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 

Abstract— Mass-spectrometry (MS) based proteomics has 

become a key enabling technology for the systems approach to 

biology, providing insights into the protein complement of an 

organism. Bioinformatics analyses play a critical role in 

interpretation of large, and often replicated, MS datasets 

generated across laboratories and institutions. A significant 

amount of computational effort in the workflow is spent on the 

identification of protein and peptide components of complex 

biological samples, and consists of a series of steps relying on 

large database searches and intricate scoring algorithms. In this 

work, we share our efforts and experience in efficient handling of 

these large MS datasets through database indexing and 

parallelization based on multiprocessor architectures. We also 

identify important challenges and opportunities that are relevant 

specifically to the task of peptide and protein identification, and 

more generally to similar multi-step problems that are inherently 

parallelizable. 

 
Index Terms — Bioinformatics, High-throughput Proteomics, 

Indexing, Multiprocessing, Parallelization. 

 

I. INTRODUCTION 

DVANCES in technology coupled with innovative 

experimental and computational workflows have 

transformed biology into a quantitative science, allowing 

elaborate inquiry into the molecular basis of health and 

disease. The field of Proteomics, which characterizes an 

organism’s proteome - the complete set of proteins expressed 

in various cells and tissues – comprises of several challenging 

workflows [1]. A key feature of such “omic” sciences is their 

high-throughput aspect, producing huge volumes of data in a 

short duration. For example, a moderate-sized proteomics lab 

can generate several GB of data each day, and this rate is 

continuously increasing with advancing technology [2]. 
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Moreover, most experiments are replicated across laboratories 

and institutions, increasing the need for collaborative mining 

of such large-scale datasets. 

Currently, significant effort in proteomics research is 

directed towards algorithms for identifying the many hundreds 

to thousands of proteins present in complex biological 

samples. This is done via the “shotgun” method using tandem 

mass spectrometry (MS/MS) technology, which generates 

large datasets of mass spectra with the goal being 

identification of the molecular entities that generated those 

spectra [3]. A single experiment from a modern mass-

spectrometer can generate up to the order of 5-10K MS/MS 

spectra in less than an hour. Associating the spectra with their 

true peptide/protein identification involves searching large 

protein databases to retrieve, score and rank potential 

candidates. Depending upon the size of the database and 

constraints applied on the search, each spectrum may have to 

be evaluated against over 100K candidates to select the one 

that best explains the observed data. 

Scoring and evaluation of candidates involves several steps, 

and requires significant computation time depending upon the 

algorithm applied. High noise content and variability in 

MS/MS datasets present difficult data analysis challenges that 

contribute to loss of identifications. Current state-of-the-art 

algorithms have a very low coverage and only < 30% of 

spectra in a large-scale experiment are statistically confidently 

assigned with a candidate [4]. Consequently, newer more 

complex scoring algorithms are constantly being researched 

and developed – these typically provide a significant boost in 

identification accuracies at the expense of greater 

computational cost. For example, a recent probabilistic scoring 

algorithm called CSPI (details to follow) confidently identifies 

more spectra at a controlled false discovery rate (FDR) as 

compared with popular state-of-the-art methods [5]. However, 

due to the complexity of the model, it takes several seconds to 

evaluate each spectrum under constrained searches, which is at 

least two orders of magnitude more than the closest 

competitor. Moreover, search time will rapidly increase due to 

greater number of candidates being evaluated, if constraints 

such as allowable post-translationally modified forms of 

proteins are removed or reduced, as will be necessary for a 

more thorough analysis of the data [6]. 

Fortunately this particular application is amenable to 

massive parallelization and can exploit large multiprocessor 

and/or distributed computing architectures to alleviate the 
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computational bottleneck. This approach was followed for 

evaluating the recently developed CSPI framework in our lab 

[5]. In this paper, we identify some challenges that we 

encountered related to protein database indexing and 

multiprocessing-based parallelization, along with opportunities 

for further innovations, based on our experience with 

developing and implementing an efficient scoring framework 

for more confident assignment of peptides to MS/MS spectra. 

In the next section, we give a brief background on the shotgun 

proteomics approach and peptide identification problem. In 

section III, we present the methods that we used for efficiently 

handling MS/MS data. Section IV concludes with other 

potential avenues for future research. 

  

II. BACKGROUND 

MS/MS workflow proceeds in the following three steps [2, 

7] (Fig. 1A): a) break or digest large protein molecules, which 

are difficult to analyze using MS, into small manageable 

pieces called peptides; b) chemical-property-based separation 

of peptides using liquid chromatography, in order to reduce the 

mixture complexity [8]; c) isolation and fragmentation of these 

peptides using tandem mass-spectrometry (MS/MS) [8]. The 

fundamental unit of data in such experiments is a peptide 

MS/MS spectrum, which is generated by collision-induced 

fragmentation of the peptides inside the mass-spectrometer. 

