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Abstract— Cloud storage services provide highly scalable, 
available and pay-as-you-go storage space for individual and 
enterprise users. Cloud storage services are inherently insecure 
as the management of the data in the cloud storage is 
controlled by third parties beyond the reach of the data owner. 
To address this problem, a number of data obfuscation 
techniques have been proposed to conceal data before sending 
it to the cloud. The secrets keys used for obfuscation are stored 
in a secure location while obfuscated data is stored in the 
cloud. In these approaches, the data is as secure as its 
corresponding keys.  However, this still brings a challenging 
issue where a user needs to manage a large number of (secret) 
keys in such a way that they are protected against all types of 
adversaries, and should be as highly available as cloud storage 
services. To address this issue, we propose a portable key 
management service that is highly secure and available. In our 
solution, all keys are stored in a tamper-proof hardware within 
a portable USB device that users can carry with them all the 
time in order to provide high security and availability. We 
describe the system model, the details of the key management 
service and a prototype implementation. 

Keywords- Cloud Computing, Key Management, Portability, 
Storage Service, Trusted Computing 

I.  INTRODUCTION 

Moving data into the “Cloud” offers great cost saving 
and convenience to users and provides a new platform for 
collaboration.  Users do not have to concern about the 
complexities of data storage capability in house.  Using the 
increased network bandwidth and flexible network 
connection, users can simply subscribe a service on “pay-
per-use” basis and access to huge storage space.  

This new cloud storage paradigm has, however, brought 
many security concerns [8], [19], [20], [21]. One of the 
biggest concerns is protecting confidentiality and integrity of 
data. Under cloud storage paradigm, the data storage and 
management is under the full control of (untrusted) third 
parties (i.e., the cloud storage service providers). The data 
owners are left vulnerable having to solely rely on the 
security mechanisms and configurations of the cloud storage 
providers to protect their data [6], [9], [10]. 

Two most common security properties that would suffer 
as a result of using cloud storage services are data 
confidentiality and data integrity. Data confidentiality would 
be broken if user’s data is disclosed to unauthorized 
individuals. For example, malicious hackers may penetrate 

the storage servers and steal the data using malware 
infection. Data integrity could be violated if user’s data is 
modified by unauthorized individuals.  For example, 
financially motivated personnel at the data centre may 
tamper private information without permission.  

In addition, data exploitation does not end when the 
user’s subscription of cloud storage services expires. The 
data owner often falls into a trap thinking that their data is 
safely removed from the cloud storage once their 
subscription is expired. This can be far from reality [18]. It is 
a common practice for a large data centre to make extra 
copies of the original data. For example backup media are 
used to store a copy of the data to use it to recover from 
unexpected disaster. In another example, replicated databases 
contain any copies of the data to guarantee high availability. 
The backup media or replicated databases with copies of the 
original data may or may not be completely removed when 
the user’s subscription expires. It is more than a possible 
scenario that user’s data still resides somewhere in the data 
center and is subject to misuse. Therefore, the data owners 
should always be vigilant in safeguarding their data all the 
time such as while data is at transfer, at rest, and at use 
during and beyond the subscription. 

To address this problem, a number of solutions have been 
proposed in academic literature and industry products. The 
fundamental concept behind these solutions is to obfuscate 
user’s data before sending it in such a way that it is not 
possible to reveal user’s data to unauthorized third parties 
(i.e., cloud storage providers or adversaries) other than 
intended users (i.e., data owners). Fragmentation is often 
used in conjunction with obfuscation techniques [27], [28]. 
The original data is often fragmented in many smaller pieces. 
Each fragment is then encrypted using a unique key. The 
encrypted fragments are stored in the cloud while the unique 
keys are stored in a secure location away from prying eyes of 
third parties. Some of the popular choice of the secure 
location include such as a dedicated file system in the user’s 
local machine [10] or in a private cloud [29].  

However, this still brings a challenging issue where a 
user needs to manage a large number of (secret) keys. It 
would become increasingly troublesome for users having to 
manage hundreds of keys as a result of fragmenting a large 
size data, or dealing with multiple cloud storage providers 
(using different keys for different providers). Furthermore, 
the high availability of data provided by cloud storage 
services can be easily compromised if the keys are not 
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available all time. If that happens, it can significantly 
damage the reputation and success of the cloud storage 
solution. Henceforth, the keys should also be as highly 
available as data itself in order to achieve the high 
availability in overall secure cloud storage solution. 

To address this issue, we propose a portable key 
management service that centralizes all the expense and 
expertise required to maintain a large number of keys. Our 
solution is still highly secure and available. All keys 
managed by our key management service are secure as the 
keys are stored in a designated sealed storage area within a 
tamper-proof hardware device. This ensures that the general 
stealth of unique keys, especially by the use of remote 
Internet connections which are on the rise, is much more 
difficult. Our key management service is highly available as 
they are not locked into any particular machine. Our key 
management service is implemented in a portable USB 
device that users can carry with them all the time and use it 
at any time as needed. 

