
Towards Improving Browser Extension Permission
Management and User Awareness

Said Marouf and Mohamed Shehab
Department of Software and Information Systems

University of North Carolina at Charlotte
Charlotte, NC, USA

{smarouf, mshehab}@uncc.edu

Abstract—Browsers have become the de-facto platform for
users and their online presence. They have also become a
rich environment for 3rd party extensions that enrich the user
browsing experience by extending upon the browser’s function-
alities. Protecting user privacy against malicious or vulnerable
extensions is an important task performed by modern browser
platforms such as Google Chrome and Safari. To do so, these
platforms adopt a per-extension permission model, where each
extension is given a set of permissions based on its requirements.
These models suffer from coarse-grained access controls and
insufficient user awareness. In this paper we implement a runtime
framework as a browser extension called REM. REM monitors
the accesses made by 3rd party Chrome extensions, informs users
of the accesses, and allows them to customize the permissions
given to extensions. The custom permission settings are enforced
by the framework at runtime. We evaluated our framework on
popular Chrome extensions & were successful in monitoring and
controlling their accesses with little overhead. We also conducted
a user study to evaluate the effectiveness of REM compared to
current standard methods.

Index Terms—browser security, browser extensions, security

I. INTRODUCTION

Today’s online activities such as social networking, and
banking, have increased the user online presence and made
the browser their main portal. Users are increasingly enriching
their browsing experience with 3rd party applications that
provide new functionalities and improve upon existing ones.
3rd party browser extensions are popularly used by millions
of users [1], [2], especially with their wide availability on
portals such as Google’s Chrome Web Store. Regardless of
the popularity and benefits of 3rd party extensions, they could
potentially threat the privacy of their users. This could be due
to malicious extension developers, or vulnerable extensions
written by developers who lack secure coding skills. This lead
platforms such as Google Chrome to introducing permission
models that control the accesses by 3rd party extensions,
especially those regarding sensitive user data. These models
allow developers to declare permissions their extensions re-
quire. Extension users on the other hand are responsible for
making their own access control decisions on the requested
permissions.

Existing browser permission models suffer from limitations
when it comes to protecting user privacy against 3rd party
extensions. Such limitations involve insufficient access control
techniques, & limited user awareness. Some browsers provide

an “Incognito” mode that disables extensions by default. In
this paper, we investigate user privacy under Google Chrome’s
permission model, in addition to potential privacy threats.
We also propose a runtime framework that improves upon
the existing Chrome model and incorporates the following:
1) A Runtime Monitoring API, 2) Fine-grained Runtime Ac-
cess Control, 3) REM: a Chrome extension that implements
our proposed framework. Finally, we conduct a user study
that evaluates our Chrome extension “REM” and focuses on
measuring REM’s effect on user awareness towards extension
permissions.

II. BACKGROUND

Users are asked to respond to various permission requests
on a daily basis. Such requests can be at the time they
install new applications, or while trying to access certain
features of an application they already use. For example,
users are prompted with permission requests whenever they
install a new Facebook application, or whenever an iPhone
application tries to use a device’s GPS for the first time.
Overall, permission requests can happen at install-time or run-
time. In this paper we focus on the permission model for
Google Chrome extensions, which can be considered as a
hybrid model, that is, extensions request permissions at install
time, but also have the ability to request optional permissions
after installation.

A. Chrome Extensions

Third party browser extensions are widely used within
major browsers such as Firefox, Chrome, and Safari
[1], [2]. Users can change their browsing experience
by adding new functionalities or modifying the core
browser functionalities. Chrome extensions are built using
a mix of required and optional components. Specifically,
a required manifest.json, at least one html file
(background.html or popup.html), and other
additional resources such as JavaScript files, images, and
other HTML files.
Manifest: The manifest.json file is a required
component for each extension, and provides information
on an extension’s properties, requested permissions, and other
attributes. In this paper, we focus on the permissions,
plugins, and content_scripts properties within the

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250642

manifest. These are properties related to the privacy of the
user when using third party extensions.
Background Page: An optional HTML page that many
extensions use for managing background activities. This
is used by extensions that need to stay active at all times
or be able to perform continuous tasks. Our proposed
framework targets background pages when adapting third
party extensions to our model.
Content Scripts: These are scripts that run within the
context of a webpage that extensions want to interact
with. That is, the content script can read and modify a
webpage and pass messages back to its parent extension.
An example extension that uses content scripts is the
Google Dictionary extension which shows a popup with the
description of a selected word within a webpage. Extensions
declare the hosts targeted by their content scripts within the
manifest.json. Note that extensions are also able to
programmatically inject custom scripts into webpages using
the chrome.tabs.executeScript API.

