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Abstract—Models to predict the future location of users
have been developed in the past few decades. However,
these efforts cannot drive applications related to location-
based targeting since they focus on flat geographic pre-
diction with no semantic information. With the emergence
of Location Based Social Networks (LBSN) geographical
data can be supplemented with contextual information. An
efficient location predictor might bring numerous oppor-
tunities and commercial benefits. In this work we propose
two simple predictors modeling future geo-contextual user
behavior. The algorithms have two outputs: first the most
likely next visit in terms of category and second the
expected time frame, in when, such a visit may occur. The
predictors use categorized user activities as unique check-
ins at specific times. Using real data obtained from the
commercial LBSN (FourSquare), we show the efficiency
of the algorithms.

Index Terms—Location Based Social Networks, Future
Check-in Model Prediction.

I. INTRODUCTION

Predicting a mobile users location has for years been
a research focus in the field of wireless communication.
This is due to the fact that accurate tracking can sig-
nificantly improve performance and user experience in
those systems. The goal of most is to provide a better
user experience via location aware application design.
In the wireless cell phone infrastructure, some predictor
algorithms have already been developed. Most of these
algorithms are based on segment matching, Order-k
Markov, and the LZ-Algorithms clustering. These latter
two algorithms are domain-independent predictors, used
in a large array of applications. At their core, their
task is to find the largest probability for the next user’s
location, depending upon current location and recent
movement history [2] [3]. To achieve the prediction goal,
researchers use GPS geo-coordinate data as the main
prediction input. Semantic information, such as type of
activity of the user, is not available to the predictor.

In contrast, Location Based Social Networks (LBSN),
have such information available to them due to the nature
of their service. In the past decade LBSN’s have become

quite popular. FourSquare is one example of an LBSN
network that has risen in user popularity. Using this type
of a service users can “check-in”, thereby indicating their
presence in a physical location (such as Restaurants,
Work, etc). This information can then be shared with
their friends in the network or even published to third
party networks (e.g. Facebook, Twitter). Furthermore,
these services provide extra incentive for users to check
in by offering discounts and deals for the number of
times visited or most check-ins in a specific venue.
Additionally, FourSquare provides information such as
venue type (Restaurant, Work, etc.), location tips, and
number of users currently present in a venue [4].

Due to the rapid increase in use of smart mobile
terminals, users have embraced the check-in model of
such networks. Location prediction is now no longer a
simple tracking problem, but an empirical social prob-
lem. By solving this problem, researchers can provide
additional semantic insight of future user behavior. This
insight has tremendous commercial benefit in offering
targeted venue incentives to specific users. For instance,
a user may have a history of visiting different French
restaurants quite often and the check-in history shows
that this occurs mostly on weekday evenings. A contex-
tual prediction system may then be used to recommend
similar but new restaurant to the user at the proper time,
therefore providing service to the user and increasing
business volume to the venue(s).

Social science has long sought to classify human
behavior according to individual attributes. The main
advantage of LBSN is that users are willing to share
private activity information readily. From the social point
of view, a user might be labeled by his activity preference
(food lover, sports lover, etc.). More specifically, the
users daily activities during different time periods are
tractable based on check-in history. For example, if a
user has in the past several months visited a grocery
store almost every Saturday morning, he probably will
be going to that same store on the upcoming Saturday
morning.
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Malmgren et al. [1] show that users tend to send
email activities in distinctive patterns. Furthermore, the
researchers found that once a user settles into a pattern,
changes in behavior are seldom. This fact was explored
and the Markov-based prediction model proved to be
accurate. Further research [11] in the field indicated that
personal diaries were used in order to quantify partici-
pant’s daily activity patterns. The conclusion presented
was that individuals indeed follow set patterns in their
daily lives; however, the actual pattern varies from one
person to another.

In this paper, we attempt to utilize users pattern
activities to predict the next check-in as categorical
venue. First, we present a basic straightforward model
in order to provide a better understanding as to what a
good user behavior prediction is in an LBSN outcome.
Second, we present a more robust model in an attempt
to improve prediction accuracy. The simulation results
for both models are satisfactory, however far from ideal.
This is due to the main difference between cellular
and LBSN location data. In LBSN, people have the
choice to share their location information or not. As
such, the location information is not necessarily a true
representation of a user’s daily activity. It is indeed a
”social” representation, as individuals use check-ins in
order to present themselves in a socially acceptable way.
In contrast, in wireless phone systems the user has no
such choice so the location data is more true to the actual
motion behavior. As mentioned previously, the problem
with cellular location data is that there is no contextual
information.