The rest of the paper is structured as follows. In Section 
II, we first demonstrate problems in existing system model, 
run threats analysis and define security requirements. Then, 
we provide a system model we propose. In Section III, we 
describe major design considerations that are important in 
developing a key management service which can protect 
secret keys, user’s data and the platform it is running. In 
Section IV, the details of the key management service are 
described including key creation, distribution, aiding 
encryption, and key deletion. In Section V, we illustrate an 
attestation protocol that runs on the user’s machine to ensure 
the platform configuration and operations match the 
expectation. In Section VI, we describe our prototype 
implementation and the key functionalities implemented at 
major components of our system. In Section VII, we present 
the related work. The last Section VIII presents the 
concluding remarks and future work.   

II. PROBLEM STATEMENT 

We first describe an existing system and then illustrate 
potential threats that may occur at various points while user’s 
data traverse. We define a number of security requirements 
to mitigate the threats and propose a system model that 
accommodates them. 

 
Figure 1. Potential Threats in Existing System 

A. Possible Threats 

Most cloud storage service today provides a web 
application where a user can upload (and subsequently 
download) data using their own PC at comfort of his/her 
home. Some cloud storage provider may support an extra 
service (e.g. via a third party plug-in) where user’s data is 
processed using an obfuscation technique to provider more 
security before it’s send to the data center. This existing 
model is depicted in Figure 1. However, many things can 
still go wrong to breach the data confidentiality and integrity. 
We illustrate a number of potential threats that could violate 
data confidentiality and integrity of user’s data at various 
points on the pathway from user’s PC to the cloud. 

 
• T1.Dishonest local host machine intercepts user’s 

data.  Most naïve users do not have a skill set to 
protect their machines free from malware. Malware 
installed in the user’s machine without the 
knowledge of the user may spoof user’s activity or 
worse send the secret key information to the 
attacker. 

• T2. Man-in-the-middle intercepts user’s data. If 
user’s data is improperly protected while in transit 
between the cloud user and the cloud storage 
provider, malicious man-in-the-middle may steal the 
data and make unauthorized access to the user’s 
data. 

• T3. Malicious attacker pretends to be the cloud user. 
Malicious attackers may pretend to be a legitimate 
cloud user and then send in a massive amount of 
data occupying a large data storage space and 
subsequently disrupts a proper operation of the data 
centre. If that happens, the cost to the end user in 
terms of dollars also could be very high, as the 
service works on pay-per-use basis.  

• T4.Malicious attacker pretends to be a key 
management service. The key management service 
knows all secret keys that are used in the encryption 
process. Data leakage can happen if a cloud user 
mistakenly sends in plaintext or cipher to a rogue 
key management service.  

• T5. Dishonest cloud provider makes an unauthorized 
attempt to read user’s data. The cloud storage 
provider has all necessary tools and mechanisms to 
access the data that is under its full control. Either by 
a malicious code planted in the data center or by 
deliberate attempts by a dishonest data center 
personnel, data leakage can easily happen if user’s 
data is improperly protected. 

• T6. Dishonest cloud provider makes copies of user’s 
data.  It is a common practice for cloud storage 
providers to make copies of original data and store 
them in extra storages, such as in the backup media 
or replicated databases. Theoretically, these copied 
datasets are then re-applied if any unexpected 
disaster happens at the data center so that user’s data 
can be recovered. Other cases, replication is used to 
guarantee the availability of data. However, even 



after user’s subscription expired, these copies of the 
original data can still remain somewhere in the data 
center and may become a subject for compromise if 
the data is improperly protected.  

B. Security Requirements 

• R1. The encryption process happens at a sealed 
environment so that the host machine could not 
eavesdrop or steal any important details of both the 
key information and key computation (addressing 
threat T1). 

• R2. The secret key used for the encryption is 
securely protected so no snooping or stealing of the 
key is possible (addressing threat T1 and T2). 

• R3.  Data encryption is done in a way that it does not 
leak its original content other than to authorized 
systems or individuals (addressing threat T1, T5 and 
T6). 

• R4. Data integrity is always checked after receiving 
the data to ensure tampering has not occurred during 
the transmission (addressing threat T2, and T4) or at 
rest. 

• R5. A cloud user is authenticated by the cloud 
provider so that the data storage space is utilized 
only by the authenticated users but no one else 
(addressing threat T3). 

C. Our System Model 

We proposed a new system model that we believe to be 
prepared better to rectify the potential threats. Our model is 
designed to accommodate all the security requirements we 
defined above. Figure 2 depicts an overview of our proposed 
portable key management service with the descriptions of its 
core components. 

 

Figure 2.  The overview of our proposed system 
 

Trust Extension Device (TED): The Trusted Computing 
Group (TCG) [2] defines a set of specifications aiming to 
provide hardware-based root of trust and a set of primitive 
functions to propagate trust across remote platforms.  The 
core of TCG specifications were realized and implemented 
based on Trusted Platform Module (TPM). TPM is a 
cryptographic microcontroller system, which was typically 
embedded on a motherboard in a PC.  However, the PC-
based TPM solutions have been criticized for its 

impracticability, especially with its portability issue that the 
TPM is locked to a machine. It is also criticized with the 
difficulty for doing sensible integrity measurement due to the 
size of machines today [25], [13].   

