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Abstract—Sensor source location privacy, which means to pro-
tect source sensors’ locations of network traffic, is an emerging
topic in wireless sensor networks, because it cannot be fully
addressed by traditional cryptographic mechanisms, such as
encryption and authentication. Current source location privacy
schemes, assuming either a local attack model or a global attack
model, have limitations. For example, schemes under a global
attack model are subject to a so called ‘01’ attack. Targeting on
solving this attack under a global attack model, we propose two
perturbation schemes, one based on Uniform distribution and the
other based on Gaussian distribution. We analyze the security
properties of these two schemes. We also simulate them and
compare them with previous schemes, with the results showing
that the proposed perturbation schemes can improve the source
location privacy significantly.

Index Terms—Source Location Privacy, Wireless Sensor Net-
works, Random Perturbations, Uniform Distribution, Gaussian
Distribution.

I. I NTRODUCTION

Sensors are small devices that can collect data, e.g., acous-
tic, temperature, and vibration, from the environment. To fulfil
their goals, sensors have three salient features. First, they have
small sizes, so they are widely used in ubiquitous/pervasive
computing, to complete tasks without being noticed by people,
especially by those enemies in a battlefield environment.
Second, they operate under very limited resources, such as
simple processor, small storage, and scarce power. Therefore,
only lightweight operations are affordable by sensors. Third,
sensors communicate with each other through simple radio
devices and normally in an open/broadcast manner, so it is
easy for the attacker to overhear message transmissions among
sensors. Overall, sensors radically change the way in which
people observe and interact with the environment.

A large quantity (e.g., hundreds or even thousands) of
sensors communicating with each other consist of a Wireless
Sensor Network (WSN). WSNs are widely used for essential
military missions and civilian tasks, such as battlefield surveil-
lance, seismic monitoring of buildings, and personal health
maintenance. However, WSNs are also susceptible to a myriad
of attacks [1], because they normally operate in an unattended,
harsh, and/or hostile environment.

Traditional research in WSNs focuses on solving such
security issues as key establishment and management [2],

[3], [4], [5], [6], [7], data encryption/decryption, and message
integrity/source authentication [8]. Most of them could be
solved by techniques such as applied cryptography. Recently,
privacy preservation, which cannot be fully addressed by
encryption and authentication, has drawn a lot of attention
from researchers [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18]. One way to categorize privacy preservation is to
divide it into protecting either sources’ or receiver’s location.
Since the receiver, i.e., the base station, is normally protected
by tamper proof mechanisms because of its importance, our
focus is source location privacy, which means to protect the
source nodes’ locations of the network traffic.
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Fig. 1. An application of sensor networks for animal monitoring, in which
ha is the hearing range of the attacker andhs is the hearing range of regular
sensors.

If a message is transmitted from source to destination, no
matter how strong the key and algorithm to encrypt the data
are, the location of the source is disclosed to the observer by
traffic analysis. As shown in Figure 1, in an asset monitoring
network to protect the elephant, the attacker can thus locate
the elephant and capture them. In a battlefield scenario, the
communication between soldiers and their surrounding sensors
could reveal the positions of the soldiers, putting them in great
danger as the opposing force, by monitoring sensor network
traffic, may locate the soldiers and accurately attack them.
Therefore, source location privacy is a challenging issue.
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Although there are existing solutions in literature, thereare
still limitations in them. The current source privacy preserva-
tion techniques assume either a local or global attack model.
In a local attack model, the attacker has a hearing range
comparable to that of regular sensors. In this case, when the
attacker’s hearing range increases to more than three times
of regular sensors, the asset capture likelihood by phantom
routing significantly increases to 97% [12].

On the other hand, in a global attack model, the researchers
directly consider an attacker with a hearing range covering
the entire network, by either deploying his own malicious
network or employing a powerful site surveillance device [15].
These schemes are subject to a so called ‘01’ test from
the attacker [19], because a time interval of real message
is normally smaller than the population mean, followed by
a recovery time interval of dummy message that is larger than
the population mean. If over time the attacker accumulates an
accurate population mean of message time intervals, then he
can identify all these ‘01’ patterns of time intervals (we denote
a time interval smaller than mean as ‘0’ and a time interval
larger than mean as ‘1’). Thus, he has a high chance to derive
that the ‘0’s in these patterns are likely to be real message
time intervals.