III. CHROME EXTENSION PERMISSIONS

Third party Chrome extension developers are able to de-
clare permissions needed by their extensions to fulfill certain
functionalities, and to access certain Chrome APIs. Such
permissions can be declared as required or optional using
the permissions and optional_permissions man-
ifest properties respectively. For example, an extension might
request access to browser cookies, or a user’s browsing history
in order to interact with their associated Chrome APIs. The
set of such possible permissions are defined by Google within
the Chrome extension API documentation. Developers can also
declare permissions as optional, which is ideal for permissions
not required immediately by extensions. Additional permis-
sions can also be requested by an extension when updated.

A. Permissions and Chrome APIs

Once an extension acquires its requested permissions, it can
access the Chrome APIs associated with each permission, i.e,
certain Chrome APIs require certain permissions to execute
successfully. For example, the chrome.cookies.get API
call requires the cookies permission. We look at each
requested permission, and find all the reachable API calls an
extension can perform, which allows us to precisely monitor
all potential extension accesses, as explained in our pro-
posed framework in Section V. The full permission to API
mappings were generated by scanning the Chrome extension
documentation, specifically the manifest permissions and their
associated chrome modules. By mapping each permission to
a set of associated API calls, we can control and monitor an
extension’s specific accesses. The exception to this rule is any
extension using an NPAPI plugin, which allows for native code
execution outside of the context of the Chrome browser. That
is, NPAPI accesses do not occur through the Chrome APIs.

B. User Awareness

Users are warned about some of the permissions that are
requested at installation time, and have the option to either
continue installing an extension with the requested permis-
sions, or cancel the installation process. Warnings are also
shown to users if a certain extension is updated and requests
additional permissions, or if an optional permission is being
requested. Note that not all permissions trigger a warning
message. Such permissions will be granted to an extension
without the user’s explicit approval. An example of such
permissions is cookies. We think the rationale behind this is
that these permissions rely on other requested permissions that
do trigger warnings. For example, an extension that requests
the cookies permission can only access cookies for the hosts
it has access to. The list of hosts that can be accessed by a
certain extension are listed within its manifest file as part of
the permissions attribute, and are shown to the user at install
time. The caveat here is that not all users will presume giving
access to a certain host could also lead to granting access to its
cookies. For example, if a user grants access to <all_urls>
(all urls), this could potentially mean access to all cookies
in the user’s browser. Another issue involves warnings that

Fig. 1. Permission Details in the Standard method

do not reflect a precise description of what is being granted
to an extension. For example, an extension that requests the
history permission will trigger a warning that says “It can
access: Your browsing history”, which could potentially be
misinterpreted as the list of all URLs a user has visited. But the
matter of fact is that the history permission also provides
an extension with information regarding a user’s browsing
behavior, e.g. how the user reached a certain website (by
typing the url, clicking a link, via a bookmark, etc.), the time
they visited a website, and the number of visits too. Such in-
formation can be valuable to third parties and could potentially
be used for undesired purposes from a user’s point of view.
In our proposed framework, we provide users with detailed
information and feedback on the permissions and accesses
granted to an extension as seen in Figure 5. Currently, the
“Standard” method for discovering an extension’s permissions
is to visit its page on the Chrome Web Store and looking at
the details tab as seen in Figure 1. From there, users have the
option to discover more about the permissions requested by
visiting yet another webpage. In Section VII we show that our
proposed extension REM performs better in increasing user
awareness and understanding of an extension’s permissions.

Extension permissions sometimes rely on other permis-
sions, i.e. it is not sufficient for an extension to request one

permission without the other. Hence, certain functionalities
within an extension will require a chain of permissions to
execute successfully. A popular permission requested by ex-
tensions is the host permission, which is declared within
the manifest as a match pattern. The pattern dictates the
hosts that are accessible by extensions. Example patterns
include: http://*/* (all hosts using the http scheme),
http://example.com/foo.html which matches that
specific url, and <all_urls> which matches all urls.
The importance of the host permission emerges when ex-
tensions use other permissions such as the cookies or
tabs. For example, an extension may request cookies
permission and assume it can read all cookies using the
chrome.cookies.getAll API. This isn’t true, unless the
extension requested a host permission that covers all URLs
associated with the desired cookies.

