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Abstract—Todays online social networks (OSNs) allow a user
to share his photos with others and tag the co-owners, i.e., friends
who also appear in the co-owned photos. However, it is not
uncommon that conflicts may arise among the co-owners because
of their different privacy concerns. OSNs, unfortunately, offer
only limited access control support where the publisher of the
shared content is the sole decision maker to restrict access. There
is thus an urgent need to develop mechanisms for multiple owners
of the shared content to collaboratively determine the access
rights of other users, as well as to resolve the conflicts among co-
owners with different requirements. Rather than competing with
each other and just wanting ones own decision to be executed,
OSN users may be affected their peers concerns and adjust
their decisions accordingly. To incorporate such peer effects in
the strategy, we formulate a model to simulate an emotional
mediation among multiple co-owners. Our mechanism, called
CAPE, considers the intensity with which the co-owners are
willing to pick up a choice (e.g. to release a photo to the public)
and the extent to which they want their decisions to be affected by
their peers actions. Moreover, CAPE automatically yields the final
actions for the co-owners as the mediation reaches equilibrium.
It frees the co-owners from the mediation process after the initial
setting, and meanwhile, offers a way to achieve more agreements
among themselves.

Index Terms—Social Networks, Collaborative Access Control,
Game Theory, Peer effects.

I. INTRODUCTION

Many Online Social Networks (OSNs) now offer users
free storage to upload their photos1 online. In addition, these
OSNs also provide tools for users to edit photos, stitch photos
together, and even make slideshows and galleries. Besides,
OSNs also allow users to tag persons in the photo. Tagging
a person not only facilitates users to organize the photos,
but also encourages photo-sharing in OSNs. For example, the
Picasa Web Albums2, which has recently been integrated
with Google+3, will give the person being tagged permission
to view the photo and share with others.

1In this paper, for ease of presentation, we use photo as a shared content.
Our method works for other shared content such as video and documents
when the co-owners can be identified successfully.

2http://picasaweb.google.com/
3https://plus.google.com

However, if it is not properly managed, photo tagging may
violate a person’s privacy and/or lead to his embarrassment.
This is because the person being tagged can further share the
photo with others. Consequently, the original uploader will
lose control over who can access the photo as it may become
available for the entire Web to view or be disseminated via
Google+ stream. In fact, many inadvertent users may not even
realize the size of the audience as they tag people and share
their photos with others. Although a user can detag himself
from a photo, he cannot stop other tagged users from sharing
it in their social networks.

The widespread concerns to protect user privacy have
prompted OSNs to develop access control mechanisms [1].
These are largely designed based on relationships and topology
of the social networks [2], [3], [4]. Unfortunately, the decision
for regulating the access to the shared photo still rests solely
on the uploader of the photo. As such, these access control
mechanisms are unable to deal with the privacy concerns of
other persons that may appear in the photo.

Intuitively, we can view all persons appearing in a photo
as co-owners of the photo. Each of these co-owners can thus
voice his opinion about who can have access to the photo.
By developing a method that considers the privacy of all co-
owners, a collective decision on the access restrictions may
be determined. However, everyone has his desired preference
of sharing at the appropriate exposure level that he is most
comfortable with. It is thus not uncommon that conflicts will
arise as a result of differing privacy preferences - while one
may be excited about sharing his photo, another may prefer
to keep it from public view. How to resolve such conflicts
in differing privacy concerns and to support a fair collective
decision-making strategy is an open problem.

We also notice that even though the users are very concerned
about the privacy, they seldom do much to protect their privacy.
In fact, users are just reluctant to spend time in specifying
privacy policy. Thus, a practical OSN access control tool
should be intuitive, light-weight, and automatic (i.e., require
minimal human intervention/effort).

To this end, many researchers recently began to intro-
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duce collaborative access control policy-making mechanisms
in OSNs [5], [6], [7]. These methods integrated the social
relationship types and the topology of social networks in
the policy-making, as well as in assessing the trust level of
accessors. Simple voting functions (e.g. full-consensus, one-
override, majority) are provided to deal with privacy conflicts.
Moreover, the intensity of the user’s perceived importance
towards a specific preference also matters. For instance, Alice
is essentially neutral and do not have any preference on
whether to keep the photo private or share with the public;
on the other hand, John may be very passionate (and hence
has a higher level of intensity than Alice) about sharing photos
to the public. Thus, intensity shall also be incorporated into
the expression of user preference in access control rules.
To promote fairness and truthfulness among users, a more
sophisticated voting method was proposed in [5] to remove
the incentive to conceal the true perceived intensity of a
preference.

However, a thoughtful strategy should not only collect each
individual’s own intention, but also take into account the social
interaction among the co-owners in the social network. Co-
owners of a photo are typically not business competitors where
they need to hide their true intention and compete with one
another to achieve maximum gain. Instead, they are likely
to be friends/acquaintances/colleagues and hence there is a
tendency to be considerate and sensitive to the feelings of one
another. Consider the scenario where two close friends, Alice
and Bob, had taken a photo together. Initially Bob wants to
share this photo with other friends, whereas Alice is strongly
against making the photo public. By taking Alice’s feeling
into consideration, Bob is likely to respect her and change
his mind, hence achieving the consensus to keep this photo
private. It is inevitable that peers exert tremendous influence
on individual behaviors, let alone the ubiquitous interactions
on OSNs. Such peer effects can be found in a vast literature
in the field of sociology and psychology (e.g. [8], [9], [10],
[11], [12]).

