
Portable Key Management Service for Cloud Storage

Julian Jang-Jaccard
ICT Center

CSIRO
Australia

julian.jang-jaccard@csiro.au

Avnish Manraj
ICT Center

CSIRO
Australia

avnish.manraj@csiro.au

Surya Nepal
ICT Center

CSIRO
Australia

surya.nepal@csiro.au

Abstract— Cloud storage services provide highly scalable,
available and pay-as-you-go storage space for individual and
enterprise users. Cloud storage services are inherently insecure
as the management of the data in the cloud storage is
controlled by third parties beyond the reach of the data owner.
To address this problem, a number of data obfuscation
techniques have been proposed to conceal data before sending
it to the cloud. The secrets keys used for obfuscation are stored
in a secure location while obfuscated data is stored in the
cloud. In these approaches, the data is as secure as its
corresponding keys. However, this still brings a challenging
issue where a user needs to manage a large number of (secret)
keys in such a way that they are protected against all types of
adversaries, and should be as highly available as cloud storage
services. To address this issue, we propose a portable key
management service that is highly secure and available. In our
solution, all keys are stored in a tamper-proof hardware within
a portable USB device that users can carry with them all the
time in order to provide high security and availability. We
describe the system model, the details of the key management
service and a prototype implementation.

Keywords- Cloud Computing, Key Management, Portability,
Storage Service, Trusted Computing

I. INTRODUCTION

Moving data into the “Cloud” offers great cost saving
and convenience to users and provides a new platform for
collaboration. Users do not have to concern about the
complexities of data storage capability in house. Using the
increased network bandwidth and flexible network
connection, users can simply subscribe a service on “pay-
per-use” basis and access to huge storage space.

This new cloud storage paradigm has, however, brought
many security concerns [8], [19], [20], [21]. One of the
biggest concerns is protecting confidentiality and integrity of
data. Under cloud storage paradigm, the data storage and
management is under the full control of (untrusted) third
parties (i.e., the cloud storage service providers). The data
owners are left vulnerable having to solely rely on the
security mechanisms and configurations of the cloud storage
providers to protect their data [6], [9], [10].

Two most common security properties that would suffer
as a result of using cloud storage services are data
confidentiality and data integrity. Data confidentiality would
be broken if user’s data is disclosed to unauthorized
individuals. For example, malicious hackers may penetrate

the storage servers and steal the data using malware
infection. Data integrity could be violated if user’s data is
modified by unauthorized individuals. For example,
financially motivated personnel at the data centre may
tamper private information without permission.

In addition, data exploitation does not end when the
user’s subscription of cloud storage services expires. The
data owner often falls into a trap thinking that their data is
safely removed from the cloud storage once their
subscription is expired. This can be far from reality [18]. It is
a common practice for a large data centre to make extra
copies of the original data. For example backup media are
used to store a copy of the data to use it to recover from
unexpected disaster. In another example, replicated databases
contain any copies of the data to guarantee high availability.
The backup media or replicated databases with copies of the
original data may or may not be completely removed when
the user’s subscription expires. It is more than a possible
scenario that user’s data still resides somewhere in the data
center and is subject to misuse. Therefore, the data owners
should always be vigilant in safeguarding their data all the
time such as while data is at transfer, at rest, and at use
during and beyond the subscription.

To address this problem, a number of solutions have been
proposed in academic literature and industry products. The
fundamental concept behind these solutions is to obfuscate
user’s data before sending it in such a way that it is not
possible to reveal user’s data to unauthorized third parties
(i.e., cloud storage providers or adversaries) other than
intended users (i.e., data owners). Fragmentation is often
used in conjunction with obfuscation techniques [27], [28].
The original data is often fragmented in many smaller pieces.
Each fragment is then encrypted using a unique key. The
encrypted fragments are stored in the cloud while the unique
keys are stored in a secure location away from prying eyes of
third parties. Some of the popular choice of the secure
location include such as a dedicated file system in the user’s
local machine [10] or in a private cloud [29].

However, this still brings a challenging issue where a
user needs to manage a large number of (secret) keys. It
would become increasingly troublesome for users having to
manage hundreds of keys as a result of fragmenting a large
size data, or dealing with multiple cloud storage providers
(using different keys for different providers). Furthermore,
the high availability of data provided by cloud storage
services can be easily compromised if the keys are not

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250488

available all time. If that happens, it can significantly
damage the reputation and success of the cloud storage
solution. Henceforth, the keys should also be as highly
available as data itself in order to achieve the high
availability in overall secure cloud storage solution.

