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Abstract—Sensor source location privacy, which means to pro- [3], [4], [5], [6], [7], data encryption/decryption, and s&age
tect source sensors’ locations of network traffic, is an emeing  integrity/source authentication [8]. Most of them could be
topic in wireless sensor networks, because it cannot be fyll solved by techniques such as applied cryptography. Regentl

addressed by traditional cryptographic mechanisms, such & . . .
encryption and authentication. Current source location piivacy privacy preservation, which cannot be fully addressed by

schemes, assuming either a local attack model or a global atk €ncryption and authentication, has drawn a lot of attention
model, have limitations. For example, schemes under a globa from researchers [9], [10], [11], [12], [13], [14], [15], 6],
attagk moldel are subject to a so called ‘01" attack. Targetig on [17], [18]. One way to categorize privacy preservation is to
solving this attack under a global attack model, we proposewo  iyide it into protecting either sources’ or receiver’s aion.

perturbation schemes, one based on Uniform distribution ad the Si th . . the b tati . I "
other based on Gaussian distribution. We analyze the secuyi Ince the receiver, I.e., the base station, is normallyepte

properties of these two schemes. We also simulate them andPy tamper proof mechanisms because of its importance, our
compare them with previous schemes, with the results showin focus is source location privacy, which means to protect the
that the proposed perturbation schemes can improve the soee source nodes’ locations of the network traffic.
location privacy significantly.

Index Terms—Source Location Privacy, Wireless Sensor Net- =
works, Random Perturbations, Uniform Distribution, Gaussian m
Distribution. »
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I. INTRODUCTION

Sensors are small devices that can collect data, e.g.,-acous
tic, temperature, and vibration, from the environment. 0idilf “ ,
their goals, sensors have three salient features. Fiest,itave O B - o}
small sizes, so they are widely used in ubiquitous/pereasiv L0 T
computing, to complete tasks without being noticed by peopl 7o o
especially by those enemies in a battlefield environment. ~ O
Second, they operate under very limited resources, such as "0 ©
simple processor, small storage, and scarce power. Therefo © o mo
only lightweight operations are affordable by sensorsrd;hi ©
sensors communicate with each other through simple radio o , o
devices and normally in an open/broadcast manner, so it[§.1; An s6plcation o sensornetwor for anmal monkor i
easy for the attacker to overhear message transmissiongamgnsors.
sensors. Overall, sensors radically change the way in which
people observe and interact with the environment. If a message is transmitted from source to destination, no

A large quantity (e.g., hundreds or even thousands) mfatter how strong the key and algorithm to encrypt the data
sensors communicating with each other consist of a Wirelems, the location of the source is disclosed to the obsenver b
Sensor Network (WSN). WSNs are widely used for essentimhffic analysis. As shown in Figure 1, in an asset monitoring
military missions and civilian tasks, such as battlefield/ei+ network to protect the elephant, the attacker can thus docat
lance, seismic monitoring of buildings, and personal lhealthe elephant and capture them. In a battlefield scenario, the
maintenance. However, WSNs are also susceptible to a myremhmunication between soldiers and their surroundingsens
of attacks [1], because they normally operate in an unagtndcould reveal the positions of the soldiers, putting themrizat)
harsh, and/or hostile environment. danger as the opposing force, by monitoring sensor network

Traditional research in WSNs focuses on solving sudhaffic, may locate the soldiers and accurately attack them.
security issues as key establishment and management [2jerefore, source location privacy is a challenging issue.
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Although there are existing solutions in literature, thare extra message overhead (i.e., dummy messages) with the same
still limitations in them. The current source privacy prese format to cover real messages. By observing message fgrmats
tion techniques assume either a local or global attack modile attacker cannot differentiate real and dummy messages.
In a local attack model, the attacker has a hearing rangeThe simplest scheme with perfect privacy under this condi-
comparable to that of regular sensors. In this case, when thun is a constant-rate scheme, in which all the nodes sehd ou
attacker's hearing range increases to more than three timmesssages following the same rate. When there is a real event,
of regular sensors, the asset capture likelihood by phantoeal source postpones the message transmission to the next
routing significantly increases to 97% [12]. time interval. However, in this scheme, there is a difficuity