IV. USER PRIVACY AND THREATS

Users have widely adopted browser extensions and have
become acclimated to using them on a regular basis. With
this wide spread of extensions, especially ones developed by
third parties, the threats to user privacy have increased [3],
[4], [5], [6]. The permission model adopted by Google Chrome
does provide some means for controlling the permissions given
to extensions, but there are still areas that can be improved
to provide for better privacy and protection against potential
threats.

A. Threats

Extensions with excessive permissions represent a higher
threat to user privacy, especially those that are poorly written
and include security vulnerabilities. Excessive permissions
are those that are deemed inappropriate or unnecessary in
certain privacy related scenarios. For example, granting a
host permission of <all_urls> to a Twitter client ex-
tension could be deemed excessive, as it most likely would
only require access to http://*.twitter.com/*. In the
following, we discuss some potential threats when extensions
gain excessive Chrome permissions.

Host Pattern Occurrences (100)
<all_urls> 5
:///* 4
https://*/* 38
http://*/* 46
Wild Card Subdomain 18
Specific Host 12

Fig. 2. Host permission patterns requested by the top 100 rated extensions

Host Permissions The host permission is a popular per-
mission requested by third party extensions and is declared
as a match pattern within the extension’s manifest. The
match pattern represents the webpages extensions would like
to access, which could range from a specific webpage (by
specifying a specific URL) to all webpages with a schema of

http, https, file, or ftp (Using the <all_urls>).
Figure 2 shows the requested host permission patterns re-
quested by the top hundred rated extensions on the Chrome
Web Store. The most popular patterns requested were the
http://*/* and https://*/* patterns. Note that the
occurrences of match patterns do not sum up to 100, that is
because extensions can declare multiple patterns. Extensions
with excessive host permissions could potentially succeed in
performing attacks on user privacy, especially when combined
with other permissions such as the tabs or cookies per-
mission. With the tabs permission, extensions are able to
programmatically execute their own custom JavaScript using
the chrome.tabs.executeScript API. Such scripts
are allowed to run on webpages that satisfy the extension’s
host permission. Hence, with an excessive host permission,
custom scripts are executed on a wider range of webpages.
The threats on user privacy arise when custom scripts are
vulnerable to attacks such as Cross Site Scripting, that is,
a script could potentially execute malicious code embedded
within webpages visited by the user. Such a scenario would
allow the malicious code to perform with the privileges of the
compromised extension. For example, malicious code could
access all cookies accessible to a compromised extension that
has cookies permission. Limiting the host permission to a
smaller subset of webpages would decrease the attack surface.

The cookies permission combined with excessive host
permissions could also introduce threats to user privacy.
Access to cookies is based on the host permission an
extension has, that is, access is allowed to any cookie that
belongs to a host within the match pattern declared by the
host permission. Hence, a match pattern of <all_urls>
potentially means access to all user cookies. Extensions could
abuse their host permission and access user cookies for
malicious reasons such as hijacking a user’s online session.
Another threat scenario involves vulnerable extensions that
have the cookie permission. Such extensions, if attacked,
could elevate the privileges of malicious code and allow it
access to user cookies and other reachable resources.

The dependencies between the host and both tabs
and cookie permissions makes it important to monitor
and control the specific accesses made by extensions,
especially when dealing with excessive host permissions
such as http://*/* or <all_urls>. The rationale
is that extensions may need different host permissions
for different types of accesses. For example, executing a
script using the tabs.executeScript API may require
certain host permissions, whereas reading cookies via
the chrome.cookies.get API may require different
ones. Currently, the same host permission is used for
both purposes, which leads to unnecessary privileges and
potentially unwanted accesses.

Tabs Permission The tabs permission gives extensions
access to the browser’s windows and tabs within each open
window. Extensions are able to access Tab objects, which
contain information on the tab returned such as the associated

URL. Hence, extensions with tabs permission have access
to all URLs a user visits. Note that the tabs permission is
not dependent on the host permission with the exception
of content script execution, hence, Chrome does not prevent
access to tab URLs that are not within the host match pattern.
With access to all URLs, a malicious extension can directly
analyze any URL and its query attributes, and potentially
extract important information such as session IDs and OAuth
request tokens. Such information can be used in compromising
the user’s privacy [7].