By taking into account peer effects in making collaborative
access control rules, some conflicts of co-owners’ intention
will disappear naturally. We aim to treat everyone’s preference
with equal importance so that no single person’s personal
preference directly dominates the collective decision. At the
same time, our proposed strategy, called CAPE, incorporates
peer effects, allowing users to adjust their intention according
to their neighbors’ actions. The goal is to try to achieve
more agreements, or even better, full consensus and satisfy
everyone’s privacy concerns. This is inherently different from
collusion which has a negative connotation. In fact, consider-
ing peer effects on network may undermine colluding behavior.
This is the case as a subgroup of users’ decisions do not
necessarily directly dominate the entire group’s decision. The
result of our strategy depends on the overall network structure
of peer effects, that is, how each individual reacts to his
neighbors.

In this work, we employ a game theoretic model to simu-
late the continuous decision adjustments that occur in social

interactions. The theoretic model guarantees a unique equilib-
rium under appropriate parameter setting, which ensures the
mediation will terminate. In the model, each player (which is
a co-owner) expresses his own preference and his perceived
peer effects independently. Each personal setting is private (i.e.
no other players know his setting) and will be managed by
the central strategy mechanism engine. Moreover, the model
offers a direct solution, a “payoff-maximum” action, for each
user, automatically. Thus, everyone will be satisfied with the
action chosen by such a procedure. At the same time, except
the initial set-up, we free the users from any effort and time
during the mediation process.

The rest of this paper is organized as follows. In the
next section, we introduce some preliminaries. In Section III,
we discuss the challenges in designing the game theoretic
collaborative access control model, and give a big picture
of our solution. Section IV presents the setup phase for
players (aka co-owners), and Section V shows the mediation
procedure. In Section VI, we discuss several related issues.
Section VII reviews some existing works, and finally, we
conclude in Section VIII with directions for future work.

II. REPRESENTATION OF OSNS

In this section, we introduce the representation of an OSN.
Roughly, we can categorize OSNs into two types: distance-
based network and circle-based network. The former one
classifies the users based on the topological distance. For
example, hop 1 corresponds to Friends, hop 2 to Friends of
Friends and hop +∞ to Public. The latter one focuses on the
specific classification of an individual’s friends as groups, say
Family, Colleague, School-mates. We first illustrate our work
on distance-based network. We will discuss how our work can
be extended to circle-based network in Section VI-C. Now, we
shall introduce the core parts of a distance-based OSN and a
few notations used in our proposed collaborative access control
framework as follows:

1) U . The set of OSN users. Assume that each user ui ∈ U
has a unique id, i.

2) E. The set of edges that connects the users. An edge e ∈
E connects two users, which can be either undirected or
directed.

3) dij . Distance from ui to uj , which can be measured with
the path length.

4) Originator. The user who initiates the collaboration. In
OSNs the originator is the user who first uploads the
photo in his web album for sharing and tags other users
who also appear in the photo.

5) Co-owner. The user who appears and has been tagged
in the photo.

6) Player. The user, either the originator or the co-owner,
who participates in the collaboration to make collective
access control rules. We use the player i and the player
ui interchangeably in this work when no ambiguity
arises.

7) Access Control Policy Choice Set, C. On distanced-base
OSNs, we can represent a control policy c ∈ C in terms
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Fig. 1. The CAPE Framework

of d. For instance, 0 indicates keeping the photo private,
whereas +∞ means to share the photo with the public.
As in existing work [5], in this paper, for distance-
based OSNs, we consider a total of four options, namely,
private (0), friends (1), friends-of-friends (2) and public
(+∞).

III. THE BIG PICTURE

A straightforward method to make a collective decision in
real life is to let each player explicitly show his preference first.
After viewing other’s actions, the players can further revise
their preference settings [10], [11], [12], disclose their new
decisions, and so forth until a common decision is reached
after a few rounds. This is a typical scenario, as studied
in a vast literature on sociology, where the behavior of an
individual, say Alice, may change as she is being influenced
by her peers.

Now, in our context, we can expect peer effects to come into
play too. Among friends/colleagues, there will always be some
who are more highly regarded and respected (or even feared);
and opinions of such persons are likely to have a greater
impact on others’ decisions. For example, Alice may become
more inclined to keep a photo private as a result of (some of)
her neighbors’ (aka friends and seniors) preferences to keep
it private; on the other hand, the change in Alice’s decision
may have an impact on others for which she has influence
over. Thus, we need a tractable formulation to incorporate such
continuous interactions between the peers.

However, in real-life, OSN users often access the network
independently and hence not all users will be online at the

same time. Thus it is not practical and desirable for any access
control mechanisms to require synchronization in time. In
addition, the players may be stuck in an endless task since
individuals can always adjust their decisions. To this end, we
propose a method that simulates the negotiation and interaction
among players, while, at the same time, ensures the simulation
will terminate under an appropriate set-up. Specifically, we
suggest a mediation procedure that facilitates the following
features:

1) Each individual, say Alice, can perform an initial set-up
independently (of course, the settings can be updated
whenever it is necessary). Essentially, Alice assigns
weights to her neighbors to reflect the degree of in-
fluence in which her neighbors have over her decision.
There is no synchronization required in mediation pro-
cess, as long as Alice sets up the initial configuration. In
addition, Alice does not need to be personally involved
in the mediation process, freeing her from the burden of
mediation and saving her time.

2) The method should allow Alice to always choose the
action that benefits her emotion most. In other words,
after considering both her personal willingness and the
peer effects, the method should always take the most
appropriate strategy from Alice’s perspective. We refer
to this action as the maximum “emotional payoff”
action.

3) The strategy should guarantee a unique Nash equilib-
rium. That is, briefly, the game should always reach a
scenario where no player has the incentive to change
only his own decision.