To address this issue, we propose a portable key
management service that centralizes all the expense and
expertise required to maintain a large number of keys. Our
solution is still highly secure and available. All keys
managed by our key management service are secure as the
keys are stored in a designated sealed storage area within a
tamper-proof hardware device. This ensures that the general
stealth of unique keys, especially by the use of remote
Internet connections which are on the rise, is much more
difficult. Our key management service is highly available as
they are not locked into any particular machine. Our key
management service is implemented in a portable USB
device that users can carry with them all the time and use it
at any time as needed.

The rest of the paper is structured as follows. In Section
II, we first demonstrate problems in existing system model,
run threats analysis and define security requirements. Then,
we provide a system model we propose. In Section III, we
describe major design considerations that are important in
developing a key management service which can protect
secret keys, user’s data and the platform it is running. In
Section IV, the details of the key management service are
described including key creation, distribution, aiding
encryption, and key deletion. In Section V, we illustrate an
attestation protocol that runs on the user’s machine to ensure
the platform configuration and operations match the
expectation. In Section VI, we describe our prototype
implementation and the key functionalities implemented at
major components of our system. In Section VII, we present
the related work. The last Section VIII presents the
concluding remarks and future work.

II. PROBLEM STATEMENT

We first describe an existing system and then illustrate
potential threats that may occur at various points while user’s
data traverse. We define a number of security requirements
to mitigate the threats and propose a system model that
accommodates them.

Figure 1. Potential Threats in Existing System

A. Possible Threats

Most cloud storage service today provides a web
application where a user can upload (and subsequently
download) data using their own PC at comfort of his/her
home. Some cloud storage provider may support an extra
service (e.g. via a third party plug-in) where user’s data is
processed using an obfuscation technique to provider more
security before it’s send to the data center. This existing
model is depicted in Figure 1. However, many things can
still go wrong to breach the data confidentiality and integrity.
We illustrate a number of potential threats that could violate
data confidentiality and integrity of user’s data at various
points on the pathway from user’s PC to the cloud.

• T1.Dishonest local host machine intercepts user’s

data. Most naïve users do not have a skill set to
protect their machines free from malware. Malware
installed in the user’s machine without the
knowledge of the user may spoof user’s activity or
worse send the secret key information to the
attacker.

• T2. Man-in-the-middle intercepts user’s data. If
user’s data is improperly protected while in transit
between the cloud user and the cloud storage
provider, malicious man-in-the-middle may steal the
data and make unauthorized access to the user’s
data.

• T3. Malicious attacker pretends to be the cloud user.
Malicious attackers may pretend to be a legitimate
cloud user and then send in a massive amount of
data occupying a large data storage space and
subsequently disrupts a proper operation of the data
centre. If that happens, the cost to the end user in
terms of dollars also could be very high, as the
service works on pay-per-use basis.

• T4.Malicious attacker pretends to be a key
management service. The key management service
knows all secret keys that are used in the encryption
process. Data leakage can happen if a cloud user
mistakenly sends in plaintext or cipher to a rogue
key management service.

• T5. Dishonest cloud provider makes an unauthorized
attempt to read user’s data. The cloud storage
provider has all necessary tools and mechanisms to
access the data that is under its full control. Either by
a malicious code planted in the data center or by
deliberate attempts by a dishonest data center
personnel, data leakage can easily happen if user’s
data is improperly protected.

• T6. Dishonest cloud provider makes copies of user’s
data. It is a common practice for cloud storage
providers to make copies of original data and store
them in extra storages, such as in the backup media
or replicated databases. Theoretically, these copied
datasets are then re-applied if any unexpected
disaster happens at the data center so that user’s data
can be recovered. Other cases, replication is used to
guarantee the availability of data. However, even

after user’s subscription expired, these copies of the
original data can still remain somewhere in the data
center and may become a subject for compromise if
the data is improperly protected.

B. Security Requirements

• R1. The encryption process happens at a sealed
environment so that the host machine could not
eavesdrop or steal any important details of both the
key information and key computation (addressing
threat T1).

• R2. The secret key used for the encryption is
securely protected so no snooping or stealing of the
key is possible (addressing threat T1 and T2).

• R3. Data encryption is done in a way that it does not
leak its original content other than to authorized
systems or individuals (addressing threat T1, T5 and
T6).

• R4. Data integrity is always checked after receiving
the data to ensure tampering has not occurred during
the transmission (addressing threat T2, and T4) or at
rest.

• R5. A cloud user is authenticated by the cloud
provider so that the data storage space is utilized
only by the authenticated users but no one else
(addressing threat T3).

C. Our System Model

We proposed a new system model that we believe to be
prepared better to rectify the potential threats. Our model is
designed to accommodate all the security requirements we
defined above. Figure 2 depicts an overview of our proposed
portable key management service with the descriptions of its
core components.