Another drawback of not bounding the tabs permission,
is that it undermines the history permissions defined by
Chrome. That is, extensions can generate their own history
repository by keeping track of all URLs users visit. Note
that the history permission provides additional accesses
such as the methodology of reaching a certain webpage (e.g.
was a URL typed, clicked, etc.), hence we only consider
this a partial undermining. We improve upon the tabs
permission within our proposed framework by allowing users
to customize the URLs accessible by APIs associated to the
tabs permission.

Other Permissions Other Chrome permissions such as the
history & bookmarks permission could also be used to
gain access to URL data, hence potentially executing malicious
attacks using extracted session IDs or OAuth request tokens.
Such attacks may frequently fail given history and bookmark
URLs are potentially old, hence contain outdated information
regarding a user’s session or request token. Note that both
these permissions are not bounded by the host permissions.
We also improve upon this within our framework.

B. Intrusiveness

Third party extensions that request excessive permissions
can be quite intrusive. This is mainly due to the relatively
course-grain nature of Chrome permissions. For example, ex-
tensions with the tabs permission are able to track all URLs
a user visits, which in many cases is undesirable, especially
in scenarios where users visit webpages of highly confidential
matter, such as financial or health related webpages. The tabs
permission also gives extensions access to the DOM, which
gives it the ability to read and write data within the DOM. Such
data may be highly confidential. For example, an extension
with tabs permission can easily detect if a user has visited
https://online.wellsfargo.com/ and extract the user’s balance.
With additional permissions, the extension could even pass it
back to a remote server. Such scenarios show the importance
of giving the user the necessary controls over which webpages
certain extensions have access to. Other permissions such as
history and bookmarks could also reveal the browsing
behaviors of users. We believe users should have the option to
control the accesses associated with these permissions. With
the potential threats and lack of sufficient user awareness
within the Chrome extension permission model, we propose
a runtime framework that monitors and informs users of
extension accesses, in addition to providing them the means for

controlling and customizing the permissions granted to their
installed extensions.

V. PROPOSED PERMISSION FRAMEWORK

We propose and implement a runtime permission framework
that allows for fine grain chrome permission monitoring and
access control enforcement. The framework monitors Chrome
API calls made by third party extensions and collects the
data processed by these calls. For example, when the API
chrome.windows.getAll is called, an allocated monitor
within our framework collects the information relevant to
the returned browser windows, such as the set of all Tabs
within each of the browser windows. Given the runtime nature

Chrome
User data

Chrome API

Extension1

c1 c2 c3

Extension
Manager

M
1

P
1

Update

Activity

Interact

Fig. 3. Framework Architecture

of the framework, it can inform users in realtime of the
specific accesses made by extensions (e.g. which specific
URLs or cookies it has accessed), it can also enforce fine-
grain access control onto attempted accesses. Additionally, the
proposed framework allows for users to customize extension
permissions, i.e. grant/deny permissions from the original
set requested by an extension. The framework consists of
two main components, the extension Manager, and extension
Monitor. A single Monitor is allocated for each third party
extension installed on a user’s Chrome browser, and has its
own associated access control Policy. All Monitors report
back and are managed by the framework’s extension Manager.
Figure 3 illustrates the overall architecture of our framework.

A. Extension Manager

Our extension Manager is the main component within our
framework that allows for monitoring third party extensions.
The extension manager itself is a Chrome extension with
NPAPI capabilities. NPAPI access allows us to adapt the
behavior of third party extensions and allow the extension
manager to listen to Chrome API calls made by these ex-
tensions, in addition to enforcing fine-grain access controls
on requested accesses. In the following we discuss the tasks
covered by the Manager.
Adapting Third Party Extensions To monitor API calls
made by third party extensions, the manager modifies their
default behavior by injecting a proposed Monitor component