As we shall see, our proposed method ensures the above
features, provided that each player should not regret the choice
he has made in response to the actions taken by other players.

We are now ready to give an overview of our pro-
posed framework - the CAPE framework that facilitates
Collaborative Access control by considering Peer Effects. Our
CAPE framework is depicted in Figure 1. The mediation
engine, which is the key component, requires input from
several sources: (a) OSN structure. The subgraph of the
OSN that involves the co-owners/players; (b) Originator. The
originator triggers the mediation process by uploading the
photo and tagging the players; (c) Player. For each player,
two types of information are provided. The first is content-
dependent, i.e., his inclination (which we refer to as intensity
towards the access control policies; this may be different for
different shared content, e.g., Alice may be fine with making
public a group photo, while she may not want to share the
photo where she felt she may be embarrassed (e.g., she was
drunk and was throwing out). The second is peer-effects-based,
which specifies the player’s inclination to be influenced by his
immediate neighbors. We refer to this inclination as the peer
effects. This information is more stable. It can be specified
once during set-up, and only updated when necessary. In this
paper, the mediation engine only considers how a player is
influenced by his direct neighbors; moreover, the specification



of the degree of influence must be positive. This is because
our work models the situation of a constructive environment
where players mutually support, or reinforce each other. We
shall discuss this further in Section IV.

To initiate the mediation process, the originator uploads a
photo, and invites the players (other users appearing in the
photo) by tagging them. Based on the the social network
structure and the players’ specification, the mediation starts
to simulate the continuous interaction between the players.
The mediation process is done for each possible choice in-
dependently. In fact, for each choice, an unique equilibrium
exists as long as the set-up’s configuration meets the required
conditions, and then the system can automatically compute
the final intensity each player would like to select on the
given choice. Once the final intensity of all the choices are
ready, the choice with the highest intensity is considered to
be the final choice the player would like to select. As each
player’s final decision is ready, the system will try to make
a collective decision with a voting function. All the players
will be informed of the outcome if any. The whole procedure
terminates if the mediation succeeds and no complain arises.
In the event where there is no equilibrium, and/or some players
find the collection decision unacceptable, the players may have
to adjust their inclinations for another round of mediation.

In this work, since the whole procedure aims to achieve
more agreements, we suggest two voting functions: (i) full
consensus, mediation succeeds only when all the players agree
on the final decision; (ii) strong majority with a threshold θ,
that is, no fewer than θ percentage of players agree on the
final decision. But for ease of discussion, we only consider
full consensus as the voting function in all the examples. We
shall discuss the mediation process and the voting function in
Section V.

IV. PLAYER SETUP

In our CAPE framework, we need each player to specify his
preferences for the available choices, as well as the degree at
which he may be influenced by his immediate peers’ decision.
We capture these with two types of variables:
• Intensity Score (I-Score) xi(ck), which measures the

inclination/extent to which the player i is willing to take
the choice ck. Its value is unbounded and non-negative.
However, to make it more intuitive for the users, in
the initial set-up, we restrict x0i (ck) to be an integer
and let x0i (ck) be between 0 and 5. This essentially
corresponds to six attitudes: {strongly disagree, disagree,
slightly disagree, slightly agree, agree, strongly agree}.
In this way we let all the players specify the values on
the same ground. During the mediation peer effects cause
xi(ck) to change (increase) iteratively. So xi(ck) is no
longer bounded within the range [0, 5]. But the player
is only required to assign the initial values of his own
I-Scores, the vector x0

i for all the choices.
• Peer effects Score (PE-Score) wij , which characterizes

how much weight the player i intends to place on player
j’s action. In this work, we require 0 ≤ wij ≤ 1. This

ensures the model is a game of strategic complements
where each player mutually supports one another.

A. Setting I-Score

To make an intuitive interface for users, we recommend
presenting players the slide bars as tools for specifying the
values. We propose two ways to let an user set his I-Scores,
as pictured in Figure 2a and Figure 2b. The first one considers
four independent choices: private, friends, friends of friends,
public, where d = 0, 1, 2,+∞ respectively. This method
allows players to set their I-Scores arbitrarily, i.e., players can
set any values for the weights on different choices. A higher
intensity score indicates the player has a stronger desire to take
the choice. Referring to the setting in Figure 2a, the player
essentially says: I don’t quite agree to share the photo with
the world; I sort of prefer to keep it private; however, I would
most agree if we restrict the access to just friends or friends-
of-friends. In the case where a player set all the I-Scores to be
of the same value, we assume the player is willing to undertake
any of such actions, regardless of their initial values (i.e., a
player cannot reject all the possible actions together). As we
shall see shortly, during the mediation process, each of these
choices/options will be considered independently. For ease of
reference, we shall refer to this method as Method OO (for
‘option only’).

Alternatively, we can design the bars as in Figure 2b, where
it shows complementary assessment of “Take the choice or
not”. As depicted in Figure 2b, we consider all the choices
except “private”. Given a specific choice c, we consider two
actions in turns, “Take c” and “Against c”. For example,
the length of blue bar on the top indicates the intensity of
picking the choice of “Friend(1)”, whereas the red bar beside
shows the intensity of being against the choice “Friend(1)”.
If a player is against all the three choices, it implicitly
indicates he would like to keep the photo private. We shall
discuss in Section V how these two complementary actions
are independently considered during the mediation process. In
other words, we actually have three pairs of choices to work
with in the mediation process. We shall refer to this method
as Method OC (for ‘option and its complement’).