Figure 2. The overview of our proposed system

Trust Extension Device (TED): The Trusted Computing
Group (TCG) [2] defines a set of specifications aiming to
provide hardware-based root of trust and a set of primitive
functions to propagate trust across remote platforms. The
core of TCG specifications were realized and implemented
based on Trusted Platform Module (TPM). TPM is a
cryptographic microcontroller system, which was typically
embedded on a motherboard in a PC. However, the PC-
based TPM solutions have been criticized for its

impracticability, especially with its portability issue that the
TPM is locked to a machine. It is also criticized with the
difficulty for doing sensible integrity measurement due to the
size of machines today [25], [13].

Improving from existing shortfalls of PC-based TPM, we
previously proposed a portable USB-based security device
dubbed as Trust Extension Device (TED) [12], [30], [31].
The picture of TED is shown in Figure 3. TED is essentially
considered to be a portable TPM chip which can be plugged
into any host machine using a USB connection, still
providing all necessary TPM functionalities.

Figure 3. A picture of our TED

We have made further improvement to our existing TED

to provide two additional mechanisms: high assurance
platform authentication and key management service.

- High assurance platform authentication: it provides a
mechanism where the data owner presents a piece of
evidence (i.e. proof of compliance) to the cloud
storage server. The proof contained in the evidence
establishes two facts to the storage server: (1) the
requests are indeed sent from the legitimate user, (2)
and the requests are produced by the machine with
configuration and operations free from running any
malicious software.

- Key management service: it provides an expertise in
maintaining a large set of keys and performs
operations securely. The functions provided by the
key management service includes key creation, key
distribution, assisting in data encryption, providing
secure data storage, and destroying the keys that are
no longer needed. It also ensures that the keys are
always available on demand.

Local Host: We assume that the environment where a
local host runs is unknown and untrustworthy. The TED is
equipped to create its own trusted environment when it is
plugged into the local host. The local host acts only as a
medium that connects and transmits the data between the
TED and the remote server via the public Internet facility.

Cloud Storage Provider: The cloud storage provider
maintains a large data center and provides a set of services to
access and manage the data for the cloud users (i.e., data
owner). The cloud user pays for a subscription to use a
certain amount of storage space for a fixed amount of period.
Though the cloud storage provider may have security
mechanism in place to protect the data they maintain, the
cloud user does not necessarily fully trust neither the

provider themselves nor the security mechanisms supported
by the cloud storage provider.

III. DESIGN CONSIDERATIONS

We describe major design considerations which we
believe to be important in developing a key management
service. This includes the considerations to protect secret
keys, user’s data and the platform it is running. We describe
our approaches in providing solutions to each of the design
consideration as follows.

A. Secret Keys

We describe a number of critical considerations that we
feel important to address in managing a large number of
secret keys. This includes who is responsible for managing
the lifecycle of each key and where the keys are stored. We
also describe the portability and the importance of the high
availability of the keys.

1) Key Management Responsibility
One solution to protect data from untrusted cloud storage

provider would be to encrypt user’s data using a secret key
before sending the data to the cloud. This provides two
important advantages for the data owner. By encryption, the
content of the user’s data is never revealed to unauthorized
third party. It is also somewhat easier to make the data
unrecoverable by simply deleting the secret key. The
question is then who is going to maintain the control of the
secret key. It is especially so if there is a large number of
keys created as a result of fragmenting a rather large sized
data or if the user decides to store different data sets in the
number of multiple storage providers (so that only the
portion of data is lost if a certain storage provider
experiences failure for any unforeseen reasons). It would be
unrealistic to leave the responsibility to the users to manage
such a large number of keys. For example, if Alice decides to
fragment her data file into many smaller size pieces each of
which is encrypted using a unique key, it would place a huge
burden for Alice to create, reliably store, certify, advertise,
and then reliably destroy potentially a large number of keys.

To overcome this problem, we adapted an approach
based on R. Perlman’s Ephemerizer [17]. The central idea
behind the concept of the Ephemerizer is to have a single
service which centralises all the key management expertise
in one place. The service creates keys, makes them available
for encryption, aids in decryption, and destroys the keys at
the appropriate time. In the original paper, however, the
Ephemerizer acts as a trusted third party service in public
space whose responsibility is solely to manage keys for
many different users. We modify the scope of the
Ephemerizer. Our key management service does what
original Ephemerizer does by concentrating all the expense
and expertise in managing keys in one space. However, our
key management service is implemented within a dedicated
hardware device in our TED. This design ensures that the
stealth of the keys is more difficult and key computation is
secure from any remote attackers. In addition, the key
management service is offered to only a single user (i.e., the
TED owner). This design simplifies the complexity of
having to deal with many users therefore potentially avoids

the concurrency issue of dealing many keys for different
users simultaneously.