On the other hand, in a global attack model, the researchdetermining message transmission rate: when this rateois to
directly consider an attacker with a hearing range coverimigh, there will be much overhead introduced from dummy
the entire network, by either deploying his own malicioumessages; otherwise, if this rate is too low, there will ghhi
network or employing a powerful site surveillance devicg|[1 latency in real message transmissions. Therefore, theee is
These schemes are subject to a so called ‘01’ test fraradeoff among privacy, overhead, and latency inherently.
the attacker [19], because a time interval of real messageThe main purpose of FitProbRate scheme in [15] is to
is normally smaller than the population mean, followed bseduce real event report latency by relaxing perfect pyivac
a recovery time interval of dummy message that is larger theequirement. In FitProbRate scheme, every nodes send out
the population mean. If over time the attacker accumulates messages following a probabilistic rate, i.e., an expaaknt
accurate population mean of message time intervals, thendistribution, which provides flexibility to reduce real nsage
can identify all these ‘01’ patterns of time intervals (wendee latency. Real sources use goodness of fit test to generate
a time interval smaller than mean as ‘0’ and a time intervamall real message time intervals with the same distributio
larger than mean as ‘1’). Thus, he has a high chance to derivewever, under this condition, if there are continuous real
that the ‘O’s in these patterns are likely to be real messagessages and/or real message rate is high, then the mean
time intervals. of message time intervals will tend to be small. Hence, real

Targeting on solving this ‘01’ attack in previous schemespessage time intervals normally are followed by relatively
we propose two perturbation schemes, one based on Unifdarge dummy message time intervals to recover the mean.
distribution and the other based on Gaussian distribuBgn. Note that here the mean of the attacker refers to the
adding perturbations to the message time intervals, th@lsamattacker's sample mean, which is limited by the attackeits w
mean calculated by the attacker deviates from the true @wow size, due to his finite computation and storage resources
population) mean, which makes the ‘01’ patterns obscufée attacker's population mean is the mean of sample means.
and lowers the attacker’s detection capability. We anathee
security properties of these two schemes. We also simul&e 01" Attack
them and compare them with previous schemes, with resultsThe previous work [15] suffers from a so called ‘01’ test
to show that these two perturbation schemes could imprdvem the attacker [19]. Over time, the attacker may accuteula
the source location privacy significantly. a population mean of all the observed message time intervals

The rest of the paper is organized as follows. We first talk his population mean is accurate, he can identify all the
about the background knowledge of previous work [15] andessage time intervals smaller than this mean (denoted as
‘01’ attack in Section Il. Then, we formalize the system modé0’s) and all the message time intervals larger than thisrmea
in Section Ill. After that, we propose the two perturbatiofdenoted as ‘1’'s). Furthermore, he may tend to find that
schemes in Section IV before security analysis in Section ¥hessage time intervals smaller than this mean have a higher
The performance evaluation is in Section VI. Finally, wehance of coming from real sources. An intuitive way for the
briefly discuss the related work in Section VIl and concludattacker to identify real messages is to find out all the ‘01’
our paper in Section VIII. patterns of message time intervals and derive ‘O's in these

patterns are likely from real messages.
Il. BACKGROUND

In this section, we cover some background knowledge on lll. SYSTEM MODELS

previous work and try to answer the following questions: why Next, we introduce our network model as well as adversary
do we care about message time intervals? What are sampledel.
mean and population mean of message time intervals? Why
does the previous work suffer from ‘01’ attack? What do ‘0" Network Model
and ‘1’ mean in this attack? We consider thatr sensor nodes are randomly distributed
i in the deployment area. There ard(0 < n’ < n) out

A. Previous Work of n nodes detecting real events and sending real messages

We focus on the most important previous work, whickBimultaneously. Once a real event is detected, real message
is [15]. This work considers a global attack model, whickontaining real event related information, such as evem,ty
means the attacker has a global view of all the netwoftication, and time will be sent from the source to the base
traffic. Under such a strong attack model, we have to intredustation. Dummy messages are generated to cover these real



messages. All messages are encrypted and of the same formgionential distribution tends to generate small timeriratis.
Base station resides in a fixed location in the network, atg.,Our basic idea is to add random perturbations to each in-

the center. dividual time interval following an exponential distritoim.
As shown in Figure 2, every time interval will follow the
B. Adversary Model probabilistic distribution ofU + V instead of onlyUU, where