The spectrum consists of a set of <mass-to-charge ratio or m/z 

vs. relative-abundance or Intensity> pairs (called peaks) that 

represent various detected fragments of the corresponding 
peptide as well as unexplainable noise peaks. The goal then is 

to confidently identify peptides responsible for large datasets 

of experimental MS/MS spectra followed by relating the 

identified peptides back to their parent proteins [7]. An 

example of how to evaluate an MS/MS spectrum against one 

(arbitrary) peptide is given in Figure 1B. 
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Fig. 1. (A) Schematic of shotgun proteomics approach; (B) Peptide evaluation against MS/MS spectrum. Cleavage at any position can 

yield a left and/or right fragment, called b or y-ions respectively. The ions in the series have a different m/z, which can be located on the x-

axis of the spectrum. Black peaks represent unexplained events or noise. Y-axis represents the relative abundance of respective entities. 
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A typical computational approach for assigning peptides to 

MS/MS spectra is called ‘Database Searching’, and consists of 

the following steps [9] (see Figure 2): a) From a protein 

sequence database, generate a list of candidate peptides for 

each MS/MS spectrum; b) Generate theoretical spectra for 

each candidate based on known rules of peptide fragmentation 

and compare with the experimental spectrum; c) Rank the 

candidates according to a scoring algorithm which gives higher 

scores to candidates that explain better a larger number of 

more intense peaks - this is done by comparing the expected 

(theoretical) peptide spectrum with the experimentally 

observed spectrum, and is the heart of peptide identification 

systems; d) Statistical evaluation for reducing false peptide 

identifications by controlling the  FDR [10]. 

We have recently developed a novel probabilistic scoring 

algorithm called Context-Sensitive Peptide Identification 

(CSPI), which utilized Input-Output Hidden Markov Models 

(IO-HMM) to capture the effect of peptide physicochemical 

properties on their observed MS/MS spectra [5, 11]. IO-

HMMs are an extension of the classic hidden markov models 

(HMMs) and are used to stochastically model pairs of 

sequences, called input and output sequence. These models 

have been previously successfully applied to several sequential 

data-mining tasks, including financial data analysis [12], music 

processing [13] and gene regulation [14]. The graphical 

structure showing similarities and differences between HMM 

and IO-HMM is shown in Figure 3. As can be seen, IO-HMMs 

contain extra nodes (than HMMs) for the input sequence <x1, 

x2, …, xT>, which can probabilistically influence the output 

layer and/or the hidden states, represented as <y1, y2, …, yT> 
and <q1, q2, …, qT> respectively. They represent the joint 

conditional probability distribution P(y1y2…yT| x1x2…xT; 

Θ), where ‘Θ’ are the model parameters. The intermediate 

hidden layer <q1q2…qt…qT> facilitates modeling the 

sequential dependencies between the input-output sequence 

pair as complex probability distributions. Both xt and yt can be 

uni-variate or multi-variate, discrete or continuous, whereas 

the hidden states, qt, are typically discrete. In the case of CSPI 

framework, input layer is a representation of the peptide 

sequence while the output layer is a representation of their 

MS/MS spectrum intensities. Additionally, the input sequence 

can be constructed with arbitrary features (from the domain) 

that may or may not overlap in location, allowing rich 

contextual information at local (specific location) as well as 

global (sequence) level to be incorporated in the sequence 

mapping tasks. For notational convenience, we have used the 

same length ‘T’ for all sequences. This is easily adapted to 

more general cases). 

Due to conditioning on the input layer, the transition 

probability distributions are potentially non-stationary in 

location and must be computed afresh for each input sequence. 

In practice, there is one transition function for each hidden 

state, to compute the probability distribution of state at current 

location (qt) given the state at previous location (qt-1), i.e. 

P(qt | qt-1, xt). Within CSPI, these are modeled using logistic 

functions. In the current implementation, a constrained model 

structure is used such that the input layer influences only the 

transition probabilities and not emission probabilities. 

Accordingly, there is one emission function for every hidden 

state, to compute the probability distribution of the 

emission/observation at the current location, given the state at 

current location, i.e. P(yt | qt). These are modeled using simple 

distributions (Gaussian, Exponential or Beta) depending upon 

how the spectrum intensities are normalized. The parameters 

of the model are trained using Generalized Expectation 

Maximization algorithm (GEM). Trained CSPI models are 

used to score and rank candidate peptides obtained via 

Database Search for each spectrum.  This is done using the 

Forward procedure, which follows similar mechanics as in 

HMMs with the exception that all computations must take into 

account the context presented in the input layer. 