that reports back to the manager. Figure 3 shows the Mon-
itor M1 that is assigned to Extension1. This is achieved
by including a custom built monitor.js script file into
the extension’s bundle, then linking to it from within the
extension’s HTML pages such as background.html and
popup.html. When building the Monitor for a specific
extension, the manager can selectively choose which API
calls the Monitor should monitor. This allows for optimizing
the monitoring process and avoiding unnecessary checks. For
example, in Figure 3, only API calls c2 and c3 are monitored
for Extension1. We explain the details of our Monitor
component in Section V-B.
API Notifications and Logging Once a Monitor is built
and injected into an extension’s bundle, the Manager starts
listening to incoming message calls sent by the Monitor. These
messages hold information on the Chrome API calls made by
third party extensions. Using this information, the manager is
able to keep users aware of the extension activities by notifying
them in real time of the API calls made. The Manager also
logs all accesses for future reference and are accessible via
the Manager’s UI.
Fine-Grain Permission Customization The Manager allows
for users to customize the access control policy for each
installed extension. Users are given fine-grain controls over
the permissions granted to extensions and are provided with a
simple user interface to do so as seen in Figure 4. There are
mainly two types of permission controls provided:

1) Permission-based: These controls allow users to deny
or allow a certain permission as a whole. Doing so
prevents any API associated with the permission from
executing. For example, users can choose to deny the
permission cookies for an extension which will block
all cookie associated Chrome APIs from executing.

2) Host-based: These controls allow/deny extensions from
accessing certain hosts via the APIs of a certain per-
mission. That is, we keep track of a permission-to -
host dictionary that has all the hosts blocked for each
permission of an extension. For example, a user could
prevent an extension with tabs permission from ac-
cessing a Tab that is associated with a certain host such
as online.wellsfargo.com. We provide host-
based controls for the tabs, cookies,history, and
bookmarks permissions. Host-based controls allow for
decreasing the effect of excessive host permissions and
the potential threats discussed in Section IV.

Users are also given the option to fully enable/disable certain
extensions.
Extension Policy: Each third party extension is allocated a
policy.js file which represents its access control Policy.
The policy contains the fine-grain decisions made by users
via the Permission-based and Host-based controls. That is,
it contains a set of denied Chrome permissions in addition
to a set of denied permission-to-host values. This Policy is
used by an extension’s Monitor to make the proper access
control decisions whenever a certain API call is detected. Any
customizations made by the user are immediately registered by

Fig. 4. Permission Customization

the Manager and written into the extension’s Policy. Note that
the Policy represents a negative access control list (ACL−),
hence if a Chrome permission or permission-to-host value does
not exist within the Policy, it is considered allowed, otherwise
it is denied. Also note that the policy.js is embedded
within an extension’s bundle. Figure 3 shows the Policy P1

that is assigned to Extension1.
Permission Details The Manager finally provides users with a

Fig. 5. tabs permission details

detailed description on each of the requested permissions. The
detailed description for a specific permission also contains a
set of examples on popular accesses that map to the Chrome
APIs associated to a permission. We manually prepared the
descriptions and examples. We evaluate the effectiveness of
these detailed descriptions in our user study as explained in
Section VII. Figure 5 shows the detailed description for the
tabs permission.

B. Extension Monitor
An extension Monitor is a custom built JavaScript file

(monitor.js) that we use to monitor the activities of third
party extensions. When a Monitor is created for a specific
extension, it is assigned a set of API methods to monitor.
These APIs are assigned by our extension Manager to suit
the permissions requested by extensions. For example, if an
extension requests the cookies permission, the monitor
would be asked to monitor the corresponding cookie API
methods:chrome.cookies.[getAllCookieStores,
get, getAll, remove, set, onChanged]. Note
that the Manager could select a subset of these APIs, but we
monitor all associated APIs by default.
The Monitor is also assigned a Policy (policy.js) which
it uses in making access control decisions on the API calls it
detects. When relevant API calls are detected by a Monitor,
the following steps occur:

1) The Monitor intercepts the API call, i.e. the execution
of the API runs through the Monitor. It then informs the
Manager of this call.

2) An access control decision is made on the API call.
This is decided based on two factors. First, the Chrome
permission the API is associated to. If this permission
is in the ACL− of the Monitor’s Policy, the decision is
rendered as Deny. Second, the host used within the API
(if applicable). If a permission-to-host value is found
for the associated permission of the API, the decision
is rendered as Deny. If either factors render a decision
of Deny, then the final decision is Deny, otherwise it is
Allow.