Targeting on solving this ‘01’ attack in previous schemes,
we propose two perturbation schemes, one based on Uniform
distribution and the other based on Gaussian distribution.By
adding perturbations to the message time intervals, the sample
mean calculated by the attacker deviates from the true (or
population) mean, which makes the ‘01’ patterns obscure
and lowers the attacker’s detection capability. We analyzethe
security properties of these two schemes. We also simulate
them and compare them with previous schemes, with results
to show that these two perturbation schemes could improve
the source location privacy significantly.

The rest of the paper is organized as follows. We first talk
about the background knowledge of previous work [15] and
‘01’ attack in Section II. Then, we formalize the system model
in Section III. After that, we propose the two perturbation
schemes in Section IV before security analysis in Section V.
The performance evaluation is in Section VI. Finally, we
briefly discuss the related work in Section VII and conclude
our paper in Section VIII.

II. BACKGROUND

In this section, we cover some background knowledge on
previous work and try to answer the following questions: why
do we care about message time intervals? What are sample
mean and population mean of message time intervals? Why
does the previous work suffer from ‘01’ attack? What do ‘0’
and ‘1’ mean in this attack?

A. Previous Work

We focus on the most important previous work, which
is [15]. This work considers a global attack model, which
means the attacker has a global view of all the network
traffic. Under such a strong attack model, we have to introduce

extra message overhead (i.e., dummy messages) with the same
format to cover real messages. By observing message formats,
the attacker cannot differentiate real and dummy messages.

The simplest scheme with perfect privacy under this condi-
tion is a constant-rate scheme, in which all the nodes send out
messages following the same rate. When there is a real event,
real source postpones the message transmission to the next
time interval. However, in this scheme, there is a difficultyin
determining message transmission rate: when this rate is too
high, there will be much overhead introduced from dummy
messages; otherwise, if this rate is too low, there will be high
latency in real message transmissions. Therefore, there isa
tradeoff among privacy, overhead, and latency inherently.

The main purpose of FitProbRate scheme in [15] is to
reduce real event report latency by relaxing perfect privacy
requirement. In FitProbRate scheme, every nodes send out
messages following a probabilistic rate, i.e., an exponential
distribution, which provides flexibility to reduce real message
latency. Real sources use goodness of fit test to generate
small real message time intervals with the same distribution.
However, under this condition, if there are continuous real
messages and/or real message rate is high, then the mean
of message time intervals will tend to be small. Hence, real
message time intervals normally are followed by relatively
large dummy message time intervals to recover the mean.

Note that here the mean of the attacker refers to the
attacker’s sample mean, which is limited by the attacker’s win-
dow size, due to his finite computation and storage resources.
The attacker’s population mean is the mean of sample means.

B. ‘01’ Attack

The previous work [15] suffers from a so called ‘01’ test
from the attacker [19]. Over time, the attacker may accumulate
a population mean of all the observed message time intervals.
If his population mean is accurate, he can identify all the
message time intervals smaller than this mean (denoted as
‘0’s) and all the message time intervals larger than this mean
(denoted as ‘1’s). Furthermore, he may tend to find that
message time intervals smaller than this mean have a higher
chance of coming from real sources. An intuitive way for the
attacker to identify real messages is to find out all the ‘01’
patterns of message time intervals and derive ‘0’s in these
patterns are likely from real messages.

III. SYSTEM MODELS

Next, we introduce our network model as well as adversary
model.

A. Network Model

We consider thatn sensor nodes are randomly distributed
in the deployment area. There aren′(0 < n′ < n) out
of n nodes detecting real events and sending real messages
simultaneously. Once a real event is detected, real messages
containing real event related information, such as event type,
location, and time will be sent from the source to the base
station. Dummy messages are generated to cover these real



messages. All messages are encrypted and of the same format.
Base station resides in a fixed location in the network, e.g.,at
the center.

B. Adversary Model

Since all the messages are scrambled and appear random to
the attacker, the attacker has to try to identify real messages
from their time intervals because real sources tend to send
out real messages as soon as possible to reduce the latency.
In our attack model, the attacker has a hearing rangeha,
which is multiple times larger than that of the regular sensors
hs(i.e., 3hs < ha ≤ r, wherer is network radius), e.g., a
laptop-class attacking device with more powerful but limited
hearing capabilities. We assume that maximally the attacker
can observe and analyzew message time intervals altogether,
i.e., the attacker’s window size isw ≥ 0. We differentiate
sensor’s transmission range (ts) and hearing range (hs), i.e.,
ts might not equal tohs. The attacker might compromise a
small fraction of sensor nodes to stop their normal operations
and obtain their security credentials. Like other papers inthe
same area [15], [14], [13], we assume that the base station
cannot be compromised.