Since all the messages are scrambled and appear randoili ts the exponential distribution ant is the perturbation
the attacker, the attacker has to try to identify real messaglistribution.
from their time intervals because real sources tend to sendrhe common perturbations normally follow two different
out real messages as soon as possible to reduce the latetisjributions. The first one is a Uniform distribution witha@
In our attack model, the attacker has a hearing rahge mean and range is-a, +a|. The second perturbation could
which is multiple times larger than that of the regular sessobe a Gaussian distribution, which will be discussed in the ne
hs(i.e., 3hs < h, < r, wherer is network radius), e.g., a section.
laptop-class attacking device with more powerful but ledit Every time a real message comes, a small interval with
hearing capabilities. We assume that maximally the attrackeaximum negative perturbation could be assigned, e-g.,
can observe and analyze message time intervals altogetherin Uniform distribution; we still need to guarantee that the
i.e., the attacker’'s window size i® > 0. We differentiate time intervals from real messages are positive and small.
sensor’s transmission rangg)(and hearing rangeh(), i.e., The technique to implement this perturbation is presemnted i
ts might not equal toh,. The attacker might compromise aAlgorithm 1.
small fraction of sensor nodes to stop their normal opematio
and obtain their security credentials. Like other paperthen Algorithm 1 Perturbation based on Uniform Distribution
same area [15], [14], [13], we assume that the base statiofnput: uniform distribution in range[—a,al; rate r of

cannot be compromised. real event; durationi of real event; mean of exponential
distribution;
IV. PROPOSEDSCHEMES Output: m message time intervals;(0 < i < m — 1)

As introduced formerly, the previous schemes under a glohatluding time intervals of real event messages;
attack model are subject to a so called ‘01’ attack. TargetinProcedure:
on solving this attack, we present our two source location: val = round(1#);
privacy schemes based on random perturbations: one basgdfor ; = 0 to m — 1 do
on Uniform distribution and the other based on Gaussianm: if rem(, val)=0then

distribution. 4: for j=0tod—1do
These two schemes work because based on random pertgr- A\ij = exprndf:)-a;{maximally negative perturba-
bations the sample mean calculated by the attacker becomes tions}
inaccurate, which means it deviates from the true or pojuat - while )\;; <=0 do
mean. In this way, the attacker cannot accurately identify a 7. A\ij = exprnd()-a;{time intervals should be
the ‘01’ patterns, and this decreases the attacker's detect positive}
capability for real message time intervals significantly. 8: end while
o: end for
10: else

11: i = exprndfy)+unifrnd((-1)x a, a);{regular perturba-

Time intervals followin . . . RN
& tions following uniform distribution

a baseline distribution of exponential U=f(x)

12: while \; <=0 do
l 13: A; = exprnd@z)+unifrnd((-1)x a, a);{time intervals
+ Perturbation distribution V=g(x) should be positivg
(Uniform or Gaussian distribution) 4. end while
l 15.  end if
16: end for

Perturbed distribution W=U+V

B. A Scheme based on Gaussian Distribution

Fig. 2. Adding perturbations into message time intervals. The second perturbation could be a Gaussian distribution
with 0 as mean and standard deviatien Every time a
) o real message comes, a small interval with maximum negative
A. A Scheme based on Uniform Distribution perturbation could be assigned, e.g.g, —2 X o, or even
Similar to [15], the baseline of message time intervals3x o in Gaussian distribution. We still need to guarantee that
follows an exponential distribution, because accordingtso the time intervals from real messages are positive and small
probability density function, a traffic generator followiran The details of implementation are presented in Algorithm 2.