Improving from existing shortfalls of PC-based TPM, we 
previously proposed a portable USB-based security device 
dubbed as Trust Extension Device (TED) [12], [30], [31]. 
The picture of TED is shown in Figure 3. TED is essentially 
considered to be a portable TPM chip which can be plugged 
into any host machine using a USB connection, still 
providing all necessary TPM functionalities.  

 
Figure 3. A picture of our TED 

 
We have made further improvement to our existing TED 

to provide two additional mechanisms: high assurance 
platform authentication and key management service.  

- High assurance platform authentication: it provides a 
mechanism where the data owner presents a piece of 
evidence (i.e. proof of compliance) to the cloud 
storage server. The proof contained in the evidence 
establishes two facts to the storage server: (1) the 
requests are indeed sent from the legitimate user, (2) 
and the requests are produced by the machine with 
configuration and operations free from running any 
malicious software. 

- Key management service: it provides an expertise in 
maintaining a large set of keys and performs 
operations securely. The functions provided by the 
key management service includes key creation, key 
distribution, assisting in data encryption, providing 
secure data storage, and destroying the keys that are 
no longer needed. It also ensures that the keys are 
always available on demand. 

Local Host: We assume that the environment where a 
local host runs is unknown and untrustworthy. The TED is 
equipped to create its own trusted environment when it is 
plugged into the local host. The local host acts only as a 
medium that connects and transmits the data between the 
TED and the remote server via the public Internet facility. 

Cloud Storage Provider: The cloud storage provider 
maintains a large data center and provides a set of services to 
access and manage the data for the cloud users (i.e., data 
owner). The cloud user pays for a subscription to use a 
certain amount of storage space for a fixed amount of period. 
Though the cloud storage provider may have security 
mechanism in place to protect the data they maintain, the 
cloud user does not necessarily fully trust neither the 



provider themselves nor the security mechanisms supported 
by the cloud storage provider. 

III.  DESIGN CONSIDERATIONS 

We describe major design considerations which we 
believe to be important in developing a key management 
service. This includes the considerations to protect secret 
keys, user’s data and the platform it is running. We describe 
our approaches in providing solutions to each of the design 
consideration as follows. 

A. Secret Keys  

We describe a number of critical considerations that we 
feel important to address in managing a large number of 
secret keys. This includes who is responsible for managing 
the lifecycle of each key and where the keys are stored.  We 
also describe the portability and the importance of the high 
availability of the keys.  

1) Key Management Responsibility 
One solution to protect data from untrusted cloud storage 

provider would be to encrypt user’s data using a secret key 
before sending the data to the cloud. This provides two 
important advantages for the data owner. By encryption, the 
content of the user’s data is never revealed to unauthorized 
third party.  It is also somewhat easier to make the data 
unrecoverable by simply deleting the secret key. The 
question is then who is going to maintain the control of the 
secret key. It is especially so if there is a large number of 
keys created as a result of fragmenting a rather large sized 
data or if the user decides to store different data sets in the 
number of multiple storage providers (so that only the 
portion of data is lost if a certain storage provider 
experiences failure for any unforeseen reasons). It would be 
unrealistic to leave the responsibility to the users to manage 
such a large number of keys. For example, if Alice decides to 
fragment her data file into many smaller size pieces each of 
which is encrypted using a unique key, it would place a huge 
burden for Alice to create, reliably store, certify, advertise, 
and then reliably destroy potentially a large number of keys.  

To overcome this problem, we adapted an approach 
based on R. Perlman’s Ephemerizer [17]. The central idea 
behind the concept of the Ephemerizer is to have a single 
service which centralises all the key management expertise 
in one place. The service creates keys, makes them available 
for encryption, aids in decryption, and destroys the keys at 
the appropriate time.  In the original paper, however, the 
Ephemerizer acts as a trusted third party service in public 
space whose responsibility is solely to manage keys for 
many different users. We modify the scope of the 
Ephemerizer. Our key management service does what 
original Ephemerizer does by concentrating all the expense 
and expertise in managing keys in one space. However, our 
key management service is implemented within a dedicated 
hardware device in our TED. This design ensures that the 
stealth of the keys is more difficult and key computation is 
secure from any remote attackers. In addition, the key 
management service is offered to only a single user (i.e., the 
TED owner). This design simplifies the complexity of 
having to deal with many users therefore potentially avoids 

the concurrency issue of dealing many keys for different 
users simultaneously. 

2) Key Duration 
Commonly, the cloud storage provider employs strategies 

to keep user’s data in additional storage media, such as 
backup files or replicated databases, often without user’s 
knowledge. If the keys that encrypt user’s data are never 
destroyed, encrypted data is more vulnerable from the further 
misuse. For example, it is reported in [17] that the long term 
keys are made more easily available through compromise 
over time. In worst case, they become recoverable if a 
technique such as forensic is applied.  