Before leaving this section, we note that the flexibility of
arbitrary setting has both pros and cons. On one hand, it allows
a player, say Alice, to specify her preferences. For example, a
player can specify a value of 5 for ’friends’ and 0 for all the
other options, indicating that he only want to restrict to friends,
and nothing else. However, the flexibility may also lead to
some undesirable settings, e.g., it does not seem to make sense
to have a setting of 5 for ’friends-of-friends’ and 0 for all other
choices. Such flexibility requires users to fully appreciate the
consequences of their settings (in order to ensure the settings
are meaningful). Moreover, such flexibility also makes it more
challenging for all users to reach a consensus.

To achieve more agreements easily, we can enforce some
constraints on the setting. One reasonable approach is to as-
sume that, if a player i set x0i (ck) as the I-Score of a choice ck,
then the I-Scores of other more restricted preferences, except
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“private”, must not be less than x. For instance, if a player
slightly agrees with the choice “friends of friends”, he must
at least also slightly agree with the more restricted choices
like “friends only”. Such a constraint is reasonable presumed
that, if one already agrees on a relatively relaxed choice, he
cannot be against more private choices. This strategy is akin
to asking players to conform to the group by sacrificing the
joy of sharing and encouraging them to protect privacy.

B. Setting PE-Score

We note that the PE-Score needs to be set only. For each
player, he essentially maintains an array of the PE-Score for
each of his neighbors. All players could have set the PE-Scores
for their friends when they first include them as friends. In
the event that a player did not provide enough information,
the default setting is assumed to be 0, i.e., he will not support
others’ options.

V. THE MEDIATION PROCESS

We now describe the mediation process which is an iterative
procedure to simulate the social interaction among the players.
To see our approach in action, let us first illustrate the whole
procedure with a running example, and then present the
proposed mediation mechanism.
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Fig. 3. Peer effects in OSN

TABLE I
INITIAL I-SCORES WITH METHOD OO

Private Friends Friends of Friends Public Intention
u1 2 3 3 4 Public
u2 5 0 0 0 Private
u3 2 4 2 2 Friends
u4 5 4 1 1 Private

A. An Example

Consider a scenario where Player u1 is a friend of Player
u2, and Player u2, u3, u4 are colleagues. Figure 3a shows the
social network of their relationships in a graph model. Suppose
the four of them have taken a photo together. The originator
u1 posted this photo on his own web album, and also wanted
to share it on OSNs. So u1 tagged all other users on this
photo, trying to make a collective decision on whether this
photo should be posted for public view or be kept private.
Since we have only discussed the “full consensus” voting
function, we shall illustrate the mediation process with this.
Further, let us assume that each player has assigned the I-
scores and the PE-Scores. For ease of presentation, we assume
users specify their initial I-Scores using Method OO, i.e., each
player specifies his preference for each option. We defer the
discussion when the second method, Method OC, is used to
Section V-C. Table I and II show the players’ assigned values.
The value underlined in Table I corresponds to the action the
player prefers most in the beginning. As it turns out, player 2
is strongly concerned about his privacy over this photo than
the others, and he is not going to change his mind according
to others’ intention. In contrast, player 1 is more willing to
put the photo online; and meanwhile, he also values player
2’s feeling and/or opinion.

From the setting, we observe that conflicts exist in the
initial intention among the players. But through the mediation
process, as we shall see later, we can derive each player’s final
intensity scores and their final action when the continuous
interaction terminates, as shown in Table III. We note that
u1 turns out to have the same score (of 4) for both Private
and Public. As such, we can pick either option. By selecting
“Private”, conflicts can be resolved, i.e., through the mediation,
a full consensus on keeping this photo private has been
reached.



TABLE II
PEER EFFECTS SCORES

Player 1 Player 2 Player 3 Player 4
Player 1 0 0.4 0 0
Player 2 0 0 0 0
Player 3 0 0.2 0 0.5
Player 4 0 0.25 0.25 0

TABLE III
I-SCORES AT EQUILIBRIUM WITH METHOD OO

Private Friends Friends of Friends Public Intention
u1 4 3 3 4 Public/Private
u2 5 0 0 0 Private
u3 7 6.86 2.86 2.86 Private
u4 8 5.71 1.71 1.71 Private

B. The Mediation Engine

We shall now present the mediation engine used in our work
to deal with conflicts that may arise in initial settings. As
mentioned, our mediation factors in the peer effects of players.
Our scheme is based on a game model, a variation of the game
model of Ballester, Calvó-Armengol, and Zenou [13], which
is also discussed in Chapter 9 of Jackson’s book [9]. In this
model, we use the variable payoff to describe to what extent
the player considers a specific adjustment of his I-Score is
appropriate in response to the actions of his neighbors. That
is, the higher this “emotional” payoff is, the more the player
assesses the appropriateness of this adjustment of I-Score. The
variable payoff pi of the player i is defined as follows:

pi(ck) = aixi(ck)−
bi
2
(xi(ck))

2 +
∑

j 6=i

biwijxi(ck)xj(ck),

(1)
where ai ≥ 0 and bi ≥ 0 are scalars, and wij is the PE-Score
value specified by player i. The expression − bi

2 (xi(ck))
2 is a

force to draw back to player i’s own decision. It is easy to
see that a high intensity of the player i’s own intention will
tend to inhibit the increase of the payoff. Therefore, player i
can see some trade-off by taking further action to adjust his
I-Score. Moreover, since wij ≥ 0, the payoff tends to increase
by considering other’s I-Score, xj(ck), which thus simulates
the interaction where the players reinforce each other’s actions.
That is, when the intensity of the neighbors’ action is high,
the intensity of the player’s corresponding action would also
be high. Intuitively, it describes the phenomenon where an
individual tends to conform to the patterns of his peers’
behaviors.