3) If the Policy decision retrieved is Allow, the Monitor
executes the API call and returns the relevant results.
Otherwise, if the decision is Deny, then the API is
blocked and if appropriate returns an empty result (Some
extension required an empty result to not break).

Note that in cases of APIs that do not specify a specific
host value such as chrome.windows.getAll, the Mon-
itor will filter the return values to not include any results
associated with a permission-to-host value. For example, if
the user has denied the host online.wellsfargo.com
and the chrome.windows.getAll API results includes
Tab objects associated with this host, then the results returned
will exclude these Tabs.

VI. EVALUATION

The framework was evaluated on a Windows 7 machine
with a 2.4GHz i3 CPU, 4GB of RAM, and was running the
Chrome browser version 16.0.912.75. In our evaluation, we
studied the 100 “top rated” Chrome extensions as listed on
the official Chrome Web Store at the time of evaluation. The
extensions covered all categories on the Chrome Web Store.

A. Implementation

To evaluate the proposed framework, we implemented
the framework as a Chrome extension with NPAPI capa-
bilities and used the FireBreath NPAPI Framework to de-
velop the dll plugin used for the extension. Our Monitor
component of the framework was implemented using the
FunMon2.js function monitor [8], which allowed us to
monitor API calls from within an extension’s monitor.js
file. We used Chrome’s message passing APIs to establish the
connections between the Manager and Monitor components,
specifically the onRequestExternal. addListener
and sendRequest APIs.

When users install our implemented extension, they are re-
quired to restart their browser to initiate the adaptation process
on their installed extensions. At this point, the framework
starts the monitoring process and access control enforcement.
The main user interface was implemented via the extension’s
browser action and its popup.html. The browser action
button shows the user the number of recent API notifications.
The popup.html will display the recent notifications and the
permission customization controls as seen in Figure 4. Users

can also see a detailed activity log when clicking the Activity
button of an extension, and can choose to enable/disable
the extension. Finally, popup.html shows users the list of
originally requested host permissions.

B. Permission Requests

When analyzing the 100 top extensions, we found the tabs
permission to be most popular after the host permission.
tabs was requested 77 times, followed by contextMenus
22 times, cookies 11, notifications 10, and the least
requested was the proxy and clipboardWrite each re-
quested once. From the 100 extensions, we analyzed per-
mission requests that combine both the tabs and host
permission. As discussed in Section IV, with both these
permissions, extensions could represent a potential threat on
user privacy. We found that 6.5% of extensions with the tabs
permission have requested a <all_urls> host permission,
5% with *://*/*, 49% with https://*/*, and 60% with
http://*/*. Whereas, 12% have either requested a specific
host or ones with wild card subdomains. We also found that
11% have no host permissions. Note that the percentages do
not add up to 100% because of extensions that use multiple
host match patterns.

VII. USER STUDY

To evaluate our proposed browser extension we conducted
a user study that compares the Standard permission discovery
method (By visiting an extension’s detail page on the Chrome
Web Store as in Figure 1) with our own browser extension
REM. Participants in the study performed a number of tasks
related to third party Chrome extensions and answered a
number of questions on these tasks.

A. Methodology

The study participants were recruited from UNC-Charlotte.
Each participant was supplied with a $10 Amazon gift card.
We recruited a total of 20 participants to start the study, of
which 18 successfully completed the study and 2 dropped
out. Of the 18 participants, 11 were females and 7 were
males. 88.2% of the participants are at least familiar with
Chrome extensions and how to manage them within Chrome.
Participants were given a brief introduction to REM’s and
to the existing Standard methods, and were also given a
few minutes to familiarize themselves with both techniques.
We then performed a within-subjects study comparison in
which participants use either the Standard method or REM for
performing the study tasks at first, then use the other method
for performing the same tasks once again. Assigning a method
(REM or Standard) to users was random, and the order of the
methods assigned was counter balanced.
Study Tasks: Participants were given 8 different tasks & were
asked to determine whether performing a certain action was
permitted by a third party Chrome extension. For these tasks,
participants could answer with: Yes, No, or Uncertain. Note
that for each task a participant had to answer in regards to four
different third party extension. The tasks were categorized into

Category Task
Social
Networking

Do the installed browser extensions
have permission to read your pri-
vate posts on social sites you visit?

Online Shopping Do the installed browser extensions
have permission to read your his-
tory of visited product pages?