2) Key Duration
Commonly, the cloud storage provider employs strategies

to keep user’s data in additional storage media, such as
backup files or replicated databases, often without user’s
knowledge. If the keys that encrypt user’s data are never
destroyed, encrypted data is more vulnerable from the further
misuse. For example, it is reported in [17] that the long term
keys are made more easily available through compromise
over time. In worst case, they become recoverable if a
technique such as forensic is applied.

To avoid such possibility, we propose to create short-
term keys which have expiration dates attached to them. This
ensures that the keys are regularly monitored and deleted
after their expiry dates. The data encrypted by the expired
keys becomes unrecoverable by any means. For example, if
Alice is to send an encrypted data blob to a cloud storage
provider that will be removed after 3 months, then it is better
to be encrypted in a key that will be guaranteed to be
available for only 3 months but no more. By deleting the key
after 3 months, the encrypted data with the expired date
becomes irrecoverable by any means as the key is no longer
available. Though it is not currently implemented, it would
be straightforward to extend our current model for some
users whose data resides in the data center permanently. For
example, a special date format such as 99/99/9999 can be
used for data such as that.

3) Key Storage
Another important question that needs to be addressed is

the location of the keys. If the keys are located in an
improperly protected place, they become vulnerable from
malicious attackers. For example, with sophistication and
skill sets, a hacker with deep knowledge in OS could easily
steal the secret keys reside in a stable memory space. In
another example, if direct stealing of the keys is not possible,
the attackers could use spoofing malware to monitor the key
computation and guess the keys. To ensure such
compromises are not possible, we propose to implement the
key management service inside our tamper-proof device
TED. The TED provides a sealed storage area to store the
keys. The public part of the key is used to assist the
encryption while the private part of the key is securely held
inside the TPM chip. The private part of the key is never
exposed outside the device (satisfies the security requirement
2).

4) Key Portability and Availability
Inherently, a key management service is implemented at

a server or at a private cloud. These keys are then locked into
that particular server or the environment. If users want to use
the key management service to encrypt a certain portion of
their data, they need to return to the server machine to
perform the intended operations which may not be always
convenient.

This limitation is mitigated in our proposed solution as
our key management service is implemented within a
portable USB. This design greatly improves both the
portability and the availability of the keys. Now users can
carry the USB device anywhere they go. The users is ready

to use the key management services upon availability of any
machines even if the machine does not belong to them, such
as in a desktop in the Internet café, or in a laptop at a friend’s
place. At this stage, there is no mechanism in place that ties
up the owner of the USB to the USB device. If a USB is lost,
the user’s data in the cloud could become the subject of
misuse. Though a simple username/password authentication
could be of a potential solution, more sophisticated solutions
are provided by the use of biometric based technologies as
such we explored in our other paper [13].

B. Data Security

We describe design considerations to protect data in this
section. This includes: where to process the key computation
to ensure key information leakage does not happen,
encryption strategies to protect the data even if the data is
intercepted, and data integrity mechanisms to detect from
any potential tampering.

1) Computation
In our context, data computation refers to the processing

of data from plaintext to scrambled version to avoid
adversaries does not learn about the data. As much as it is
important to protect the keys that assist computation process,
it is equally important to protect the actual computation
process itself. The computation needs to be done in a secure
environment in such a way that important key information
does not leak to any unauthorized users. For example, if the
encryption processing takes place at the dishonest host
machine, there could be a piece of malicious code hidden
monitoring, or worse, stealing the key information used for
the computation. The stolen information is then sent to the
adversary who remotely controls the malicious code and uses
it for the further criminal activities.

We propose the encryption processing to be done only
inside our TED (satisfies the security requirement 1). In our
proposed solution, the encryption processing is performed
inside TED by the use of sealing and unsealing operations.
Sealing refers to a process of the key management service
requesting to the TPM (inside TED) to encrypt user’s data.
At the time of sealing, the platform information is recorded.
Unsealing is a process of the key management service
requesting to the TPM to decrypt an encrypted message.
Along with the encrypted message, the key management
service supplies the platform information. The TPM reveals
the plaintext only if the current platform information matches
to the platform information provided at the time of sealing.
This is to safeguard that the platform remains in the same
state in between the encryption and the decryption operations
without potentially being modified by malicious code.

However, doing the computation all in the TED comes
with performance drawback as the disk space in our TED is
small, only 4GB. If the speed is critical, the
encryption/decryption can be outsourced to the client given
that such computations only take place in the compartment
of the Trusted Computing Base (TCB).