We assume that each player always chooses the action that
offers the highest “emotional payoff”, and he can never regret
the action he takes at each step. Then, we can derive such
action to adjust I-Score by setting the derivative of the payoff
pi(ck) to 0. Hence, such payoff-maximizing action can be
described by

xi(ck) =
ai
bi

+
∑

j 6=i

wijxj(ck) (2)

Equation (2) indicates that player i should continuously adjust

TABLE II
PEER EFFECTS SCORES

Player 1 Player 2 Player 3 Player 4
Player 1 0 0.4 0 0
Player 2 0 0 0 0
Player 3 0 0.2 0 0.5
Player 4 0 0.25 0.25 0

TABLE III
I-SCORES AT EQUILIBRIUM WITH METHOD OO

Private Friends Friends of Friends Public Intention
u1 4 3 3 4 Public/Private
u2 5 0 0 0 Private
u3 7 6.86 2.86 2.86 Private
u4 8 5.71 1.71 1.71 Private

and Public. As such, we can pick either option. By selecting
“Private”, conflicts can be resolved, i.e., through the mediation,
a full consensus on keeping this photo private has been
reached.

B. The Mediation Engine

We shall now present the mediation engine used in our work
to deal with conflicts that may arise in initial settings. As
mentioned, our mediation factors in the peer effects of players.
Our scheme is based on a game model, a variation of the game
model of Ballester, Calvó-Armengol, and Zenou [13], which
is also discussed in Chapter 9 of Jackson’s book [9]. In this
model, we use the variable payoff to describe to what extent
the player considers a specific adjustment of his I-Score is
appropriate in response to the actions of his neighbors. That
is, the higher this “emotional” payoff is, the more the player
assesses the appropriateness of this adjustment of I-Score. The
variable payoff pi of the player i is defined as follows:

pi(ck) = aixi(ck)− bi
2

(xi(ck))2 +
∑

j 6=i

biwijxi(ck)xj(ck),

(1)
where ai ≥ 0 and bi ≥ 0 are scalars, and wij is the PE-Score
value specified by player i. The expression − bi

2 (xi(ck))2 is a
force to draw back to player i’s own decision. It is easy to see
that a high intensity of the player i’s own intention will tend to
inhibit the increase of the payoff. Therefore, player i can see
some trade-off by taking further action to adjust his I-Score.
Moreover, since wij ≥ 0, the payoff tends to increase by
considering other’s I-Score xj(ck), which thus simulates the
interaction where the players reinforce each other’s actions.
That is, when the intensity of the neighbors’ action is high,
the intensity of the player’s corresponding action would also
be high. Intuitively, it describes the phenomenon where an
individual tends to conform to the patterns of his peers’
behaviors.

We assume that each player always chooses the action that
offers the highest “emotional payoff”, and he can never regret
the action he takes at each step. Then, we can derive such
action to adjust I-Score by setting the derivative of the payoff
pi(ck) to 0. Hence, such payoff-maximizing action can be

Algorithm 1 ComputeEquilbIScore
Input: Initial I-Score matrix X0, PE-Score matrix W , Choice

set C of size n
Output: the I-Score matrix at equilibrium Xeql

1: µ1(W )← the largest eigenvalue of W
2: if µ1(W ) < 1 then
3: Xeql ← X0

4: foreach choice ck ∈ C do
5: αk ← the kth column in X0, initial I-Score vector

regarding the choice ck
6: I ← the identity matrix
7: xeql(ck)← (I −W )−1αk

8: let xeql(ck) be the kth column of Xeql

9: return Xeql

10: else
11: return NULL

described by

xi(ck) =
ai
bi

+
∑

j 6=i

wijxj(ck) (2)

Equation (2) indicates that player i should continuously adjust
his I-Score regarding other player’s updated I-Score xj(ck) in
each round. But, in fact, the further user intervention is not
needed, because the final I-Scores at equilibrium state can be
directly derived with an analytical method. Therefore, we can
directly compute the final action for each player based on
just the initial setting. To illustrate such analytical solution,
let us first denote xeql(ck) as the vector solution of such I-
Score xi(ck) at the equilibrium. And let αk be the vector of
ai

bi
regarding the choice ck. Then the vector solution can be

expressed as follows,

xeql(ck) = (I −W )
−1
αk, (3)

where I is the identity matrix. Since bi is a scalar, we can set
b = bi = 1 for all i. Correspondingly, αk is set to be ai. W
is the matrix whose entries are PE-Score, wij . We can further
think of W as a weighted and directed network, the peer
effects network as depicted in Figure 3b, where the weight
of edge is assigned to be wij .

In Equation (3), the matrix (I−W )−1 serves as the factor of
peer effects, applied on the vector αk. At the very beginning,
without factoring peer effects, we can consider αk to be just
the vector containing all the initial I-Score regarding the choice
ck. Thus, we can set the entry of αk, ai, to be x0i (ck).