IV. PROPOSEDSCHEMES

As introduced formerly, the previous schemes under a global
attack model are subject to a so called ‘01’ attack. Targeting
on solving this attack, we present our two source location
privacy schemes based on random perturbations: one based
on Uniform distribution and the other based on Gaussian
distribution.

These two schemes work because based on random pertur-
bations the sample mean calculated by the attacker becomes
inaccurate, which means it deviates from the true or population
mean. In this way, the attacker cannot accurately identify all
the ‘01’ patterns, and this decreases the attacker’s detection
capability for real message time intervals significantly.

Time intervals following 

a baseline distribution of exponential U=f(x)

Perturbation distribution V=g(x)

(Uniform or Gaussian distribution)

Perturbed distribution W=U+V

+

Fig. 2. Adding perturbations into message time intervals.

A. A Scheme based on Uniform Distribution

Similar to [15], the baseline of message time intervals
follows an exponential distribution, because according toits
probability density function, a traffic generator following an

exponential distribution tends to generate small time intervals.
Our basic idea is to add random perturbations to each in-
dividual time interval following an exponential distribution.
As shown in Figure 2, every time interval will follow the
probabilistic distribution ofU + V instead of onlyU , where
U is the exponential distribution andV is the perturbation
distribution.

The common perturbations normally follow two different
distributions. The first one is a Uniform distribution with 0as
mean and range is[−a,+a]. The second perturbation could
be a Gaussian distribution, which will be discussed in the next
section.

Every time a real message comes, a small interval with
maximum negative perturbation could be assigned, e.g.,−a
in Uniform distribution; we still need to guarantee that the
time intervals from real messages are positive and small.
The technique to implement this perturbation is presented in
Algorithm 1.

Algorithm 1 Perturbation based on Uniform Distribution

Input: uniform distribution in range[−a, a]; rate r of
real event; durationd of real event; meanµ of exponential
distribution;

Output: m message time intervalsλi(0 ≤ i ≤ m − 1)
including time intervals of real event messages;
Procedure:
1: val = round(1/r);
2: for i = 0 to m− 1 do
3: if rem(i, val)=0 then
4: for j = 0 to d− 1 do
5: λij = exprnd(µ)-a;{maximally negative perturba-

tions}
6: while λij <= 0 do
7: λij = exprnd(µ)-a;{time intervals should be

positive}
8: end while
9: end for

10: else
11: λi = exprnd(µ)+unifrnd((-1)×a,a);{regular perturba-

tions following uniform distribution}
12: while λi <= 0 do
13: λi = exprnd(µ)+unifrnd((-1)×a, a);{time intervals

should be positive}
14: end while
15: end if
16: end for

B. A Scheme based on Gaussian Distribution

The second perturbation could be a Gaussian distribution
with 0 as mean and standard deviationσ. Every time a
real message comes, a small interval with maximum negative
perturbation could be assigned, e.g.,−σ, −2 × σ, or even
−3×σ in Gaussian distribution. We still need to guarantee that
the time intervals from real messages are positive and small.
The details of implementation are presented in Algorithm 2.



In order to guarantee that the generated time intervals are
positive, the basic idea of our algorithm is that every time
when we generate a random time interval we check whether
it is positive or not; if not, we repeat this process until
every random time interval is positive. Since the operations
of random number generator are simple, we can find positive
random values very fast.

Algorithm 2 Perturbation based on Gaussian Distribution
Input: standard deviationsσ; rate r of real event; duration

d of real event; meanµ of exponential distribution;
Output: m perturbed time intervalsλi(0 ≤ i ≤ m− 1);
Procedure:

1: val = round(1/r);
2: for i = 0 to m− 1 do
3: if rem(i, val)=0 then
4: for j = 0 to d− 1 do
5: λij = exprnd(µ)+b; {maximally negative perturba-

tion whenb is −σ,−2× σ, or −3× σ}
6: while λij <= 0 do
7: λij = exprnd(µ)+b; {time intervals should be

positive whenb is −σ,−2× σ, or −3× σ}
8: end while
9: end for

10: else
11: λi = exprnd(µ)+normrnd(0,σ);
12: while λi <= 0 do
13: λi = exprnd(µ)+normrnd(0,σ); {time intervals

should be positive}
14: end while
15: end if
16: end for

V. SECURITY ANALYSIS

In this section, we analyze the security properties of previ-
ous work [15] and the proposed schemes. More specifically,
we analyze the probability for ‘01’ patterns to occur for all
these schemes.

