
know which form is the original one. Even if the
attacker was lucky enough to find the right form,
which his highly unlikely, then the second
dimensional would provide the needed security to the
form and the attacker will not be able to distinguish
the honeypot field within the form.

Running this solution through a security
scanning tool would generate no errors as the scanner
‘which is nothing more than a smart form reader with
sophisticated testing policies’ 1 would not identify any
of the forms as honeypots since it is a black box
scanner2.

IV. FUTURE WORK
We are planning to implement this system and

prototype as a secure e-Commerce application and
the plan is to test it against various bots. Usually bots
will try to fill each and every field in a given form
then execute the associated form action. Given the
nature of the proposal, Application vulnerability
scanners are not expected to pass the pages protected
by our solution. We are planning to publish the
experimental results of this study in a separate paper
and highlight the reaction of various scanners toward
our implementation.

Also, our future work will include confidence

based security where the level and the type of
security in a web application are adjustable based on
the level confidence or the type of credentials the
user exhibits including context and location
awareness. This work is coupled with runtime
security architecture to provide dynamic challenges
to the user based on the user behavior.

V. CONCLUSION
In this paper, we introduced the advantages of

using multi-layer honeypot over known solution.
The intent of this methodology is to provide a
seamless work flow where the end user is not asked
to write any CAPTCHA fields, instead, bot detection
and protection is provided behind the scene. Our
proposal is making honeypots virtually impossible to
detect because of the comprehensive architecture of
the honeypots which made any script unable to detect
the honeypot.

The intent of this methodology will enable
web application pages to have multiple honeypot
forms each has random Id. Each field in each form
has a randomly generated and unique id which makes
it extremely difficult for a bot to query and store
correct form Id or fields Id because simply the correct
form Id and field Ids are regenerated every time the
page is loaded. Thus only front-end user would be
able to enter the right form and its fields.

When generating the forms, including the
honeypot, generate fully randomized field names for
all fields in all forms. A governance module on the
server that list and map which random field names
are valid, and what real fields they mapped to. This
architecture represents a 2-layer honeypot, meaning
the bot would have to supply “only” the correct.

1

http://samate.nist.gov/index.php/Web_Application_Vulnera
bility_Scanners.html
2 Grendal-Scan, http://www.ehacking.net

.
This proposal is not focusing on the honeypot itself,
but focusing on the bot's inability to determine the
honeypot detection fields, both from a name and a
no-invalid entries point of view.

REFERENCES

 [1] Chew, M. et al. (2004).Image recognition CAPTCHAs.
In Proceedings of the Information Security, Conference
(ISC 2004), LNCS 3225,268-279.

[2] Ahn, L. et al.. Telling humans and computers apart
automatically. Communications of The ACM,
February,2004

[3] Elson, J. et al. Asirra: a CAPTCHA that exploits
interest-aligned manual image categorization. ACM,
CCS'07, October-November, 2007.

[4] IBM. Method and system to generate human knowledge
based CAPTCHA. IP.com number: IPCOM000l84977D,
July, 2009

[5] IBM, A new method for telling humans and computers
apart automatically, http://ip.com/IPCOM/000188716,
October, 2009.

[6] Chickering et al. , ‘ Image-Based Human Interactive
Proofs’, U.S. Patent, 20,100,162,357 issued, June 24,
2010.

[7] Lamberton et al., ‘System And Method For
Sì/Èfiíelementing A Robot Proof Web Site’, U.S. Patent,
20,080,209,217 issued, Sep 28,2008

[8] Bronstein A,NAME, U.S. Patent, 7,841,940
issued, Nov 30, 2010

[9] Pratte et al., ‘Method And Apparatus Eor Network
Authentication Oe Human Interaction And User Identity’,
U.S. Patent, 20,080,216,163 issued, Sep 4, 2008

[10] Osborn et al., ‘Graphical Image Authentication And

Security System’ , U.S. Patent, 20,090,077,653 issued,
March 19, 2009

 [11] Carter et al., ‘Method, System And Computer

Program Product For Access Control’ , U.S. Patent,
20,070,124,595 issued, May 31, 2007

[12] Mates J, ‘Generatinga Challenge Response Image

Including A Recognizable Image’ , U.S. Patent,
20,090,313,694 issued, Dec 17, 2009

[13] Reshef et al., ‘Method And System For Discriminating
A Human Action From A Computerized Action’, U.S.
Patent, 20,050,114,705 issued, May 26, 2005

[14] Von Ahn, et. al. Proceeding UROCRYPT'03
Proceedings of the 22nd international conference on
Theory and applications of cryptographic techniques, 2003

[15] Sidiroglou Styliano, et al. ip.com, WO
US2006/014704 , Systems and methods for detecting and
inhibiting attacks using honeypots,
http://ip.com/pat/WO2006113781A1, Oct 26, 2006

[16] The Government of the Hong Kong Special
Administrative Region,
http://www.infosec.gov.hk/english/technical/files/honeypot
s.pdf