With Equation (3), we can compute the final I-Score di-
rectly. Algorithm 1 describes the entire procedure. The above
solution holds if I − W is invertible and (I − W )−1 is
nonnegative. Ballester et al. [13] shows that these conditions
can be met if and only if µ1(W ) < 1, where µ1(W ) is the
largest eigenvalue of W . Another sufficient condition to satisfy
the conditions is to let all wij ≥ 0, and the sum of the entries
of each row/column of W be less than 1.
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With the aboved formula, we can automatically compute
the intensity scores of all the choices for each player as the
mediation reaches equilibrium. The choice with the highest
score will be selected as the final action that the player would
like to undertake. Formally, the final decision γi of player i



TABLE IV
INITIAL I-SCORES WITH METHOD OC

Friends Friends of Friends Public Intention
u1 5 5 4 Public
u2 3 3 0 Friends of Friends
u3 4 4 0 Friends of Friends
u4 2 2 2 Private

TABLE V
I-SCORES AT EQUILIBRIUM WITH METHOD OC

Public Against Public
u1 4.0 3.0
u2 0 5.0
u3 1.14 9.29
u4 2.29 6.57

(a)
Friends of Friends Against Friends of Friends

u1 6.2 0.8
u2 3 2
u3 6.83 3.6
u4 4.46 4.4

(b)

is,
γi = argmax

ck∈C
xi(ck) (4)

In Method OO, we compare a player’s I-Scores of all the
choices together and select the one with the highest score to
be his final decision. Algorithm 2 illustrates this procedure.
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In Method OO, we compare a player’s I-Scores of all the
choices together and select the one with the highest score to
be his final decision. Algorithm 2 illustrates this procedure.

Algorithm 2 ComputeDecisions (Method OO)
Input: Players set U , I-Score matrix at equilibrium Xeql,

Choice set C of size n, Voting function f
Output: the collaborative decision Ω

1: γ = [ ]
2: foreach player ui ∈ U do
3: xeql

i ← theith row vector in Xeql

4: γi ← {ck|xeqli (ck) is the maximum element in xeql
i }

5: γ ← γ with γi appended
6: Ω← f(γ)
7: return Ω

C. Constraining the I-Score Setting

Now, it is possible that with more choices/options and
arbitrary setting of I-Score values, the chances of achieving
agreement decreases. A solution to this problem, as described
in Section IV, is to be “biased” towards privacy by restricting
users to always specify equal or greater intensity scores for
more restricted choices. To see this explicitly, we use the
second method, Method OC, to illustrate. Table IV shows
an example of user settings satisfying the above constraints.

Algorithm 3 ComputeDecisions (Method OC)
Input: Players set U , Initial I-Score matrix X0 for each

choice type, PE-Score matrix W , Choice type set C of
size n, Voting function f

Output: the collaborative decision Ω
1: Ω← ∅
2: while C 6= ∅ do
3: ck ← the choice with the largest distance d in C
4: ¬ck ← the choice that is against ck
5: C← C− {ck}
6: X0 ← current I-Score matrix w.r.t. the choice ck and

its complement, {ck,¬ck}
7: Xeql ← ComputeEquilbIScore(X0,W, {ck,¬ck})
8: if Xeql 6= NULL then
9: γ = [ ]

10: foreach player ui ∈ U do
11: if xeqli (ck) > xeqli (¬ck) then
12: γi ← {ck}
13: else if xeqli (ck) < xeqli (¬ck) then
14: γi ← {¬ck}
15: else
16: γi ← {ck,¬ck}
17: γ ← γ with γi appended
18: Ω← f(γ)
19: if Ω 6= ∅ then
20: break
21: return Ω

We shall first consider whether all the players agree on the
preference “Public”. Recall that under Method OC, each
choice results in two actions, and they are to be mediated
independently; and the final decision for the choice is deter-
mined by the action with the larger I-Score. Table V(a) shows
the result of the mediation process for “Public” and “Against
Public”. As shown in Table V(a), u1 prefers “Public” while the
rest vote for “Against Public”. Since there is no full consensus,
we continue to consider the next pair of choices, “Friends of
Friends” and “Against Friends of Friends”. This time, as shown
in Table V(b), all the players agree on the choice “Friends
of Friends”. So the mediation stops here and make the final
decision as sharing this photo within the distance no more
than “Friends of Friends”. The algorithmic description of the
procedure is given in Algorithm 3.

VI. DISCUSSION

In order for our CAPE framework to be developed into a
full-fledge robust solution for practical use, there are several
issues that need to be addressed. Here, we shall focus on three
of them: (a) How to guide the players to configure the set-up;
(b) How to facilitate second mediation in order to achieve
more agreement; and (c) how to extend our work to circle-
based OSNs. We will discuss each of these in the following
subsections.
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A. Configuring the set-up

One of the key parameters in the CAPE framework is the
setting of the players’ PE-Scores, i.e., how each player views
the influence of his peers over his decision. However, the
framework is meaningful only if an equilibrium exists. In



particular, equilibrium exists and is unique when the PE-Score
matrix is not overly dense. The PE-Score matrix is dense when
the players over-rely on each other’s decision. For example,
every player may want the opinion of every other player. As
a result of such cross-effect, the intensity of a player’s choice
is always positively reinforced by other players, which in turn
leads to an unbounded increase in the intensity of individual’s
action (and thus the model cannot reach an equilibrium state).

Therefore, it is important to guide the players to assign or
adjust their PE-Score values to ensure an equilibrium state.
Overall, a guideline for the players is to assign the PE-Score
moderately. In fact, in our framework, we have restricted the
PE-Score to direct neighbors, i.e., a player only provide the
PE-Score for his immediate neighbors. This helps to reduce
the chance for large cross effect (since the PE-Score matrix
becomes more sparse). However, even with this restriction,
it is still possible that equilibrium cannot be reached. In fact,
when the PE-score matrix contains a column, say Col j, and its
corresponding row, say Row j such that the sums of the values
of Col j, and Row j are both greater or equal to 1, then no
equilibrium can be reached. Intuitively, this can happens when
player j is very prominent among the other players, and, at
the same time, player j also tends to respect his followers’
opinions. A solution to handle this case is to let player j
dominates his own decision (i.e., ignore other players peer
effects), preventing the existence of feedback loops. To see
this in action, let us consider the following extreme case.