In order to guarantee that the generated time intervals are when m is large
positive, the basic idea of our algorithm is that every time 3 1
when we generate a random time interval we check whether ~ 4 Xt 4 @
it is positive or not; if not, we repeat this process until Then, let us take a look at the probability for ‘01’ patteras t
every random time interval is positive. Since the opera;tioréppear in our schemes. The probabifity:;) for ‘01’ pattern
of random number generator are simple, we can find positit¢appear is /4, because due to our random perturbations the
random values very fast. probability for two continuous messages to be the pattern of
‘00, ‘01’, ‘10, and ‘11’ are all equal, i.e.,

Algorithm 2 Perturbation based on Gaussian Distribution 1
Input: standard deviations; rater of real event; duration p(z2) = 7 <p(z1), (2)
d of real event; meam of exponential distribution;
Output: m perturbed time intervalg; (0 <i <m —1);
Procedure:
1: val = round(1#);
2. fori=0tom—1do
if rem@, val)=0then
4 for j=0tod—1do
5: Aij = exprndf)+b; {maximally negative perturba-
tion whenb is —o, —2 x o, or =3 x o}

sincer > 0. This means that the probability for ‘01’ patterns
to occur in our schemes is smaller than that in the FitProbRat
scheme and the actual difference depends on the real message
rate.

We will use simulations in Section VI-C1 to validate our
analytical results. The probability for ‘01’ patterns topaar
in our schemes is close tb/4, which is the probability for
any random patterns of two continuous message intervals to
appear. This means that by perturbations the ‘01’ pattefns o

w

6: while ;; <=0 do o real message time intervals are hidden well in a large qiyanti
£ Aij = exprndfy)+b; {time intervals should be o qmmy message time intervals. Also, this probability is

positive whenb is —o, =2 x o, or =3 x 0} smaller than that in the FitProbRate scheme, which means
8 end while that our perturbation schemes can reduce the probability fo
9 end for ‘01’ patterns to occur from a relatively large value (though
lo:  else the difference depends on the real message rate) to a value
11: Ai = expmdf:)+normmd(0.0); for random patterns, so that the attacker cannot gain anythi
12 while A; <=0 do o from purely identifying ‘01’ patterns.
13: A; = exprnd{)+normrnd(0, 0); {time intervals

should be positive VI. PERFORMANCEEVALUATION

14: end while In this section, we first introduce the setup of our simulatio
15:  end if and the evaluation metrics, then we present our simulation
16: end for results.

A. Simulation settings

V. SECURITY ANALYSIS In our simulation settings, there are 100 nodes randomly
In this section, we analyze the security properties of rareVqlstrlbuted in the deployment area. Out of them, there are 5

ous work [15] and the proposed schemes. More specifical‘iﬁal sources detecting real events. By default, a real dastst

we analyze the probability for ‘01’ patterns to occur for allor 5 messages (i.e., duration = 5). We choose the rates
these schemes. of real event to be 0.01, 0.02, 0.04, 0.05, 0.1. The mean of

First, let us take a look at the probability for ‘01’ patternéhe exponential distribution is 10. The perturbation paztars

to appear in FitProbRate scheme [15]. Suppasis the total (a) in Uniform distribution and €) in Gaussian distribution

number of messages ands real message rate. There are tw@re o For the attacker, his window size is 10_00 by default..
situations for ‘01’ patterns to occur: if there are real @gen The attacker uses one-sample Kolmogorov-Smirnov testsas hi

then the probability for ‘01’ pattern to appear is 1; otheseyi gooo_lness of fit test and the significance levglif his statistic

if there are no real events, then the probability for ‘01'tpat €St 1S 5%.

to appear isl/4, because the probability for two continuoug. Simulation metrics

messages to be the pattern of ‘00", “01', "10', and "11" are Here in our simulation a detection is defined as “a ‘01’

all equal. Hence, according to Total Probability Formula arbattern has been identified”. Then. detection rate is foated
Classical Probability Model, the probability(z;) for ‘01’ as follows: ’

patterns to appear in FitProbRate scheme is as follows: Definition 1: Suppose the number ddtected01’ patterns
caused by real messages is denoted and theactual total

B mxr+(m—mxr)Xx i number of ‘01’ patterns caused by real messages in the traffic
p(z1) - m—1 is denoted ag/(¢ < ¢'), then the detection rate of attacker is
Ixmxr+m defined as:

4x(m—1) detection rate = t/t'.
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Here false positive rate is formulated as following: Definition 3: Suppose the total number of detected ‘01’