Fig. 6. Example Tasks

Social Networking related tasks and Online Shopping related
ones. For each category participants performed 4 different
tasks. Examples of such tasks are illustrated in Figure 6.
Study Results: To evaluate the performance of participants on
tasks, we considered two measures: 1)Response correctness,
and 2)The time to finish a task measured in seconds. In Figure
8 we summarize the different time intervals for finishing
correctly answered tasks. Notice that we consider only the
correctly answered tasks as we are interested in the time it
takes to correctly determine permitted actions among third
party Chrome extensions. One can notice an overall higher

Task Standard (µ, σ) REM (µ, σ) p-value
Social1 (0.0, 0.0) (0.294, 0.469) 0.01003
Social2 (0.47, 0.51) (0.64, 0.49) 0.13469
Social3 (0.70, 0.469) (0.70, 0.469) 0.5
Social4 (0.11, 0.33) (0.41, 0.50) 0.02787

Shopping1 (0.0, 0.0) (0.41, 0.50) 0.002048
Shopping2 (0.235, 0.437) (0.352, 0.492) 0.16609
Shopping3 (0.176, 0.392) (0.235, 0.437) 0.33417
Shopping4 (0.235, 0.437) (0.58, 0.50) 0.014459

Fig. 7. T-test Task Accuracy.

correctness when using REM, in addition to an overall lower
time-to-task intervals. For example, participants were able
to answer 30 tasks correctly within a time interval of 0-25
seconds using REM, whereas with the Standard method they
were able to answer 12. Surprisingly, even when REM was
the first tool option used by participants, it was still able to
perform better than the Standard method.

To measure the significance of these results, we performed
a t-test on the accuracy rate of participants. In Figure 7 we
report the mean accuracy with standard deviation for all 8
tasks when using the Standard method vs. REM. Note that the
accuracy rate was significant in tasks Social1, Social2, Social4,
Shopping1, and Shopping2 with a p-value p < 0.05.
In a post survey, participants were asked to assess our proposed
browser extension REM and the Standard method using three
Likert-scale questions. Participants responded to each of the
following statements on a scale from one (strongly disagree)
to seven (strongly agree).
S1: I am satisfied with the tool
S2: I was able to easily identify the permissions requested by

each third party Chrome extension.
S3: I was confident in determining the permitted actions for

installed third part Chrome extensions.

0−25 26−50 51−75 76−100 >100

Time Intervals in Seconds

N
u
m

b
e
r

o
f
O

c
c
u
rr

e
n
c
e
s

0
5

1
0

1
5

2
0

2
5

3
0

Standard

REM

Fig. 8. Time distributions for correctly answered tasks

Figure 9 illustrates the user responses using boxplots. The
black band in the middle of a box indicates the median. From
the responses we observed that REM was rated significantly
higher (p < 0.05) for all three statements.

VIII. RELATED WORK

In the last few years several extension vulnerabilities have
been discovered, which include stealing cookies, key logging,
expose confidential information, and hijack the local operating
system [3], [4], [5], [6]. In a white paper, Freeman et al. [9] in-
vestigated the possible security attacks on Firefox extensions.

Bandhakavi et al. [10], proposed applying static
information-flow analysis to the JavaScript code used in
the third party applications. They described a set of unsafe
flow patterns that may lead to security vulnerabilities. This
approach provides a mechanism to query the extension
code for the defined unsafe flows and does not provide a
mechanism to enable the user to monitor application behavior
and control its access. Similarly static analysis [11] has been
proposed to address security of web applications such as
identifying SQL injection [12], and cross-site scripting [13],
[14]. These techniques are complementary to ours, since our
runtime monitoring and access control model could benefit
from the discovered unsafe flows to recommend to the user
fine-grain permissions to eliminate these flows.

Dynamic analysis techniques have also been used to trace
information flow properties of JavaScript as it is being exe-
cuted by the browser [15], [4]. Dhawan et al. [16] proposed
a memory tainting approach to trace propagation of tainted
objects during JavaScript execution and to raise alerts if an
object containing sensitive information is accessed in an unsafe
way. These approaches are effective in tracing dynamic pro-
gram flow, however usually require users to install a modified
or recompiled browser or JavaScript engine. Our proposed

Standard REM

1
2

3
4

5
6

7

(a) Q1: Overall Satisfaction

Standard REM

1
2

3
4

5
6

7

(b) Q2: Identifying Permissions

Standard REM

1
2

3
4

5
6

7

(c) Q3: Confidence

Fig. 9. Summary of Likert-Scale user responses

approach is easily integrated in current legacy browsers by
simply installing a browser extension. In addition, our ap-
proach can easily be integrated with dynamic analysis tools.