First, let us take a look at the probability for ‘01’ patterns
to appear in FitProbRate scheme [15]. Supposem is the total
number of messages andr is real message rate. There are two
situations for ‘01’ patterns to occur: if there are real events,
then the probability for ‘01’ pattern to appear is 1; otherwise,
if there are no real events, then the probability for ‘01’ pattern
to appear is1/4, because the probability for two continuous
messages to be the pattern of ‘00’, ‘01’, ‘10’, and ‘11’ are
all equal. Hence, according to Total Probability Formula and
Classical Probability Model, the probabilityp(x1) for ‘01’
patterns to appear in FitProbRate scheme is as follows:

p(x1) =
m× r + (m−m× r) × 1

4

m− 1

=
3×m× r +m

4× (m− 1)

when m is large

≈
3

4
× r +

1

4
. (1)

Then, let us take a look at the probability for ‘01’ patterns to
appear in our schemes. The probabilityp(x2) for ‘01’ pattern
to appear is1/4, because due to our random perturbations the
probability for two continuous messages to be the pattern of
‘00’, ‘01’, ‘10’, and ‘11’ are all equal, i.e.,

p(x2) =
1

4
< p(x1), (2)

sincer > 0. This means that the probability for ‘01’ patterns
to occur in our schemes is smaller than that in the FitProbRate
scheme and the actual difference depends on the real message
rate.

We will use simulations in Section VI-C1 to validate our
analytical results. The probability for ‘01’ patterns to appear
in our schemes is close to1/4, which is the probability for
any random patterns of two continuous message intervals to
appear. This means that by perturbations the ‘01’ patterns of
real message time intervals are hidden well in a large quantity
of dummy message time intervals. Also, this probability is
smaller than that in the FitProbRate scheme, which means
that our perturbation schemes can reduce the probability for
‘01’ patterns to occur from a relatively large value (though
the difference depends on the real message rate) to a value
for random patterns, so that the attacker cannot gain anything
from purely identifying ‘01’ patterns.

VI. PERFORMANCEEVALUATION

In this section, we first introduce the setup of our simulation
and the evaluation metrics, then we present our simulation
results.

A. Simulation settings

In our simulation settings, there are 100 nodes randomly
distributed in the deployment area. Out of them, there are 5
real sources detecting real events. By default, a real eventlasts
for 5 messages (i.e., durationλ = 5). We choose the rates
of real event to be 0.01, 0.02, 0.04, 0.05, 0.1. The mean of
the exponential distribution is 10. The perturbation parameters
(a) in Uniform distribution and (σ) in Gaussian distribution
are 5. For the attacker, his window size is 1000 by default.
The attacker uses one-sample Kolmogorov-Smirnov test as his
goodness of fit test and the significance level (α) in his statistic
test is 5%.

B. Simulation metrics

Here in our simulation a detection is defined as “a ‘01’
pattern has been identified”. Then, detection rate is formulated
as follows:

Definition 1: Suppose the number ofdetected‘01’ patterns
caused by real messages is denoted ast and theactual total
number of ‘01’ patterns caused by real messages in the traffic
is denoted ast′(t ≤ t′), then the detection rate of attacker is
defined as:

detection rate = t/t′.
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Fig. 3. Validating analysis on Uniform distribution
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Fig. 4. Validating analysis on Gaussian distribution
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Fig. 6. The FitProbRate scheme.
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Fig. 7. Uniform perturbations.
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Fig. 8. Gaussian perturbations.
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Fig. 9. ROC for FitProbRate scheme.
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Fig. 10. ROC for Uniform Distribution Scheme.
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Fig. 11. ROC for Gaussian Distribution Scheme.

Here false positive rate is formulated as following:
Definition 2: Suppose the total number of detected ‘01’

patterns by the attacker isv, the total number of sensors isn,
and the number of messages from each sensor ism, then the
false positive rate of attacker is defined as:

false positive rate =
v − t

m× n− t′
.