2) Encryption
In most cases, data encryption is done by the use of

software-based keys which are often stored in a stable
memory space maintained by an OS. With the increase of

interconnectivity and sophistication of adversaries, these
software-based keys become increasingly more vulnerable
from remote attacks. Compare to the software bound keys,
hardware-based keys are considered to be more difficult to
break as the hackers need to steal the actual hardware device
to steal the keys contained in the device. Taking this
advantage, we use hardware-based keys to assist in data
computation process. Even if the encrypted data is hijacked
by the man-in-the-middle attack, the malicious attackers will
not be able to decrypt the data since the attacker does not
know the secret key that is used for the encryption (satisfies
the security requirement R3)

3) Data Integrity
To preserve high data integrity, our system sends a keyed

hash value to be verified. We create a secret key that is only
used to secure the communication between two entities. The
secret key encrypts the secret message such as cloud user’s
data. Then the secret key is encrypted by a public part of the
key of the receiver to ensure that only the designated receiver
can decrypt the secret key. A keyed hash value using HMAC
functionality is created by the use of the secret key and the
encrypted secret message. The receiving entity verifies the
HMAC value to ensure no tampering has occurred during the
transmission of the data (satisfies the security requirement
R4).

C. Platform Assurance

One of the obstacles to take up cloud computing is the
lack of transparency. Data owners do not have proper tool
supports to ensure their data is not being abused or leaked by
the malicious software installed at the cloud server [18].
Similarly, the cloud storage provider does not have a support
to know their storage is accessed or utilized by only intended
users with legitimate subscriptions.

A promising approach to address this problem is based
on Trusted Computing (TC). One of the most innovative
ideas realized and supported by TC is remote attestation [18].
The remote attestation allows a remote server (i.e.,
geographically located away from other server it is
interacting) to provide an opportunity to provide an evidence
of its platform configurations and operations to other server
for verification purpose.

To achieve the goal in providing the transparency, the
remote attestation defines mechanisms for two remotely
located parties, which are referred as a challenger and an
attester, to exchange evidence. The evidence contains two
pieces of proof information. One proof is that the messages
sent from the challenger are correct, that is, the system the
challenger used to produce the messages was honest and
produced the message truthfully. The other proof is that the
messages are sent by the challenger itself ensuring
masquerading has not occurred.

We use the idea of remote attestation to authenticate the
identity and platform of the cloud user. The attestation
mechanism in our solution prevents any potential abuse of
the cloud storage space by malicious adversaries who
masquerades to be a legitimate cloud user (satisfies the
security requirement R5 and R6). It should be noted that the
remote attestation runs only one way from the data owner to

the cloud storage provider in our solution. Though it would
be much more beneficial to the cloud user if a cloud storage
provider also provide a piece of evidence (of its server
configuration and operations state), it would be unrealistic to
enforce such scheme as today’s cloud solutions run mostly
on a black-box approach.

IV. KEY MANAGEMENT

We describe in details the way our proposed key
management service controls a lifecycle of a key, from its
inception, data computation, transmission of encrypted data,
and deletion of the keys when they are expired.

A. Preliminaries

We use {M}k to denote an encryption of a message M
using a key k under some symmetric encryption algorithm,
for example, AES in CBC mode with random initialization
vectors. Similarly, {|M|}k denotes an encryption of a
message M using a key k under some public-key encryption
algorithm, for example, RSA with PKCS encoding standard.

We use the notation CS to indicate a cloud storage
provider that resides remotely over the public Internet. We
use the notation KEPH to indicate a key management service
that resides inside our TED device. The name Alice is used
to represent a cloud user. Alice is also the owner of TED
device.

We assume that the public part of the cloud storage
provider’s keypair, denoted as CSpub, has been distributed.
Optionally, if a cloud storage server wants to ensure the
authenticity of the messages coming from the user, all it
needs to do is to verify user’s certificate. -

B. Operations

1) Key Creation
In order for Alice to encrypt a message to send to a cloud

storage service, what Alice first needs to do is contacting the
key management service inside TED with an expiration time
and requesting a key. Upon this request, the key management
service works with TPM chip to create a unique key pair call
Keph. An expiration date sent by Alice is attached to the
keypair to indicate the period of the key being valid. A key
ID is also attached to the key as an identifier. The data tuple
(KeyID, Keph, expiry date) is created and stored in a
database that the key management service maintains. The
key is securely held inside the TPM chip. The public part of
the key, Keph, is returned to Alice along with the key ID.

2) Data Encryption
Alice now encrypts her message (i.e., user data) with a

randomly selected secret key S to obtain {M}S. The secret
key S is encrypted with Keph to obtain {|S|}Keph. Alice
creates another secret key T. Alice encrypts {|S|}Keph using
T obtaining {{|S|}Keph}T while T is encrypted using CS
public key CSpub obtaining {T}CSpub. Why do we need
another secret key T? As a common practice, it is more
efficient to encrypt the message with a secret key than
encrypt it using a public key. We also use the secret key S for
the data integrity check for {|S|}Keph.

Message 1: what Alice sends to the cloud storage
provider is:

• Key ID of Keph: the ID of the ephemeral key Keph
that Alice chose to encrypt with.