Example 1. Consider the scenario where a professor and
his four students took a photo together. All of the students
respect the professor’s opinion. However, at the same time,
the professor also decides to conform to his students’ choices,
as shown in Table VI. The mediation cannot proceed due to the
very large cross effect between the professor and his students.
It can be observed that both Row 1 and Col 1 are greater
or equal to 1. µ1(W ), the current greatest eigenvalue of the
PE-Score matrix, is 1, which does not satisfy the condition
for existence of the equilibrium. One possible solution to this
case is to let the professor reduce his dependency on his
students, like making a adjustment as showed in Table VII.
Table VIII and Table IX show the mediation outcome after
such adjustment.

TABLE VI
PE-SCORES BEFORE ADJUSTMENT

Prof s1 s2 s3 s4
Prof 0 0.25 0.25 0.25 0.25
s1 1 0 0 0 0
s2 1 0 0 0 0
s3 1 0 0 0 0
s4 1 0 0 0 0

We thus develop the following heuristics to address this
problem. Given the PE-Score matrix, we determine if the
greatest eigenvalue of the PE-Score matrix is less than 1. If
so, we expect the existence of an equilibrium. Otherwise, we
try to find out a player i such that the sum of the values

TABLE VII
PE-SCORES AFTER ADJUSTMENT

Prof s1 s2 s3 s4
Prof 0 0.2 0.2 0.2 0.2
s1 1 0 0 0 0
s2 1 0 0 0 0
s3 1 0 0 0 0
s4 1 0 0 0 0

TABLE VIII
INITIAL I-SCORES IN THE EXTREME CASE

0 1 2 +∞ Decision
Prof 0 4 0 0 Friends
s1 3 3 3 3 Any
s2 3 3 3 3 Any
s3 3 3 3 3 Any
s4 3 3 3 3 Any

of row i and column i are greater than or equal to 1, and
request player i to revise his PE-score. In particular, it has
been recommended, as part of the sufficient condition for the
existence of equilibrium, that the sum of each player’s PE-
Score (the sum of each row) should be less than 1, unless he
really wants to fully rely on the others’ opinions. This process
is repeated until an equilibrium can be reached.

B. Second Round of Mediation

Recall that our goal is to resolve the conflicts that arise
in making collaborative decisions. So far, we have assumed
that we can always reach a consensus that is acceptable to all
players in one round of the mediation procedure. However, the
mediation may fail. This happens when full consensus cannot
be reached with regard to the set-up. It may also occur when
not all players are satisfied with the collaborative decision
derived from CAPE with a majority-mode voting function.
In this section, we discuss how to further facilitate mutual
collaboration if complaints about the outcome arise. The idea
here is to identify a key player, say John, who has the highest
effect on the aggregate outcome, and let the players who are
not satisfied with the outcome turn to John for help. But notice
that an unique feature of our method is that the final outcome
closely depends on the peer effects network. Collusion is hard
to succeed in such circumstance, since an individual or a
small group, or even the key player John, does not necessarily
dominate the result. Nevertheless, we can still encourage the
players to approach John, who gets a lot of respect from his
neighbors and has a high overall impact on the group, for help.
Because such key player may easily persuade his followers
to change their settings as well. In this way, the players can
publicly request a second-chance mediation, instead of trying
to employ colluding behaviors in private. Since John often
gets more respect from his neighbors, it is more likely that
the aggregate collective result be reduced optimally if he is
willing to change his intention score. But bear in mind that this
does not necessarily lead to a bending aggregate outcome. The
outcome is still closely affected by the peer effects network.
In addition, we suggest that all the players should have the



TABLE IX
I-SCORES AT EQUILIBRIUM IN THE EXTREME CASE

0 1 2 +∞ Decision
Prof 12 32 12 12 Friends
s1 15 35 15 15 Friends
s2 15 35 15 15 Friends
s3 15 35 15 15 Friends
s4 15 35 15 15 Friends

TABLE X
INTERCENTRALITY SCORES

Intercentrality
u1 1.96
u2 1
u3 3.8
u4 2.7

right to know who the key player is, whether there is anyone
who has turned to the key player for help, and whether the
key player agrees to adjust his intention or not. It should be a
public procedure for petition for another round of mediation,
which is distinguished from the colluding behavior (that are
done in private).

In Ballester et al.’s work [13], they showed that the key
player can be identified by ranking the players’ intercentrality.
Let M = [I −W ]−1, and mij be its entry. mij can also be
written as

∑+∞
k=0 wij

k. This expression counts the number of
weighted paths that start from i and end at j. With the matrix
M , we define the intercentrality of player ui as follows:

ηi =

(∑n
j=1mij

)2

mii

The intercentrality actually “counts the total number of direct
and indirect weighted paths that hit i” [13]. Briefly, it considers
not only a player’s centrality, but also his contribution to
other’s centrality.

Example 2. Consider a scenario where, using the second
method, the player u4 is not satisfied with the outcome
“Friends of Friends” for he is really concerned about privacy.
So u4 asks the originator u1 for a second mediation, and
request to see who the key player is in their current peer effects
network. Table X shows the intercentrality of each player. As
it turns out, u3 is the key player. Assume that u4 talks to u3,
and persuades u3 to change his intensity score. u3 resets his
set-up as [“Friends”, 4], [“Friends of Friends, 2”], [“Public”,
0]. All the players are also informed that u4 is not satisfied
with the previous outcome and has asked the key player u3
to reconsider his setting. If the originator agrees to set up a
second mediation, all the players can reset their set-up and then
a new mediation begins. Suppose, in this example, all the other
players do not change their setting. The new result becomes
the choice “Friends”, as shown in Table XII [b], which further
protects the player’s privacy as a result of u4’s complaint.