Definition 2: Suppose the total number of detected ‘Opatterns by the attacker i and the number of detected
patterns by the attacker is, the total number of sensors+is ‘01’ patterns caused by real messages,ishen the Bayesian
and the number of messages from each sensar, ithen the detection rate of attacker is defined as:

false positive rate of attacker is defined as: Bayesian detection rate = t/v.

v—t _ Also, to compare the effectiveness of the attacker’s detec-
mxn—t tion in different schemes, we draw the Receiver Operating

To better understand the effectiveness of the attacke?g'araCteriStic (ROC) curve of the attacker, which shows the
gtection rate as a function of false positive rate.

detection, we check the Bayesian detection rate [20] of tﬁJ
attacker, which is defined as the probability for an alarm 6. Simulation results

really indicate a real message. In more detail, we have thewe first use simulation results to validate our security
following definition: analysis. Then, we compare the performance of two proposed

false positive rate =
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schemes and also compare them with the previous schemesor example, from Figure 6 to Figure 7, perturbations

to obtain the insights on which scheme performs better afalowing Uniform distribution can decrease the attacker’

also show the improvement of our schemes over the previaletection rate from around 100% to around 20%. They can also

schemes. decrease the attacker’s Bayesian detection rate from droun
1) Validation of security analysigFirst, we run simulations 20% to less than 5%.

to validate the results of our security analysis. In Figu@8@  From Figure 6 to Figure 8, we can see that perturbations
Figure 4, we run the simulations in 100 trials to derive thgllowing Gaussian distribution can further decrease the a
probability of ‘01" patterns in our proposed schemes. Froacker's performance. For example, the attacker's detecti

Figure 3, we can see that the probability of ‘01’ patterns foite is decreased to around 15% and the attacker’s Bayesian
the Uniform distribution scheme changes aro0r88, which  getection rate is decreased to less than 5%.

is close to the theoretical reSLgt Similarly, the probability
of ‘01’ patterns for the Gaussian distribution scheme cbangth
around 0.237, which is close to the theoretical regulbo,
as shown in Figure 4. These match the results of our secu
analysis well.

Also, from Figure 5, we can see the probability of ‘01

From Figure 9, Figure 10, and Figure 11, we can see
at the perturbations can make the attacker’s detectiochmu
less effective, because perturbations lower the attexiRDC

'Wrve significantly. The attacker's detection rate de@sas
from around 100% to around 20% and around 15% by

) ; erturbations following Uniform distribution and Gaussia
patterns in percentage changes with the real message rg

{§%ibution, respectively.
for the FitProbRate scheme. Again, the simulation results a " P 4 .
close to the results of our security analysis, which vaéidarr ~ 3) Comparison of two proposed schemé&mparing from
security analysis. Uniform-distribution scheme to Gaussian-distributiohesme,

2) Comparison with previous scheme@verall, from Fig- the attacker's detection rate and Bayesian detection rate a
ure 6, Figure 7, and Figure 8, we can see that randdfyver from around 20% to around 15% and the false positive

perturbations following either Uniform distribution or Gg 'ate is slightly higher because the scheme with perturbatio
sian distribution can decrease the attacker's detectiom ripllowing Gaussian distribution has slightly better perfiance

and Bayesian detection rate and increase the attackesis f4an the Uniform distribution scheme. All of these can bensee
positive rate significantly. from Figure 7 to Figure 8 and from Figure 10 to Figure 11.



4) Impact of different parameterd=rom Figure 6, we can privacy, whereas our focus is source location privacy.
see that in the FitProbRate scheme if real message rate iFo improve source location privacy, [12] proposes phantom
higher then the attacker’s performance is better: his tietec routing technigue, in which messages are first forwarded by
rate and false positive rate almost remain same, but Bisigle-path random walk, then they are flooded in the area
Bayesian detection rate is higher. Obviously, in this saento reach the base station. Although by employing phantom
if real messages appear more frequently with a higher realting the safety period is significantly improved, whee th
message rate, this will make the real sources more easilyattacker’s hearing range is increased to more than thresstim
be detected. larger than that of regular sensors, the attacker's capture