Empirical evaluation showed that scores based on CSPI 

significantly improve peptide identification performance, 

identifying up to ~25% more peptides at 1% False Discovery 

Rate (FDR) as compared with popular state-of-the-art 

approaches. Superior performance of the CSPI framework has 

the potential to impact downstream proteomic investigations 

(like protein quantification and differential expression) that 

utilize results from peptide-level analyses. Being 

Fig. 3. A) Classical Hidden Markov Model; B) Input-output Hidden Markov 

Model. 

Fig. 2. Schematic for Peptide identification by MS/MS via database 

searching (adapted from [3]). E-value, which stands for expectation value, is 

a statistical measure of significance and refers to the number of matches that 

are expected to obtain equal or better score by chance alone. 
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computationally intensive, the design and implementation of 

CSPI supports efficient handling of large MS/MS datasets, 

achieved through protein database indexing and parallelization 

of the computational workflow using multiprocessing 

architecture, as described in the next section. 

 

III. METHODS FOR EFFICIENT PROCESSING OF MS/MS 

SPECTRA 

The first step in analysis involves extracting candidate 

peptides for each spectrum by querying a protein database. 

Protein databases are simple ASCII text files with a list of 

protein sequences or character strings (the protein alphabet is 

of size 20, with each character being of a different mass). Each 

sequence in the database is preceded with a single line header 

(identified with the “>” symbol in the beginning) uniquely 

identifying and describing the sequence, followed by the lines 

containing the actual sequence of amino-acids (characters) 

making the protein. An example of such a file is given in 

Figure 4. The sequences are of variable lengths, ranging from 

several tens to several thousands of characters. 

The extraction step amounts to a range query on the 

“expected mass” of the true peptide, where a peptide mass is 

computed by summing the masses of individual characters in 

the peptide. Hence, for a given mass query, the naïve approach 

would be to scan for sub-strings in these protein databases 

such that the mass is within some allowable tolerance of the 

query mass depending upon the accuracy of the data-

generating instruments. For complex organisms like Humans, 

the protein database files are typically large with several 

thousands of protein sequences (the database used consisted of 

~89,575 protein sequences). Scanning them afresh for each 

spectrum for retrieving sub-strings of required mass is 

prohibitive in terms of time. 

Database search as described above is performed with 

certain parameters that reflect the experimental protocol used 

for generating the data, and remain the same for the entire 

dataset of MS/MS spectra from the experiment. For example, 

all the sub-strings must end in characters K or R while 

allowing up to three internal Ks and/or Rs, or that certain 

characters are modified such that each occurrence of it will 

carry an extra mass than its native form. This kind of 

constrained search eliminates the need to enumerate all 

possible sub-strings from the protein database, and provides a 

way to speed up query and retrieval.  

We process the protein database prior to analyzing the data 

and pre-compute an indexed version by first generating the list 

of all possible sub-strings satisfying the desired search 

constraints. For each peptide, we compute the mass up to one 

decimal point as well as note its location in the database 

(protein number as it appears in the text file and position 

number within the parent protein sequence) and its length in 

number of characters. This information is stored in a key-value 

store where the “key” is the string representation of the 

peptide’s mass while the “value” is the string concatenation of 

the auxiliary information using a separator (location and 

length). ‘Values’ of peptides with the same key are 

concatenated with a different separator. Additionally, in order 

to keep the size of index files small, the entire range of 

expected peptide masses is split into bins of size 25 mass units 

(arbitrarily chosen and may be optimized further), leading to 

multiple index files each storing a different mass region.  
Now, for every new query, the index allows for fast retrieval 

of candidates, by first mapping the query mass (“key”) to the 

appropriate index file, followed by retrieval of peptides in the 

corresponding mass-region that meet the mass-tolerance search 

criterion, and reconstruction of the peptide sequences using 
the corresponding information stored in the “value” part of the 

key-value pair (in conjunction with the original protein 

database ASCII text file). Indexes were generated using the 

Berkeley DB key-value store [16] and was accessed using its 

Python language interface. 

 

Challenge 1 

 

This approach works well for constrained database searches 

(total of ~10 million peptides, and ~10-20K candidates per 

spectrum) that were employed in the current implementation 

and analysis. However, unconstrained searches can yield a 

total search space of several billion peptides, leading to larger 

index files and increased index generation as well as querying 

time. A potential scalable solution is a distributed index with 

capability for parallel generation and querying (using simple 

synchronization primitives) which is facilitated by split 

indexes (as described above) as well as the fact that each 

spectrum can be queried independently of others. Such 

schemes or variants thereof will be crucial for future large-

scale proteomics and must be explored. 

 

The next step in database searching evaluates all the 

candidates retrieved for each spectrum. This is 

computationally the most expensive step in the peptide 

identification workflow but comprises an embarrassingly 

parallel problem. Specifically, for each spectrum in the 
dataset, searching and scoring/ranking candidate peptides can 

be performed in parallel, independent of other spectra. 

We used a simple multiprocessing application design using 

shared synchronized queues for inter-process communication. 