To avoid such possibility, we propose to create short-
term keys which have expiration dates attached to them. This 
ensures that the keys are regularly monitored and deleted 
after their expiry dates. The data encrypted by the expired 
keys becomes unrecoverable by any means. For example, if 
Alice is to send an encrypted data blob to a cloud storage 
provider that will be removed after 3 months, then it is better 
to be encrypted in a key that will be guaranteed to be 
available for only 3 months but no more. By deleting the key 
after 3 months, the encrypted data with the expired date 
becomes irrecoverable by any means as the key is no longer 
available.  Though it is not currently implemented, it would 
be straightforward to extend our current model for some 
users whose data resides in the data center permanently. For 
example, a special date format such as 99/99/9999 can be 
used for data such as that.   

3) Key Storage 
Another important question that needs to be addressed is 

the location of the keys. If the keys are located in an 
improperly protected place, they become vulnerable from 
malicious attackers. For example, with sophistication and 
skill sets, a hacker with deep knowledge in OS could easily 
steal the secret keys reside in a stable memory space. In 
another example, if direct stealing of the keys is not possible, 
the attackers could use spoofing malware to monitor the key 
computation and guess the keys. To ensure such 
compromises are not possible, we propose to implement the 
key management service inside our tamper-proof device 
TED. The TED provides a sealed storage area to store the 
keys. The public part of the key is used to assist the 
encryption while the private part of the key is securely held 
inside the TPM chip. The private part of the key is never 
exposed outside the device (satisfies the security requirement 
2).  

4) Key Portability and Availability 
Inherently, a key management service is implemented at 

a server or at a private cloud. These keys are then locked into 
that particular server or the environment. If users want to use 
the key management service to encrypt a certain portion of 
their data, they need to return to the server machine to 
perform the intended operations which may not be always 
convenient. 

This limitation is mitigated in our proposed solution as 
our key management service is implemented within a 
portable USB. This design greatly improves both the 
portability and the availability of the keys. Now users can 
carry the USB device anywhere they go. The users is ready 



to use the key management services upon availability of any 
machines even if the machine does not belong to them, such 
as in a desktop in the Internet café, or in a laptop at a friend’s 
place. At this stage, there is no mechanism in place that ties 
up the owner of the USB to the USB device. If a USB is lost, 
the user’s data in the cloud could become the subject of 
misuse. Though a simple username/password authentication 
could be of a potential solution, more sophisticated solutions 
are provided by the use of biometric based technologies as 
such we explored in our other paper [13]. 

B. Data Security 

We describe design considerations to protect data in this 
section. This includes: where to process the key computation 
to ensure key information leakage does not happen, 
encryption strategies to protect the data even if the data is 
intercepted, and data integrity mechanisms to detect from 
any potential tampering. 

1) Computation 
In our context, data computation refers to the processing 

of data from plaintext to scrambled version to avoid 
adversaries does not learn about the data. As much as it is 
important to protect the keys that assist computation process, 
it is equally important to protect the actual computation 
process itself. The computation needs to be done in a secure 
environment in such a way that important key information 
does not leak to any unauthorized users. For example, if the 
encryption processing takes place at the dishonest host 
machine, there could be a piece of malicious code hidden 
monitoring, or worse, stealing the key information used for 
the computation. The stolen information is then sent to the 
adversary who remotely controls the malicious code and uses 
it for the further criminal activities. 

We propose the encryption processing to be done only 
inside our TED (satisfies the security requirement 1). In our 
proposed solution, the encryption processing is performed 
inside TED by the use of sealing and unsealing operations. 
Sealing refers to a process of the key management service 
requesting to the TPM (inside TED) to encrypt user’s data. 
At the time of sealing, the platform information is recorded. 
Unsealing is a process of the key management service 
requesting to the TPM to decrypt an encrypted message. 
Along with the encrypted message, the key management 
service supplies the platform information. The TPM reveals 
the plaintext only if the current platform information matches 
to the platform information provided at the time of sealing. 
This is to safeguard that the platform remains in the same 
state in between the encryption and the decryption operations 
without potentially being modified by malicious code. 

However, doing the computation all in the TED comes 
with performance drawback as the disk space in our TED is 
small, only 4GB. If the speed is critical, the 
encryption/decryption can be outsourced to the client given 
that such computations only take place in the compartment 
of the Trusted Computing Base (TCB).  

2) Encryption 
In most cases, data encryption is done by the use of 

software-based keys which are often stored in a stable 
memory space maintained by an OS. With the increase of 

interconnectivity and sophistication of adversaries, these 
software-based keys become increasingly more vulnerable 
from remote attacks. Compare to the software bound keys, 
hardware-based keys are considered to be more difficult to 
break as the hackers need to steal the actual hardware device 
to steal the keys contained in the device. Taking this 
advantage, we use hardware-based keys to assist in data 
computation process. Even if the encrypted data is hijacked 
by the man-in-the-middle attack, the malicious attackers will 
not be able to decrypt the data since the attacker does not 
know the secret key that is used for the encryption (satisfies 
the security requirement R3) 

3) Data Integrity 
To preserve high data integrity, our system sends a keyed 

hash value to be verified. We create a secret key that is only 
used to secure the communication between two entities. The 
secret key encrypts the secret message such as cloud user’s 
data. Then the secret key is encrypted by a public part of the 
key of the receiver to ensure that only the designated receiver 
can decrypt the secret key. A keyed hash value using HMAC 
functionality is created by the use of the secret key and the 
encrypted secret message. The receiving entity verifies the 
HMAC value to ensure no tampering has occurred during the 
transmission of the data (satisfies the security requirement 
R4). 