• {M}S: the secret message encrypted with the secret
key S

• {{|S|}Keph}T: the secret key S encrypted first by
Keph, then by another secret key T

• {T}CSpub: the secret key T encrypted by CS public
key CSpub

• HMAC(T, {|S|}Keph||KeyID): a keyed hash value is
created.

• AIK certificate: a certificate received from the
Privacy CA is sent too.

3) Storing User’s Data
When the cloud storage provider receives the encrypted

message from Alice, it first authenticates Alice by validating
the AIK certificate. If Alice’s AIK certificate is verified, the
cloud provider can ensure that the message is truly sent by
Alice and the message was computed by a machine
containing a legitimate TPM chip.

 Once AIK certificate is verified, CS decrypts {T}CSpub
in order to obtain T. Using the secret key T, the CS obtain
{|S|}Keph. At this point, the cloud storage provider also
verifies HMAC(T, {S, {|S|}Keph||KeyID) to ensure no
tampering during the transmission. If the HMAC verifies, the
encrypted secret message is stored along with Alice’s AIK
certificate.

4) Data Request
When there is a request to download Alice’s data from

the data centre, the cloud storage provider finds the
encrypted message by matching Alice’s AIK certificate. The
CS creates a secret key J to encrypt Alice’s data {|S|}Keph to
obtain {{|S|}Keph}J. J is encrypted by the public part of
Alice’s AIK certificate obtaing {J}AIKpub.

Message 2: what the cloud storage provider sends to
Alice is:

• Key ID of Keph: the ID of the ephemeral key Keph
that Alice sent along with her data.

• {M}S: the secret message encrypted with secret key
S

• {{|S|}Keph}J: the secret key S encrypted first by
Keph, then by another secret key J

• {J}AIKpub: the secret key J encrypted by Alice’s
AIK public key AIKpub.

• HMAC(J, {|S|}Keph||KeyID): a keyed hash value for
validation of the message.

• AIK certificate: a certificate to be validated by the
cloud provider before user’s data is being
downloaded.

5) Data Decryption
When Alice receives her data, she first verifies the

HMAC value to check any potential tampering by the man-
in-the-middle attack. Once HMAC is verified, Alice first
decrypts {J}AIKpub using the private part of her AIK key.
By the use of J, she obtain {|S|}Keph which is then send to
the key management service along with KeyID. The key
management service uses KeyID to find a matching private
Keph key. S is returned to Alice. Alice uses S to decrypt her
final message.

6) Key Deletion
We use ephemeral keys (i.e. short-term keys with expiry

dates attached to them) to prevent any possibility of a
dishonest cloud storage service accessing data after users’
subscriptions ended. The key management service does this
by periodically checking and deleting the keys with expiry
dates elapsed. Any data that has been encrypted by the use of
expired ephemeral key become unrecoverable. For example,
if the expiry date of Keph key is elapsed when Alice sends
{|S|}Keph, the key management service would not be
possible to decrypt {|S|}Keph; henceforth, Alice won’t be
able to decrypt her message since she cannot get the secret
key S. Similarly, if any copies of Alice’s data still remain in
the data centre after Alice’s subscription ended, the cloud
storage service would not be possible to read it. First Alice’s
data is protected by Keph key whose private key never
leaves Alice’s TED device. Even if the cloud storage
provider successfully steals Alice’s TED device, the Keph
key is already removed by the key management service when
Alice’s subscription ended.

V. HIGH-ASSURANCE PLATFORM AUTHENTICATION

When a TED plugs into the host machine, it creates its
own trusted environment which isolates its environment
from the underlying host machine. Any subsequent process
is performed only on the trusted environment created by our
TED.

Each TED is equipped with non-forgeable endorsement
key which is called as EK certificate. The EK certificate can
uniquely identify each legitimate TED. We assume that the
third party certifying authority called Privacy CA knows the
list of legitimate holders of EK certificates. To preserve its
anonymity, the TED never uses EK certificate directly to
communication with outside world. Instead, it creates a
hardware bound Attestation Identity Key (AIK) using a key
storage structure maintained by each TPM. In addition, our
TED measures its platform environment via examination of
the hardware BIOS, master boot record, OS by utilizing a set
of Platform Configuration Registers (PCRs). The PCR
values are used to verify if the cloud user, represented by
TED, runs on a correct platform state. We assume that the
Privacy CA also knows the correct state of each TED. The
Privacy CA only certifies AIK if the TED presents correct
EK certificate and PCR values.

We explain a high level view of the messages exchanged
between TED (represents a data owner who is a cloud user),
PCA (represents a trusted certifying authority), and CS
(represents a cloud storage provider). The following
sequence happens as a part of the platform authentication.
The messages produced by the same machine at one time are
grouped together using a single numeric number while
alphabetic orders added next to the number to denote the
sequence of operations.