We do not have such observations in our perturbatidikelihood is increased to 97% correspondingly.
schemes. From Figure 7 and Figure 8, we can see the impaqR4] and [25] consider a laptop-class eavesdropper in their
of real message rate on our perturbation schemes. In battack model. [24] proposes four schemes: naive, global,
schemes, when real message rate increases, the attaal®’s §reedy, and probabilistic, to deal with laptop-class &sac
positive rate almost remains the same, but his Bayesiar-deteeriodic collection and source simulation are propose@%j [
tion rate increases at the cost of a decreasing detectien rab protect the context information under a global eavesgeap
Therefore, the attacker cannot benefit from an increasiag re [17] considers node Compromise attack and proposes a one-
message rate, which shows one advantage of our perturba{igfy hash chain based scheme to randomly select intermediate

schemes.. _ ~nodes transforming the packets, in order to obfuscate the
From Figure 12 and Figure 15, we can see the impaghnsmission links from source to destination.
of parametera in Uniform perturbation scheme. Whem In [15], a global attack model is under consideration. To

increases, the attacker has a better performance: he ha&rcﬁect source privacy under such a strong attack model,
higher detection rate, a higher Bayesian detection raié,aanextra message overhead (i.e., dummy messages) has to be
lower false positive rate. Therefore, when we choose theegal introduced. Otherwise, if all the messages in the network
for parameters, it does not mean a larger is necessarily gre real messages, then the attacker will know that every
better. message transmission signals a real event. Under this model
We notice that ifa = 0 our scheme becomes a perfecthe simplest scheme has a constant rate. However, the Hifficu
privacy scheme, because both real and dummy messagegletermining this rate reflects a tradeoff among message
follow the same exponential distribution. However, in thigyerhead, real event report latency and privacy. This paper
scheme, real message latency is high since real message goses a FitProbRate scheme to reduce real event report
intervals are not perturbed. Our scheme makes real and dumgténcy by relaxing a certain degree of privacy.
message time intervals almost equivalgntly small. Althoitg  gesjdes these, [9] gives a state-of-the-art survey in pyiva
is not as secure as the pure exponential scheme, our schg@ervation techniques for wireless sensor networks) [11
trades a certain degree of security for performance. On oduces buffering delay to provide temporal privacyjsh
other hand, ifu is larger, there are larger differences betwegg syitable for delay-tolerant applications of wirelessisg
real and dummy message time intervals, which makes thgwworks. [26] proposes a cross-layer solution in which the
‘01" patterns more obvious. Hence, the attacker has betigfent information is first propagated several hops through
performance. Also, a larger means longer running time for 5 \AC-layer beacon. Then, it is propagated at the routing
our algorithm because it is harder to find positively smajhyer to the destination to avoid further beacon delaysnTo i
time intervals for the real messages, so we should chooserﬁ\gve source location privacy, [27] proposes dynamic rayti
appropriately small value faz (such asa = 5). schemes, in which messages are first transmitted to randomly

From Figure 13 and Figure 16, we can see the impact @ijected intermediate nodes to confuse the attacker.
parameter in Gaussian perturbation scheme. It is similar to

the impact ofa in the Uniform perturbation scheme. When
is larger, the attacker has a better performance, so when we
determine parameter values we should choose an appropriatecently, source location privacy has become an impor-
(small) value (such as 5) fo#, to decrease the attackerstant research topic for wireless sensor networks. Previous
performance. techniques used to protect source location privacy in senso
From Figure 14 and Figure 17, we can see the impact @¢tworks did not solve this topic adequately.
parameter in Gaussian perturbation scheme. The attacker'sTargeting on solving the problems found in previous
performance does not changes much with the values, ofschemes, we propose two perturbation schemes that can effec
compared with the other two parameterando. tively decrease the attacker’s detection capability oheeant
messages: one based on Uniform distribution and the other
based on Gaussian distribution. Our simulation resultsvsho
In general, privacy preservation in wireless sensor ndhat our random perturbation schemes can improve source
works could be divided into protecting either sources’ docation privacy significantly compared with previous work
receiver’s locations. [21], [22], [23], [16] employ coumgea- and the scheme based on Gaussian perturbations has better
sures against traffic analysis to improve receiver’s lacati performance than the scheme based on Uniform perturbations

VIIl. CONCLUSION AND FUTURE WORK

VIl. RELATED WORK



As future work, we will investigate different attack model$14]

and work towards perfect and practical source locatiorgggiv

solutions.
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