C. Platform Assurance 

One of the obstacles to take up cloud computing is the 
lack of transparency.  Data owners do not have proper tool 
supports to ensure their data is not being abused or leaked by 
the malicious software installed at the cloud server [18].  
Similarly, the cloud storage provider does not have a support 
to know their storage is accessed or utilized by only intended 
users with legitimate subscriptions. 

A promising approach to address this problem is based 
on Trusted Computing (TC). One of the most innovative 
ideas realized and supported by TC is remote attestation [18].  
The remote attestation allows a remote server (i.e., 
geographically located away from other server it is 
interacting) to provide an opportunity to provide an evidence 
of its platform configurations and operations to other server 
for verification purpose. 

To achieve the goal in providing the transparency, the 
remote attestation defines mechanisms for two remotely 
located parties, which are referred as a challenger and an 
attester, to exchange evidence. The evidence contains two 
pieces of proof information. One proof is that the messages 
sent from the challenger are correct, that is, the system the 
challenger used to produce the messages was honest and 
produced the message truthfully. The other proof is that the 
messages are sent by the challenger itself ensuring 
masquerading has not occurred.  

We use the idea of remote attestation to authenticate the 
identity and platform of the cloud user. The attestation 
mechanism in our solution prevents any potential abuse of 
the cloud storage space by malicious adversaries who 
masquerades to be a legitimate cloud user (satisfies the 
security requirement R5 and R6). It should be noted that the 
remote attestation runs only one way from the data owner to 



the cloud storage provider in our solution. Though it would 
be much more beneficial to the cloud user if a cloud storage 
provider also provide a piece of evidence (of its server 
configuration and operations state), it would be unrealistic to 
enforce such scheme as today’s cloud solutions run mostly 
on a black-box approach. 

IV.  KEY MANAGEMENT 

We describe in details the way our proposed key 
management service controls a lifecycle of a key, from its 
inception, data computation, transmission of encrypted data, 
and deletion of the keys when they are expired. 

A. Preliminaries 

We use {M}k to denote an encryption of a message M 
using a key k under some symmetric encryption algorithm, 
for example, AES in CBC mode with random initialization 
vectors. Similarly, {|M|}k  denotes an encryption of a 
message M using a key k under some public-key encryption 
algorithm, for example, RSA with PKCS encoding standard.   

We use the notation CS to indicate a cloud storage 
provider that resides remotely over the public Internet. We 
use the notation KEPH to indicate a key management service 
that resides inside our TED device. The name Alice is used 
to represent a cloud user. Alice is also the owner of TED 
device. 

We assume that the public part of the cloud storage 
provider’s keypair, denoted as CSpub, has been distributed. 
Optionally, if a cloud storage server wants to ensure the 
authenticity of the messages coming from the user, all it 
needs to do is to verify user’s certificate. - 

B. Operations 

1) Key Creation 
In order for Alice to encrypt a message to send to a cloud 

storage service, what Alice first needs to do is contacting the 
key management service inside TED with an expiration time 
and requesting a key. Upon this request, the key management 
service works with TPM chip to create a unique key pair call 
Keph. An expiration date sent by Alice is attached to the 
keypair to indicate the period of the key being valid. A key 
ID is also attached to the key as an identifier. The data tuple 
(KeyID, Keph, expiry date) is created and stored in a 
database that the key management service maintains. The 
key is securely held inside the TPM chip. The public part of 
the key, Keph, is returned to Alice along with the key ID. 

2) Data Encryption 
Alice now encrypts her message (i.e., user data) with a 

randomly selected secret key S to obtain {M}S. The secret 
key S is encrypted with Keph to obtain {|S|}Keph. Alice 
creates another secret key T.  Alice encrypts {|S|}Keph using 
T obtaining {{|S|}Keph}T while T is encrypted using CS 
public key CSpub obtaining {T}CSpub. Why do we need 
another secret key T? As a common practice, it is more 
efficient to encrypt the message with a secret key than 
encrypt it using a public key. We also use the secret key S for 
the data integrity check for {|S|}Keph.  

Message 1: what Alice sends to the cloud storage 
provider is: 

• Key ID of Keph: the ID of the ephemeral key Keph 
that Alice chose to encrypt with.  

• {M}S: the secret message encrypted with the secret 
key S 

• {{|S|}Keph}T: the secret key S encrypted first by 
Keph, then by another secret key T 

• {T}CSpub: the secret key T encrypted by CS public 
key CSpub 

• HMAC(T, {|S|}Keph||KeyID): a keyed hash value is 
created.  

• AIK certificate: a certificate received from the 
Privacy CA is sent too. 

3) Storing User’s Data 
When the cloud storage provider receives the encrypted 

message from Alice, it first authenticates Alice by validating 
the AIK certificate. If Alice’s AIK certificate is verified, the 
cloud provider can ensure that the message is truly sent by 
Alice and the message was computed by a machine 
containing a legitimate TPM chip. 