To better understand the effectiveness of the attacker’s
detection, we check the Bayesian detection rate [20] of the
attacker, which is defined as the probability for an alarm to
really indicate a real message. In more detail, we have the
following definition:

Definition 3: Suppose the total number of detected ‘01’
patterns by the attacker isv and the number of detected
‘01’ patterns caused by real messages ist, then the Bayesian
detection rate of attacker is defined as:

Bayesian detection rate = t/v.

Also, to compare the effectiveness of the attacker’s detec-
tion in different schemes, we draw the Receiver Operating
Characteristic (ROC) curve of the attacker, which shows the
detection rate as a function of false positive rate.

C. Simulation results

We first use simulation results to validate our security
analysis. Then, we compare the performance of two proposed
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Fig. 12. Impact ofa in Uniform perturbation
scheme.
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scheme.
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Fig. 14. Impact ofb in Gaussian perturbation
scheme.
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Fig. 15. ROC curve for Uniform perturbation
scheme.
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Fig. 16. ROC curve for Gaussian Perturbation
scheme (impact ofσ).
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Fig. 17. ROC curve for Gaussian perturbation
scheme (impact ofb).

schemes and also compare them with the previous schemes,
to obtain the insights on which scheme performs better and
also show the improvement of our schemes over the previous
schemes.

1) Validation of security analysis:First, we run simulations
to validate the results of our security analysis. In Figure 3and
Figure 4, we run the simulations in 100 trials to derive the
probability of ‘01’ patterns in our proposed schemes. From
Figure 3, we can see that the probability of ‘01’ patterns for
the Uniform distribution scheme changes around0.238, which
is close to the theoretical result1

4
. Similarly, the probability

of ‘01’ patterns for the Gaussian distribution scheme changes
around 0.237, which is close to the theoretical result1

4
too,

as shown in Figure 4. These match the results of our security
analysis well.

Also, from Figure 5, we can see the probability of ‘01’
patterns in percentage changes with the real message rates
for the FitProbRate scheme. Again, the simulation results are
close to the results of our security analysis, which validate our
security analysis.

2) Comparison with previous schemes:Overall, from Fig-
ure 6, Figure 7, and Figure 8, we can see that random
perturbations following either Uniform distribution or Gaus-
sian distribution can decrease the attacker’s detection rate
and Bayesian detection rate and increase the attacker’s false
positive rate significantly.

For example, from Figure 6 to Figure 7, perturbations
following Uniform distribution can decrease the attacker’s
detection rate from around 100% to around 20%. They can also
decrease the attacker’s Bayesian detection rate from around
20% to less than 5%.

From Figure 6 to Figure 8, we can see that perturbations
following Gaussian distribution can further decrease the at-
tacker’s performance. For example, the attacker’s detection
rate is decreased to around 15% and the attacker’s Bayesian
detection rate is decreased to less than 5%.

From Figure 9, Figure 10, and Figure 11, we can see
that the perturbations can make the attacker’s detection much
less effective, because perturbations lower the attacker’s ROC
curve significantly. The attacker’s detection rate decreases
from around 100% to around 20% and around 15% by
perturbations following Uniform distribution and Gaussian
distribution, respectively.

3) Comparison of two proposed schemes:Comparing from
Uniform-distribution scheme to Gaussian-distribution scheme,
the attacker’s detection rate and Bayesian detection rate are
lower from around 20% to around 15% and the false positive
rate is slightly higher because the scheme with perturbations
following Gaussian distribution has slightly better performance
than the Uniform distribution scheme. All of these can be seen
from Figure 7 to Figure 8 and from Figure 10 to Figure 11.



4) Impact of different parameters:From Figure 6, we can
see that in the FitProbRate scheme if real message rate is
higher then the attacker’s performance is better: his detection
rate and false positive rate almost remain same, but his
Bayesian detection rate is higher. Obviously, in this scheme,
if real messages appear more frequently with a higher real
message rate, this will make the real sources more easily to
be detected.

We do not have such observations in our perturbation
schemes. From Figure 7 and Figure 8, we can see the impact
of real message rate on our perturbation schemes. In both
schemes, when real message rate increases, the attacker’s false
positive rate almost remains the same, but his Bayesian detec-
tion rate increases at the cost of a decreasing detection rate.
Therefore, the attacker cannot benefit from an increasing real
message rate, which shows one advantage of our perturbation
schemes.