TABLE XI
ADJUSTED INITIAL I-SCORES WITH METHOD OC

Friends Friends of Friends Public Intention
u1 5 5 4 Public
u2 3 3 0 Friends of Friends
u3 4 2 0 Friends of Friends
u4 2 2 2 Private

TABLE XII
I-SCORES AT EQUILIBRIUM WITH METHOD OC IN THE SECOND

MEDIATION

Friends of Friends Against Friends of Friends
u1 6.2 0.8
u2 3 2
u3 4.54 5.88
u4 3.89 4.97

(a)
Friends Against Friends

u1 6.2 0.8
u2 3 2
u3 6.82 3.6
u4 4.46 4.4

(b)

C. Circle-based Social Network

In this part, we discuss how to extend our strategy to circle-
based social networks. In circle-based social networks, users
categorize their friends into different groups. We adapt the
method developed by Hu et al [7]. Essentially, it is not practical
to list out all the policy choices by taking into account all the
player’s circles together. Instead, we let each player considers
the trust level of every accessor from his own perspective.
Specifically, given an accessor, each player specifies the in-
tensity in terms of his own circles to decide whether to grant
access to this accessor. For example, given a photo, Alice may
have the following settings for her circles: (Family, agree),
(Labmates, slightly agree), (Strangers, disagree). Based on this
setting, Alice’s preference for the accessor depends on which
circle the accessor belongs to. In our example, if Alice wants
to share the photo with John and John is Alice’s labmate,
then Alice is essentially saying she is fine with sharing the
photo with John. On the other hand, if John is a stranger to
Alice, then Alice basically opted to keep the photo private. In
some sense, what we really have is an implicit choice which
is determined by setting of the circle which the accessor falls
into. We can then derive the collaborative result based on each
player’s intensity score towards this given accessor.

Instead of taking the average aggregate decision as in [7],
our strategy facilitates the players to adjust their decision
towards the strangers outside their own circles by considering
peer effects. This is based on the assumption that one would
like to put more trust on a stranger as this stranger is also a
friend of his friends. To see why this is useful, let us consider
the following example.

Example 3. Consider the scenario where the player ui does
not know the accessor a personally. However, the accessor a
is in fact in the circle of one of ui’s friend, uj . As ui is not



familiar with a, ui cannot accurately assess the risk to share
the photo with a. Alternatively, with our strategy, ui can refer
to uj’s opinion since uj may know a well. Note that ui even
does not need to predict whether a knows his friend uj or
which exact extended circle a belongs to. Since in circle-based
networks, one is not likely to know the constituents of other’s
circles, our method helps the user get a better assessment of
a stranger’s risk by looking at others’ actions.

VII. RELATED WORK

Traditionally, OSNs have largely empowered the publisher
of the content, say Alice, to be solely responsible for regulating
access to shared content. As such, the research centers on
determining the set of users who can have access to the
data. Some models [2], [3] are based on the topology of
the social networks, for example, in Facebook [3], Alice can
restrict access to friends, friends of friends, groups or public;
others rely on the relationships between the publisher and the
accessors [14]; in addition, there are models [4], [15] that
consider the trustworthiness and/or reputation of the users.

More recently, researchers have started to look at designing
collaborative frameworks to support multi-party data sharing
for OSNs [16], [5], [6], [7]. Squicciarini et al. [5] employed
the Clarke Tax algorithm [17] as a voting strategy in their
proposed model. The Clarke Tax strategy disincentivizes play-
ers to lie about the true valuation of their preference, and
thus promotes truthfulness among users. However, the Clarke
Tax voting strategy is vulnerable to bidder collusion [18]. The
small number of players can collude and over expressing their
preference to some extent. In this way they can bend the entire
collective decision without paying the clarke tax. Besides, the
final decision can be determined directly by only one “pivotal”
individual, the one who is willing to pay more numerarie (e.g.
tax, credit), whereas others with little numerarie just can not
afford to influence the collective decision.

Carminati et al. [6] introduced an enhanced topology-based
access control architecture by user collaboration. They also ex-
ploited semantic web technologies to support flexible represen-
tations of collaborator’s relationships and resources. Hu et al.
[7] formalized a multiparty access control model to address the
same issue. Their proposed conflict resolution mechanism ag-
gregates each player’s decision policy and sensitivity towards
a specific accessor and thus leverages each player’s preference
in collective decision-making. They also introduced methods
to perform analysis (e.g. correctness analysis, authorization
analysis) on the access control model. However, user’s concern
about privacy is not immutable. OSN users are connected and
vastly influenced by their neighbors. Thus, we propose our
method to simulate such social interaction automatically.

VIII. CONCLUSION

In this paper, we have revisited the problem of protecting
user privacy in online social networks (OSNs). In particular,
we have investigated the design of access control mecha-
nisms for protecting shared content where co-owners may
have differing and conflicting privacy preferences. A novel

collaborative access control mechanism has been designed.
Our key insight is that peer effects should be a key contributing
factor to be considered in resolving conflicting preferences.
Our proposed framework, CAPE, is based on graph theoretic
model, and is able to lead to consensus that is acceptable to
the co-owners. Our CAPE framework can be applied to both
distance-based and circle-based networks. We also looked how
the peer effects scores should be set to ensure equilibrium.
Moreover, we also discussed how to handle the scenario when
a player may not be satisfied with the outcome.
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