 Once AIK certificate is verified, CS decrypts {T}CSpub 
in order to obtain T. Using the secret key T, the CS obtain 
{|S|}Keph. At this point, the cloud storage provider also 
verifies HMAC(T, {S, {|S|}Keph||KeyID) to ensure no 
tampering during the transmission. If the HMAC verifies, the 
encrypted secret message is stored along with Alice’s AIK 
certificate. 

4) Data Request 
When there is a request to download Alice’s data from 

the data centre, the cloud storage provider finds the 
encrypted message by matching Alice’s AIK certificate. The 
CS creates a secret key J to encrypt Alice’s data {|S|}Keph to 
obtain {{|S|}Keph}J. J is encrypted by the public part of 
Alice’s AIK certificate obtaing {J}AIKpub. 

Message 2: what the cloud storage provider sends to 
Alice is: 

• Key ID of Keph: the ID of the ephemeral key Keph 
that Alice sent along with her data.  

• {M}S: the secret message encrypted with secret key 
S 

• {{|S|}Keph}J: the secret key S encrypted first by 
Keph, then by another secret key J 

• {J}AIKpub: the secret key J encrypted by Alice’s 
AIK public key AIKpub. 

• HMAC(J, {|S|}Keph||KeyID): a keyed hash value for 
validation of the message. 

• AIK certificate: a certificate to be validated by the 
cloud provider before user’s data is being 
downloaded. 

5) Data Decryption 
When Alice receives her data, she first verifies the 

HMAC value to check any potential tampering by the man-
in-the-middle attack. Once HMAC is verified, Alice first 
decrypts {J}AIKpub using the private part of her AIK key. 
By the use of J, she obtain {|S|}Keph which is then send to 
the key management service along with KeyID. The key 
management service uses KeyID to find a matching private 
Keph key. S is returned to Alice. Alice uses S to decrypt her 
final message.  



6) Key Deletion 
We use ephemeral keys (i.e. short-term keys with expiry 

dates attached to them) to prevent any possibility of a 
dishonest cloud storage service accessing data after users’ 
subscriptions ended. The key management service does this 
by periodically checking and deleting the keys with expiry 
dates elapsed. Any data that has been encrypted by the use of 
expired ephemeral key become unrecoverable. For example, 
if the expiry date of Keph key is elapsed when Alice sends 
{|S|}Keph, the key management service would not be 
possible to decrypt {|S|}Keph; henceforth, Alice won’t be 
able to decrypt her message since she cannot get the secret 
key S. Similarly, if any copies of Alice’s data still remain in 
the data centre after Alice’s subscription ended, the cloud 
storage service would not be possible to read it. First Alice’s 
data is protected by Keph key whose private key never 
leaves Alice’s TED device. Even if the cloud storage 
provider successfully steals Alice’s TED device, the Keph 
key is already removed by the key management service when 
Alice’s subscription ended. 

V. HIGH-ASSURANCE PLATFORM AUTHENTICATION 

When a TED plugs into the host machine, it creates its 
own trusted environment which isolates its environment 
from the underlying host machine. Any subsequent process 
is performed only on the trusted environment created by our 
TED.  

Each TED is equipped with non-forgeable endorsement 
key which is called as EK certificate. The EK certificate can 
uniquely identify each legitimate TED. We assume that the 
third party certifying authority called Privacy CA knows the 
list of legitimate holders of EK certificates. To preserve its 
anonymity, the TED never uses EK certificate directly to 
communication with outside world. Instead, it creates a 
hardware bound Attestation Identity Key (AIK) using a key 
storage structure maintained by each TPM. In addition, our 
TED measures its platform environment via examination of 
the hardware BIOS, master boot record, OS by utilizing a set 
of Platform Configuration Registers (PCRs). The PCR 
values are used to verify if the cloud user, represented by 
TED, runs on a correct platform state. We assume that the 
Privacy CA also knows the correct state of each TED. The 
Privacy CA only certifies AIK if the TED presents correct 
EK certificate and PCR values. 

We explain a high level view of the messages exchanged 
between TED (represents a data owner who is a cloud user), 
PCA (represents a trusted certifying authority), and CS 
(represents a cloud storage provider). The following 
sequence happens as a part of the platform authentication. 
The messages produced by the same machine at one time are 
grouped together using a single numeric number while 
alphabetic orders added next to the number to denote the 
sequence of operations. 