From Figure 12 and Figure 15, we can see the impact
of parametera in Uniform perturbation scheme. Whena
increases, the attacker has a better performance: he has a
higher detection rate, a higher Bayesian detection rate, and a
lower false positive rate. Therefore, when we choose the values
for parametera, it does not mean a largera is necessarily
better.

We notice that ifa = 0 our scheme becomes a perfect-
privacy scheme, because both real and dummy messages
follow the same exponential distribution. However, in this
scheme, real message latency is high since real message time
intervals are not perturbed. Our scheme makes real and dummy
message time intervals almost equivalently small. Although it
is not as secure as the pure exponential scheme, our scheme
trades a certain degree of security for performance. On the
other hand, ifa is larger, there are larger differences between
real and dummy message time intervals, which makes the
‘01’ patterns more obvious. Hence, the attacker has better
performance. Also, a largera means longer running time for
our algorithm because it is harder to find positively small
time intervals for the real messages, so we should choose an
appropriately small value fora (such asa = 5).

From Figure 13 and Figure 16, we can see the impact of
parameterσ in Gaussian perturbation scheme. It is similar to
the impact ofa in the Uniform perturbation scheme. Whenσ
is larger, the attacker has a better performance, so when we
determine parameter values we should choose an appropriate
(small) value (such as 5) forσ, to decrease the attacker’s
performance.

From Figure 14 and Figure 17, we can see the impact of
parameterb in Gaussian perturbation scheme. The attacker’s
performance does not changes much with the values ofb,
compared with the other two parametersa andσ.

VII. R ELATED WORK

In general, privacy preservation in wireless sensor net-
works could be divided into protecting either sources’ or
receiver’s locations. [21], [22], [23], [16] employ countermea-
sures against traffic analysis to improve receiver’s location

privacy, whereas our focus is source location privacy.
To improve source location privacy, [12] proposes phantom

routing technique, in which messages are first forwarded by
single-path random walk, then they are flooded in the area
to reach the base station. Although by employing phantom
routing the safety period is significantly improved, when the
attacker’s hearing range is increased to more than three times
larger than that of regular sensors, the attacker’s capture
likelihood is increased to 97% correspondingly.

[24] and [25] consider a laptop-class eavesdropper in their
attack model. [24] proposes four schemes: naive, global,
greedy, and probabilistic, to deal with laptop-class attacks.
Periodic collection and source simulation are proposed in [25]
to protect the context information under a global eavesdropper.

[17] considers node compromise attack and proposes a one-
way hash chain based scheme to randomly select intermediate
nodes transforming the packets, in order to obfuscate the
transmission links from source to destination.

In [15], a global attack model is under consideration. To
protect source privacy under such a strong attack model,
extra message overhead (i.e., dummy messages) has to be
introduced. Otherwise, if all the messages in the network
are real messages, then the attacker will know that every
message transmission signals a real event. Under this model,
the simplest scheme has a constant rate. However, the difficulty
in determining this rate reflects a tradeoff among message
overhead, real event report latency and privacy. This paper
proposes a FitProbRate scheme to reduce real event report
latency by relaxing a certain degree of privacy.

Besides these, [9] gives a state-of-the-art survey in privacy
preservation techniques for wireless sensor networks. [11]
introduces buffering delay to provide temporal privacy, which
is suitable for delay-tolerant applications of wireless sensor
networks. [26] proposes a cross-layer solution in which the
event information is first propagated several hops through
a MAC-layer beacon. Then, it is propagated at the routing
layer to the destination to avoid further beacon delays. To im-
prove source location privacy, [27] proposes dynamic routing
schemes, in which messages are first transmitted to randomly
selected intermediate nodes to confuse the attacker.

VIII. C ONCLUSION AND FUTURE WORK

Recently, source location privacy has become an impor-
tant research topic for wireless sensor networks. Previous
techniques used to protect source location privacy in sensor
networks did not solve this topic adequately.

Targeting on solving the problems found in previous
schemes, we propose two perturbation schemes that can effec-
tively decrease the attacker’s detection capability on real event
messages: one based on Uniform distribution and the other
based on Gaussian distribution. Our simulation results show
that our random perturbation schemes can improve source
location privacy significantly compared with previous work,
and the scheme based on Gaussian perturbations has better
performance than the scheme based on Uniform perturbations.



As future work, we will investigate different attack models
and work towards perfect and practical source location privacy
solutions.
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