1a. TED: load protected AIKpvt into TPM
1b. TED: retrieve Quote=sigPCR:nonceAIKpvt
1c. TED: send IdentityReq(cert (EKpub), AIKpub, quote,

nonceA)
2a. PCA: validates cert(EKpub) and quote
2b. PCA: send cert(AIKpub)

3. TED: send cert(AIKpub)
4. CS: validate cert(AIKpub)
In step 1a, TED is plugged into a host machine and it

collects the EK certificate, and generates a public/private
AIK pair and a random non-predictable fresh nonce nonceA.
In step 1b, TED runs a quoting process which measures its
platform state using PCR values. Then, TED signs the EK
certificate, the public part of AIK, PCR values, and noneA
using the private part of the EK and encrypts these signed
data blob using the public part of the Privacy CA key. The
encrypted blob is then sent to the Privacy CA as a request to
get an identity credential as depicted in 1c. In step 2a, the
Privacy CA decrypts this blob with its private key and
verifies the EK certificate and PCR values. In step 2b, the
Privacy CA then creates an identity credential and sends it
back to the TED. This credential is a digital certificate
containing the public part of the AIK together with nonceA
signed by the Privacy CA private key. The TED uses this
credential obtained from CA to authenticate to the cloud
provider as depicted in step 3 and 4.

VI. PROTOTYPE IMPLEMENTATION

We developed a prototype system to evaluate the
feasibility and practical aspects of our proposed solution.
The design of our prototype is shown in Figure 4.

Figure 4. Prototype implementation design

A. System Configuration

The following configurations are used in implemented
prototype.

• Local Host: We have a desktop machine that
represents an untrusted local host. We use Intel Core
2 Duo 6400 with dual processors of 2.13 GHz both
with 1.99 GB of RAM running. The Windows XP is
run as OS. Our TED uses the Internet connection
provided by the local host to communicates with
service provided by the cloud storage provider.

• Platform Authentication Service and Portable Key
Management Service: these are essentially two
services added to our existing TED device. Platform
Authentication Service runs as the combination of
C++/Java applications to communicate both with
TPM chip inside TED device and a Privacy CA to
obtain an identity credential. A key management

service is a java applications that communicates with
TPM chip inside TED to manage keys and assist key
computation.

• Cloud Storage Service: to avoid any proprietary
features of a particular cloud storage service
publically available (therefore difficult to port at a
later stage), we decided to develop our own cloud
storage service to accommodate more generic
features. For this, a server machine is used to
represent a cloud storage provider. The cloud
provider machine also runs the same configuration
as the desktop machine above. We developed a
simple web application which provides a service that
allows the cloud user to upload and download files.
We use a MySQL database to simulate a data center
and stores user’s data there. Implementation of
Major Functionalities

1) Trust Extension Device
Our existing TED is extended to provide a number of

TPM functionality required by platform authentication and
key management as follows.

− TPM CreateWrapKey: creates a new TPM key.
− TPM_LoadKey: loads the newly create key into

TPM. Now the key is ready for use.
− TPM_Seal: encrypts the given plaintext with a TPM

key. The PCR values needs to be specified.
− TPM_Unseal: decrypted the given cipher with a

TPM key. Data is decrypted only when the given
PCR values match to the ones supplied at the time of
TPM-Seal.

− TPM_Extend: updates a PCR by hashing in a
measurement value. We measure a hash value of
TED image and supply as the measurement value.

− TPM_Quote: obtains a signed report of the current
PCR values.

− TPM_MakeIdentity: create an attestation identity
key (AIK)

− TPM_ActivateIdentity: decrypt an AIK certicate
obtained from a Privacy CA.

2) Key Management Service
The basic function of our key management service is to

create ephemeral keys with tuples <KeyID, Keph, expiration
date> and make them available for encryption. The key is
then used to encrypt the data in such a way that user’s data
cannot be decrypted without the aids from the key
management service. Another important function the key
management service provides is to check the keys with their
respective expiry dates. Any keys with the expiration date
elapsed are deleted periodically.

− CreateKey: creates an ephemeral key with a given
expiry date.

− EncryptData: encrypts the data blob. Utilises the
TPM_Seal to store the current platform value along
with the keys used for the encryption.

− DecryptData: decrypts the data blob. Utilises the
TPM_Unsela to retrieve the secret key.

− DeleteKeys: periodically deletes the keys whose
expiration dates have been elapsed.

3) Cloud Storage Provider
As mentioned, we have developed a cloud storage service

to provide the most generic features of many cloud storage
solutions available in public today. This includes a service to
upload and download data. These features are implemented
in a simple web application.

− UploadData: cloud user utilizes this feature to
upload encrypted data blob. User’s data is stored in
the database only if the user is authenticated via the
use of the platform authentication service.