1a. TED: load protected AIKpvt into TPM 
1b. TED: retrieve Quote=sigPCR:nonceAIKpvt 
1c. TED: send IdentityReq(cert (EKpub), AIKpub, quote, 

nonceA )  
2a. PCA: validates cert(EKpub) and quote 
2b. PCA: send cert(AIKpub) 

3. TED: send cert(AIKpub) 
4. CS: validate cert(AIKpub) 
In step 1a, TED is plugged into a host machine and it 

collects the EK certificate, and generates a public/private 
AIK pair and a random non-predictable fresh nonce nonceA.  
In step 1b, TED runs a quoting process which measures its 
platform state using PCR values.  Then, TED signs the EK 
certificate, the public part of AIK, PCR values, and noneA 
using the private part of the EK and encrypts these signed 
data blob using the public part of the Privacy CA key. The 
encrypted blob is then sent to the Privacy CA as a request to 
get an identity credential as depicted in 1c. In step 2a, the 
Privacy CA decrypts this blob with its private key and 
verifies the EK certificate and PCR values. In step 2b, the 
Privacy CA then creates an identity credential and sends it 
back to the TED. This credential is a digital certificate 
containing the public part of the AIK together with nonceA 
signed by the Privacy CA private key. The TED uses this 
credential obtained from CA to authenticate to the cloud 
provider as depicted in step 3 and 4. 

VI.  PROTOTYPE IMPLEMENTATION 

We developed a prototype system to evaluate the 
feasibility and practical aspects of our proposed solution. 
The design of our prototype is shown in Figure 4. 

 
Figure 4. Prototype implementation design 

A. System Configuration 

The following configurations are used in implemented 
prototype. 

• Local Host: We have a desktop machine that 
represents an untrusted local host. We use Intel Core 
2 Duo 6400 with dual processors of 2.13 GHz both 
with 1.99 GB of RAM running. The Windows XP is 
run as OS. Our TED uses the Internet connection 
provided by the local host to communicates with 
service provided by the cloud storage provider. 

• Platform Authentication Service and Portable Key 
Management Service: these are essentially two 
services added to our existing TED device. Platform 
Authentication Service runs as the combination of 
C++/Java applications to communicate both with 
TPM chip inside TED device and a Privacy CA to 
obtain an identity credential. A key management 



service is a java applications that communicates with 
TPM chip inside TED to manage keys and assist key 
computation.  

• Cloud Storage Service: to avoid any proprietary 
features of a particular cloud storage service 
publically available (therefore difficult to port at a 
later stage), we decided to develop our own cloud 
storage service to accommodate more generic 
features. For this, a server machine is used to 
represent a cloud storage provider. The cloud 
provider machine also runs the same configuration 
as the desktop machine above. We developed a 
simple web application which provides a service that 
allows the cloud user to upload and download files. 
We use a MySQL database to simulate a data center  
and stores user’s data there. Implementation of 
Major Functionalities 

1) Trust Extension Device 
Our existing TED is extended to provide a number of 

TPM functionality required by platform authentication and 
key management as follows.  

− TPM CreateWrapKey: creates a new TPM key. 
− TPM_LoadKey: loads the newly create key into 

TPM. Now the key is ready for use. 
− TPM_Seal: encrypts the given plaintext with a TPM 

key. The PCR values needs to be specified. 
− TPM_Unseal: decrypted the given cipher with a 

TPM key. Data is decrypted only when the given 
PCR values match to the ones supplied at the time of 
TPM-Seal. 

− TPM_Extend: updates a PCR by hashing in a 
measurement value. We measure a hash value of 
TED image and supply as the measurement value. 

− TPM_Quote: obtains a signed report of the current 
PCR values. 

− TPM_MakeIdentity: create an attestation identity 
key (AIK)  

− TPM_ActivateIdentity: decrypt an AIK certicate 
obtained from a Privacy CA. 

2) Key Management Service  
The basic function of our key management service is to 

create ephemeral keys with tuples <KeyID, Keph, expiration 
date> and make them available for encryption. The key is 
then used to encrypt the data in such a way that user’s data 
cannot be decrypted without the aids from the key 
management service. Another important function the key 
management service provides is to check the keys with their 
respective expiry dates. Any keys with the expiration date 
elapsed are deleted periodically. 

−  CreateKey: creates an ephemeral key with a given 
expiry date. 

−  EncryptData: encrypts the data blob. Utilises the 
TPM_Seal to store the current platform value along 
with the keys used for the encryption. 

− DecryptData: decrypts the data blob. Utilises the 
TPM_Unsela to retrieve the secret key. 

− DeleteKeys: periodically deletes the keys whose 
expiration dates have been elapsed. 

3) Cloud Storage Provider 
As mentioned, we have developed a cloud storage service 

to provide the most generic features of many cloud storage 
solutions available in public today. This includes a service to 
upload and download data. These features are implemented 
in a simple web application.  

− UploadData: cloud user utilizes this feature to 
upload encrypted data blob. User’s data is stored in 
the database only if the user is authenticated via the 
use of the platform authentication service. 

− DownloadData: cloud user uses this feature to 
download the data that has been stored in the cloud 
storage.  

B. Observation 

We describe preliminary observations on the 
performance of our proposed system. Compare to the 
software-based key management, the hardware-based key 
management seems to be slow. Especially it had an overhead 
at the initialising phase which took average 2.5 second. The 
significant overhead happened when TED prepares 
necessary resources to create and load the first set of root 
keys and subsequent keys. Also due to the size of our TED, 
which is housed by 4 GB USB device, the data computation 
was slow. If TED is equipped with a faster processor and 
more memory space, this problem is likely to improve. 