IX. CONCLUSION AND FUTURE WORK

This paper proposes a runtime framework that monitors
3rd party extension API calls, and is able to enforce a
user’s custom access control policy at runtime. Users are
provided with fine-grained permission controls that allow for
denying/allowing specific permissions. They were also able to
set Host-based permissions that prevent APIs of certain
permissions from accessing certain hosts. The framework was
implemented as a Chrome extension “REM”. Our future work
includes the ability to monitor a larger set of Chrome APIs,
and the ability to monitor network connections made by
extensions.

REFERENCES

[1] Mozilla Add-Ons Blog, “How many Firefox users have add-
ons installed? 85%!” http://blog.mozilla.com/addons/2011/06/21/
firefox-4-add-on-users/.

[2] The Chromium Blog, “A Year of Extensions,” http://blog.chromium.org/
2010/12/year-of-extensions.html.

[3] A. P. Felt, K. Greenwood, and D. Wagner, “The effectiveness of
application permissions,” in Proceedings of the 2nd USENIX conference
on Web application development, ser. WebApps’11, Berkeley, CA, USA.

[4] Y. Zhou and D. Evans, “Protecting private web content from
embedded scripts,” in Proceedings of the 16th European conference
on Research in computer security, ser. ESORICS’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 60–79. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2041225.2041231

[5] A. Barth, A. P. Felt, P. Saxena, and A. Boodman, “Protecting browsers
from extension vulnerabilities,” 17th Network and Distributed System
Security Symposium, 2010.

[6] M. Ter Louw, J. Lim, and V. Venkatakrishnan, “Enhancing web browser
security against malware extensions,” Journal in Computer Virology,
vol. 4, pp. 179–195, 2008.

[7] OAuth, “Security Advisory:2009.1,” http://oauth.net/advisories/2009-1/.
[8] Stephen W. Cote, “FunMon2.js,” http://www.imnmotion.com/

documents/html/technical/dhtml/funmon.html.
[9] R. S. Liverani and N. Freeman, “Abusing Firefox Extensions,” in Defcon,

July 2009.
[10] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett, “Vex:

vetting browser extensions for security vulnerabilities,” in Proceedings
of the 19th USENIX conference on Security, ser. USENIX Security’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 22–22. [Online].
Available: http://dl.acm.org/citation.cfm?id=1929820.1929850

[11] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in
java applications with static analysis,” in Proceedings of the 14th
conference on USENIX Security Symposium - Volume 14. Berkeley,
CA, USA: USENIX Association, 2005, pp. 18–18. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251398.1251416

[12] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in
scripting languages,” in Proceedings of the 15th conference on USENIX
Security Symposium - Volume 15. Berkeley, CA, USA: USENIX
Association, 2006. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1267336.1267349

[13] G. A. D. Lucca, A. R. Fasolino, M. Mastoianni, and P. Tramontana,
“Identifying cross site scripting vulnerabilities in web applications,”
in Proceedings of the Web Site Evolution, Sixth IEEE International
Workshop. Washington, DC: IEEE Computer Society, 2004, pp. 71–80.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1025133.1026460

[14] V. N. Venkatakrishnan, P. Bisht, M. T. Louw, M. Zhou, K. Gondi, and
K. T. Ganesh, “Webapparmor: a framework for robust prevention of
attacks on web applications,” in Proceedings of the 6th international
conference on Information systems security, ser. ICISS’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 3–26. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1940366.1940369

[15] H. Kikuchi, D. Yu, A. Chander, H. Inamura, and I. Serikov, “Javascript
instrumentation in practice,” in Proceedings of the 6th Asian Symposium
on Programming Languages and Systems, ser. APLAS ’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 326–341. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-89330-1 23

[16] M. Dhawan and V. Ganapathy, “Analyzing information flow in
javascript-based browser extensions,” in Proceedings of the 2009
Annual Computer Security Applications Conference, ser. ACSAC ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 382–391.
[Online]. Available: http://dx.doi.org/10.1109/ACSAC.2009.43