Fig. 4. Sample from Human protein database file (IPI stands for 

“International Protein Index” that provides a unique and stable identifier 

to track protein sequences and allows a mapping between variety of 

bioinformatics databases [15]) 
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The flow diagram is shown in Figure 5. The main process 

reads in and preprocesses the spectra, queries the protein 

database stored as a pre-computed index on the hard disk (as 

described above) and places the retrieved candidates along 

with the preprocessed spectrum on a shared queue. From this 

queue, all the worker processes extract the objects, run the 

CSPI scoring algorithm, and store the results onto a shared 

output queue. Another child process extracts the results from 

this output queue and stores them in an output file. The 

algorithm was tested on a single machine with eight quad-core 

processors (total of 32 cores) as well as a large blade-based 

system (Blacklight server) with up to 64 requested cores at the 

Pittsburgh Supercomputing Center. 

Database search and candidate evaluation time depend upon 

the size of the MS/MS datasets as well as the number of 

candidates evaluated per spectrum (which in turn depends 

upon the search constraints applied). Figure 6 shows how our 

CSPI framework scales with addition of processor units, for 

the results presented in that work [5]. Specifically, the 

constrained searches performed resulted in between 10K and 

20K candidates to be evaluated per spectrum. 

We see that the throughput increases rapidly initially, 

although not linearly, but saturates at about 15 processors. 

Although simpler scoring systems can achieve much higher 

performance gains through parallelization [17], the gap can be 

possibly reduced with alternate schemes for task-distribution. 

These are worth investigating due to good performance 

characteristics of CSPI and other state-of-the-art complex 

algorithms for confident peptide identification. 

 

Challenge 2 

 

As described above, the current workflow breaks the tasks 

at the individual spectrum level, which means once a spectrum 

and its potential candidates are assigned to a child process, 

they are evaluated sequentially within the same process. 

However, since evaluation of each candidate against a 

spectrum itself requires several steps and can be performed 

independently of all other candidates for all other spectra, 

there is scope for much further optimization. It is important to 

Fig. 6. Scalability of the multiprocessing version of CSPI scoring 

algorithm [5] 

 

Fig. 5. Workflow of the multiprocessing version of CSPI scoring algorithm [5] 
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note that although the entire process of peptide identification is 

inherently parallelizable, optimum task distribution and 

sharing between processes will need careful profiling of 

processing needs of individual steps and will also depend 

critically upon such factors as the size of the database searched 

as well as search constraints applied. Further, with greater 

granularity of tasks and number of processes, overhead due to 

inter-process communication will become an important factor 

to consider [17]. Automatically adjusting for all these 

dependencies within resource constraints is a non-trivial but 

interesting problem to investigate. 

IV. DISCUSSION AND CONCLUDING REMARKS 

Peptide, followed by protein identification is an important 

problem in current proteomics research and offers several 

unique computational challenges. Confident identification is 

critical to further downstream analyses like predictive 

biomarker discovery for disease classification and 

characterization, and relies on complex and computationally 

expensive scoring algorithms. With advancing technology and 

increasing trend towards integrated, personalized healthcare, 

timely and efficient handling of concomitant large datasets is 

an equally important aspect. Towards this end, we have 

presented insights based on our experience in addressing two 

key computational bottlenecks related to the peptide 

identification problem. Our methods have helped to 

significantly increase the efficiency of our previously 

developed probabilistic scoring algorithm, CSPI [5]. We have 

also identified important research challenges that will provide 

a further boost in that direction. All experiments and analyses 

were performed using the Python programming language. 

Parallelization was achieved using the multiprocessing 

package, while indexing was performed using Python’s 

‘bsddb’ interface to the Berkeley DB library. 

The CSPI framework demonstrates the feasibility of 

applying context-sensitive markov models to a complex real-

world problem involving scoring and identification of peptides 

from high-throughput tandem mass-spectrometry experiments. 

More generally, it shows the applicability of IO-HMMs to 

handle big datasets that involve local and global sequential 

dependencies in the sequence pairs being modeled. Further, 

the ability to parallelize such problems demonstrated in this 

paper, allows for processing of collaborative big datasets 

involving experimental data from multiple laboratories.  

One proposal for such analyses could involve the cloud-

computing architecture, where the cloud would be the 

repository of centralized information on experimental 

outcomes/data, which can then be processed in a distributed 

manner using their easily accessible and integrated compute 

resources. The main issues relate to the complexity of the 

models themselves, in terms of the large number of parameters 

that must be estimated. For example, with four hidden states 

the number of parameters to be estimated for an IO-HMM 

model in CSPI is over 700. The ability to obtain data through 

collaborative architectures should greatly facilitate more 

accurate estimates of such parameters, and the efficient 

processing achieved through parallelization will be a necessary 

component in the overall analytical workflow. 
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