As reported in [12], our TED does not have its own input 
and output devices, such as keyboard, mouse, and video 
cards. This has a vulnerability of having to rely on the local 
host’s input and output devices, which can be untrustworthy. 
Subsequently, our prototype implementation may potentially 
suffer from security breach created by keystroke loggers, 
screen grabbers or other malicious exploit targeted for user 
interface. We are exploring different ways to mitigate this 
limitation. The most possible candidates to rectify the 
limitations include techniques such as encryption-based 
trusted path [14] or virtual KVM (keyboard, video and 
mouse) [15]. 

  

VII.  RELATED WORK 

In broad category, there are two schools of thoughts in 
dealing with data protection for data owner in the cloud.  

In the first category, it handles the data protection 
through the use of third party auditing mechanism. The terms 
utilizing the concept of public auditability have gained 
popularity in recent years [6], [22], [23], [24]. In this 
approach, a third party auditor (TPA) acts as an external 
service to verify the correctness of the user’s data as to 
whether data confidentiality and data integrity of user’s data 
is preserved. The verification can be done static at a specific 
time frame or dynamic in real-time. However, this approach 
has been criticized [6] that they do not support the privacy 
protection of user’s data against external auditors which 
potential become security breach medium to reveal user’s 
data content accidentally. What we see in these auditing 
approaches is that they are aimed at detecting breaches 
whereas our approach is more geared towards the prevention. 



Ours and these audit-based approaches can be good 
complimentary techniques to each other. 

More related to our approaches are the ones that use 
obfuscation techniques to scramble the content of data before 
transmitting to the cloud so that any unauthorized parties 
could not learn about the data. The most common techniques 
used in data obfuscation techniques include such as 
encryption, fragmentation, and hardware-based Trusted 
Platform Module [3]. These techniques often used alone or 
as combined. In [10], the author proposes the concept of 
using a privacy manager that explicitly handles the 
obfuscation of the data through encryption. The proposal 
also utilizes the concept from Trusted Platform Module 
(TPM) to use it as a hardware-based cryptographic tool. 
TPM stores the keys and assist the obfuscation process (i.e., 
encryption) on the user’s machine, based on security policy, 
before sending the encrypted data to the cloud storage 
provider. In [27] and [28], authors propose to use 
fragmentation technique to slice up a large chunk of data into 
smaller pieces. Each fragment is encrypted using a unique 
key. Each encrypted fragment is then sends to the cloud. The 
details of the management of the keys and the protection of 
the keys are not addressed in the paper. Hardware tamper-
proof token based approach was briefly explored in [16]. In 
this approach, TPM is used to store the keys as well as to 
store the keys in the dedicated sealed environment. The key 
computation also takes place in the sealed environment. This 
design approach makes it more self-resilient from potential 
attack since the keys and the computation are both better 
protected in the sealed area. Though it has merits, the 
proposed solution is implemented in the public cloud and 
would suffer a number of problems. Most significantly, the 
availability will suffer if one of the clouds, containing either 
the key or the data, goes down and the user would be left not 
being able to access their data when they need. In addition, 
the public cloud is insecure, especially to store secrets. 
There’s number of growing concerns for the cyber attacks 
that are specially geared towards public cloud. Furthermore, 
the key management aspects were never mentioned. 

VIII.  CONCLUSION 

We have proposed a portable key management service 
that centralizes all the expense and expertise of maintaining a 
large number of keys, and yet the keys are highly secure and 
available. Our key management service employs to encrypt 
user’s data before they are sent to the cloud while the secret 
keys used to aid the encryption is securely held inside a 
tamper proof hardware device. This effectively provides a 
mechanism to utilize the cloud storage in a secure manner 
while protecting the keys from the cloud storage services. 

We address a number of important design considerations 
to protect the secret keys, user’s data, and the platform.  

All keys managed by our key management service are 
secure as the keys are stored in a designated sealed storage 
area within a tamper-proof hardware device. This ensures 
that the general stealth of unique keys especially by the use 
of remote Internet connections is much more difficult.  In 
addition, the keys created by our key management service 
are ephemeral in nature. The ephemeral keys have temporary 

lifetime and deleted when the expiration date attached to 
each key is elapsed. Any data encrypted by the ephemeral 
key whose expiration date is passed become unrecoverable.  

Our key management service is highly available as they 
are not locked into any particular machine. Rather, our key 
management is implemented in a portable USB device that 
users can carry with them all the time and use it at any time 
as needed. In addition, our solution offers a high assurance 
platform authentication where the cloud user can be 
authenticated by the cloud storage server to prevent its 
storage space be wasted by malicious attackers. By verifying 
the evidence sent by the user, the cloud storage provider 
ensures that the requests actually came from the legitimate 
user‘s platform free from running any malicious software. 

In the near future, we plan to formalize the proof of our 
security protocols using a security verification tool such as 
SPIN or fs2pv [26]. As the mobile devices such as 
smartphone and tablet PCs becoming a big player in the 
cloud computing, we have a plan to port our proposal into 
these devices. Also, we plan to incorporate our solution to 
work with a commercially available cloud storage service 
such as Amazon S3. 
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