The rest of this paper is organized as follows: section
2 presents a baseline prediction model; section 3 presents
a more robust prediction model; section 4 presents simu-
lation results; and section 5 discusses the conclusion and
future work.

II. BASELINE MODEL

We start by presenting the baseline prediction model.
The predicting algorithm leverages users check-in history
in order to predict a future check-in in terms of category
and time. The method makes use of statistical analysis to
achieve this goal. The model uses a history window that
can be adjusted in order to incorporate more or fewer
data in the prediction. Besides the users own history,
other information can be added to this predictor, for
instance, friends information [5], [8], [7], distance a
user is willing to travel. This simple algorithm can be a
start point of applying social analysis to LBSN location
prediction.

The model works in three steps:

1) Period slicing: divide the week into seven days
- Monday, Tuesday, Wednesday, Thursday, Friday, Sat-
urday, Sunday (total of seven); divide all days into
six periods of the day: Early Hours, Morning, Noon,
Afternoon, Evening, Night (total of six). This results in
forty-two distinct periods of the week.

2) Frequency counting: create a histogram/frequency
count for each check-in category in each period of the
week. For example: MondayMorningCheckInProbability
= 0.023, MondayNoonCheckInProbability = 0.0163.

3) Predicting: based on the counted frequency and
time slice information, the algorithm predicts if a given
category check-in is likely in the next time slice. For
instance, if the next time slice is Tuesday evening and
from the user’s history the check-in probability for
category A is larger than the average weekly check-
in probability for the category, then a positive check-
in prediction is made. Otherwise, the algorithm assumes
that the user will not check-in. For this experiment, the
algorithm used a check-in history view window of two
weeks - fourteen days. Simulation ran one day at a time.
Prediction was made one check-in in advance.

From the simulations we obtained that this model has
category prediction accuracy of around 30%. Once time
prediction was added, the accuracy of time prediction
is close to random. The error varied from 4% to 63%
with average of 32%. The performance results of this
predictor are not satisfactory.

ITI. A MORE ROBUST MODEL

In the previous section we discussed the base case
linear model algorithm for prediction of future check-
ins. Our basic results showed that linear prediction had
some success with prediction of future category check-
in; however, it struggled to identify a clear relationship
in the time series. The next step of the investigation was
to find a more robust, non-linear model for prediction.
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Aprior Close algorithm parameters.

R. Agrawal and R. Skirant [6] built on this previous
data mining work [10] and introduced the Apriori Algo-



rithm. Their algorithm is not focused on finding patterns
in the data, but instead on finding sequence of events in
a given dataset. Originally, the algorithm was intended
to identify the sequence of repeating items bought by
customers over a number of separate store visits. In
the algorithm items are identified by an ID number and
transaction is composed of one of more item(s). In order
for two items to be considered as part of a sequence,
they do not have to be one right after another. In other
words, sequence item one can be followed by sequence
item two immediately, or there can be a gap between
them containing other non-sequence “nonsense” items.
One drawback of this algorithm is that it does not have a
notion of time elapsed between item one, two, three and
so forth. The only certainty is that items in the sequence
occurred in sequential order. Patterns discovered can be
of any length, with a minimum length of two.

There are three parameters to the algorithm: mini-
mum pattern support, minimum inner pattern distance
and maximum other pattern distance. The minimum
patterns support specified as percentage, indicates the
minimum percentage of transaction that need to contain
a pattern, before the pattern is considered of a wvalid
support. Minimum inner distance indicates the maximum
distance between two consecutive patterns elements, and
maximum outer distance indicates the maximum distance
between the beginning and ending elements of a pattern.
Figure 1 present the basic algorithm model and its
parameters.

We used the exact same approach to extract sequence
of check-in from user activity histories. By identifying
patterns, our system could detect the beginning of such
known check-in sequence and predict what was most
likely to occur. The detailed steps of the algorithm we
used are presented below.

A. Pattern Indentification Phase

The first step we took was to encode all user check-
ins in order to use the Apriori algorithm to discover
patterns in the dataset. The entire history of check-ins
for a single user was considered to be one transaction.
In other words, if fifty user histories are used, then
there will be fifty transactions. Each user check-in is
encoded by using an integer from 1 to 9, representing
FourSquare’s top level categories: Arts Entertainment,
College University, Food, Professional Other Places,
Nightlife Spot, Great Outdoors, Shop Service, Travel
Transport, Residence. Ten percent of the user data was
used as a training set in order to identify common
patterns between users in the population. Using SPMF

data mining framework [12], common patterns were
discovered between users. The question we attempted
to answer was: If a user check-in is in Category A, does
this tell us anything about any possible future check-ins?
As such, the algorithm tries to discover similar check-in
patterns between all users.
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Fig. 2. Histogram time difference between elements of pattern *Work
followed by Restaurant’.

B. Algorithm Training Phase

For our second step, we attempted to put a time frame
between different pattern elements. For instance, many
users have a check-in in Category A and a few check-
ins later into Category B. We wanted to identify what
the expected check-in delta between check-ins one and
two was. The histograms of inner check-in delta between
a few categories is presented in Figure 2. As we can
see from the histogram of time delta between check-ins,
the delta is a long tail distribution. This holds true for
all other delta time points. One of the most interesting
observations is that the time statistic from FourSquare
data seem to follow such a distribution. This fact makes
time-based prediction very difficult.

C. Prediction Phase

The predictor model is presented in Figure 3. After
number of possible user population patterns are identi-
fied via the training phase, those patterns are used on
individual histories. Each user check-in can trigger one
or more patterns that indicates future check-in. After
a pattern is indicated to be active, a possible future
prediction with valid timeframe is set as predicted. If the
predicted check-in occurs in the valid time frame, then
the prediction is considered accurate. It is important to
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Fig. 3. Apriori Close based check-in Predictor.

point out that, the check-in time frame has minimum and
maximum valid time window, as show in the Figure 3.

IV. SIMULATION
A. Dataset

We used the data obtained from Cheng et. al. [9].
The authors used twitter APl to crawl FourSquare
check-ins published at large. Twitter messages support
the inclusion of geo-tags (latitude/longitude) as well
as FourSquare location sharing services. Each check-
in in the dataset had a geo-tagged status update and
timestamp. We further obtained corresponding category
towards each update through FourSquares open API, in
order to categorize each check-in. FourSquare supports
several categorical levels, however we only used the
primary top categories as reference.

The location crawler in [9] ran for almost 4 months,
resulting in a total collection of 225,098 users and
22,506,721 unique check-ins. In running a prototype of
the predictor we crawled close to 6,500,000 check-in
records that had valid URLs of FourSquare categories.
We created a database to store the relations of all the
crawled information. The useful check-ins are tuples:
userID , tweetlD, text, location, time, categorylD, cate-
gory name. The predictor was applied on all 6,5 million
check-in records and evaluated the accuracy it achieved.
Each check-in in the database belonged to a user that
has at least 10 check-ins.

B. Setup

The experimental data subset contained 6.5 mil-
lion check-ins. Furthermore, an open-source framework
SPMF [12] was used to discover patterns using Apriori
Close algorithm. For the purposes of training we used
10 percent of the data, or roughly 650,000 check-ins.
The Apriori Close Algorithm ran with a threshold set at
25 percent (the minimum number of users that have to
display a check-in pattern, for a pattern to be considered

valid). For instance, pattern 2 4 (Work, Restaurant) had
the support of 54 percent of all users, and pattern 2 9
(Work, Art Entertainment) was supported by 30 percent
of the users.

The next step of the training process was to find what
is the mean check-in delta between atoms in the discov-
ered patterns. The same training set was used to calculate
the statistic. For instance, in using an exhaustive search
of the training set it was found that there were on average
6 check-in delta between atom 2 and 4 in pattern 2 4.
However, the variance of the delta is also quite large 15
check-ins.

The rest, 90 percent of the data, was used to measure
the performance of the prediction algorithm. The algo-
rithm started by using the pre-calculated statistics for
prediction. Once the algorithm encountered the first atom
of a pattern, it sets the pattern as active. Next, was to
predict when the second atom would be encountered. For
instance, once the algorithm saw check-in in category
2 (Work), it expected to see a check-in in category 9
(Restaurant) within a mean of 6 check-ins, or a check-in
into category 9 (Art Entertainment) within a mean of
10 check-ins (assuming that both patterns 2 4 and 2 9
were active).

Each expected delta check-in mean had a upper and
lower window threshold, calculated as the variance of
the mean. For instance, the second check-in in category
9, was expected within 10 check-ins, plus or minus
5 check-ins. The timeframe window for the pattern’s
second atom was set between check-in 5 and check-
in 15. If the second check-in occurred in this window,
then the prediction was considered correct and within a
valid check-in timeframe. If however, the second check-
in occurred outside the window, either before the lower
window bound or after the upper window bound, the
check-in prediction was considered correct, but outside
the valid time.

Obviously, a large prediction window is of no use due
to its poor accuracy. Therefore, the algorithm corrected
the delta mean and the upper and lower bound after each
prediction, attempting to shrink the window size . The
measurement accuracy of the algorithm was then not
only the correct vs. incorrect check-in prediction, but the
average size of the prediction window. A smaller win-
dow size and correct check-in prediction accuracy were
the main performance measurements of the prediction
algorithm.



Statistic Test Run 1 Test Run 2 Test Run 3
Apriori support threshold 10% 20% 30%
Total checkins 221588 221588 221588
Total patterns 352680 306828 246352
Average patterns per user 61 53 42
Total predicted patterns 239106 214795 179335
Total predicted patterns within timeframe 91051 81928 67880
Percentage of check-ins predicted 107% 96% 80%
Percentage of check-ins predicted within timeframe 41% 36% 30%
Average check-in timeframe window size 53 5.2 4.8
False positives 38% 22% 15%

TABLE I
CHECK-IN PREDICTION SIMULATION RESULTS. PLEASE NOTE: PERCENTAGE OF CHECK IN PREDICTED CAN EXCEED 100%, DUE TO THE
FACT THAT TWO OR MORE PATTERNS CAN PREDICT THE SAME CHECK IN.

C. Results

The main parameter to the simulation is the Apri-
ori Algorithm minimum pattern support threshold. By
varying this parameter the predictor can predict greater
or fewer check-ins. However, greater predictions come
at the expense of false positives. Results from three
separate experiments are presented in Table 1. The three
experiments ran with algorithm thresholds of 10%, 20%
and 30%. For the purpose of comparison, each test run
presented was stopped exactly after the same amount of
check-ins, indicated by the second row in the column.

Due to different Apriori threshold parameter, the
pattern discovered for each test run was different. As
expected the least stringent run, test run 1, had the most
possible total pattern, the most average patterns per user -
62, and also predicted the most check-ins. It is important
to point out that the total number of predicted check-ins
in row 5 is greater than the total number of check-ins
of the users. This is due to the fact that one check-in
could be predicted by multiple patterns. For instance,
the second atom in patterns 2 9 and 4 9 in both cases
is category 9. If indeed the user checks-in in category 2
and sometime later in category 4 (before a check-in in
category 9), then both of those patterns become active.
The algorithm predicts that a check-in in category 9 is
likely, and if it occurs, then two patterns were closed
successfully.

The most important performance statistics are pre-
sented in the last three rows, the total percentage of
correctly predicted check-ins within a time frame, the
average size of the timeframe, and the number of false
positives. Ideally, we would like to see high positive

prediction and small timeframe window, together with
low percentage of false positives. False positives are
defined as the number of patterns identified and set
active by the algorithm, and consequently, not closed
by subsequent check-ins.

In the first test run, the correct prediction rate is 41%
with timeframe window of 5.3 check-ins. However, the
number of false positives is comparable to the correct
prediction rate - 38%. Test runs 2 and 3 displayed most
lower false positives, however due to the lower number
of patterns, the correctly predicted check-in also is lower.
It is interesting to point out that the average timeframe
window does not seem to vary much in the three cases.
We believe this is due to the distribution of any time
statistics. It appears that users do not follow any time
cyclic pattern in regards to their check-ins. This is indeed
the most significant discovery of our research.

Our finding shows that check-in in FourSquare con-
tradict the expected norm in Social Sciences of cyclic
human behavior patterns [13]. We suspect that this is
due to the fact that users’ check-ins does not represent
their true mobility pattern, but rather it is a social
representation.

V. CONCLUSION

In this paper we presented two simple prediction
models for FourSquare future check-ins. The accuracy
of these models is good, but not perfect. We believe this
is due to the nature of Location Based Social Networks.
Future interesting research should include not only data
from LBSN, but also possibly data from cell phone
carriers. Cellular data will enhance the predictor since



it will have a more complete view of people mobility.
Furthermore, we would like to exploit friendships as
indicators of possible future check-in locations since user
has been shown to be spatially consistent [14].
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