− DownloadData: cloud user uses this feature to
download the data that has been stored in the cloud
storage.

B. Observation

We describe preliminary observations on the
performance of our proposed system. Compare to the
software-based key management, the hardware-based key
management seems to be slow. Especially it had an overhead
at the initialising phase which took average 2.5 second. The
significant overhead happened when TED prepares
necessary resources to create and load the first set of root
keys and subsequent keys. Also due to the size of our TED,
which is housed by 4 GB USB device, the data computation
was slow. If TED is equipped with a faster processor and
more memory space, this problem is likely to improve.

As reported in [12], our TED does not have its own input
and output devices, such as keyboard, mouse, and video
cards. This has a vulnerability of having to rely on the local
host’s input and output devices, which can be untrustworthy.
Subsequently, our prototype implementation may potentially
suffer from security breach created by keystroke loggers,
screen grabbers or other malicious exploit targeted for user
interface. We are exploring different ways to mitigate this
limitation. The most possible candidates to rectify the
limitations include techniques such as encryption-based
trusted path [14] or virtual KVM (keyboard, video and
mouse) [15].

VII. RELATED WORK

In broad category, there are two schools of thoughts in
dealing with data protection for data owner in the cloud.

In the first category, it handles the data protection
through the use of third party auditing mechanism. The terms
utilizing the concept of public auditability have gained
popularity in recent years [6], [22], [23], [24]. In this
approach, a third party auditor (TPA) acts as an external
service to verify the correctness of the user’s data as to
whether data confidentiality and data integrity of user’s data
is preserved. The verification can be done static at a specific
time frame or dynamic in real-time. However, this approach
has been criticized [6] that they do not support the privacy
protection of user’s data against external auditors which
potential become security breach medium to reveal user’s
data content accidentally. What we see in these auditing
approaches is that they are aimed at detecting breaches
whereas our approach is more geared towards the prevention.

Ours and these audit-based approaches can be good
complimentary techniques to each other.

More related to our approaches are the ones that use
obfuscation techniques to scramble the content of data before
transmitting to the cloud so that any unauthorized parties
could not learn about the data. The most common techniques
used in data obfuscation techniques include such as
encryption, fragmentation, and hardware-based Trusted
Platform Module [3]. These techniques often used alone or
as combined. In [10], the author proposes the concept of
using a privacy manager that explicitly handles the
obfuscation of the data through encryption. The proposal
also utilizes the concept from Trusted Platform Module
(TPM) to use it as a hardware-based cryptographic tool.
TPM stores the keys and assist the obfuscation process (i.e.,
encryption) on the user’s machine, based on security policy,
before sending the encrypted data to the cloud storage
provider. In [27] and [28], authors propose to use
fragmentation technique to slice up a large chunk of data into
smaller pieces. Each fragment is encrypted using a unique
key. Each encrypted fragment is then sends to the cloud. The
details of the management of the keys and the protection of
the keys are not addressed in the paper. Hardware tamper-
proof token based approach was briefly explored in [16]. In
this approach, TPM is used to store the keys as well as to
store the keys in the dedicated sealed environment. The key
computation also takes place in the sealed environment. This
design approach makes it more self-resilient from potential
attack since the keys and the computation are both better
protected in the sealed area. Though it has merits, the
proposed solution is implemented in the public cloud and
would suffer a number of problems. Most significantly, the
availability will suffer if one of the clouds, containing either
the key or the data, goes down and the user would be left not
being able to access their data when they need. In addition,
the public cloud is insecure, especially to store secrets.
There’s number of growing concerns for the cyber attacks
that are specially geared towards public cloud. Furthermore,
the key management aspects were never mentioned.

VIII. CONCLUSION

We have proposed a portable key management service
that centralizes all the expense and expertise of maintaining a
large number of keys, and yet the keys are highly secure and
available. Our key management service employs to encrypt
user’s data before they are sent to the cloud while the secret
keys used to aid the encryption is securely held inside a
tamper proof hardware device. This effectively provides a
mechanism to utilize the cloud storage in a secure manner
while protecting the keys from the cloud storage services.

We address a number of important design considerations
to protect the secret keys, user’s data, and the platform.

All keys managed by our key management service are
secure as the keys are stored in a designated sealed storage
area within a tamper-proof hardware device. This ensures
that the general stealth of unique keys especially by the use
of remote Internet connections is much more difficult. In
addition, the keys created by our key management service
are ephemeral in nature. The ephemeral keys have temporary

lifetime and deleted when the expiration date attached to
each key is elapsed. Any data encrypted by the ephemeral
key whose expiration date is passed become unrecoverable.

Our key management service is highly available as they
are not locked into any particular machine. Rather, our key
management is implemented in a portable USB device that
users can carry with them all the time and use it at any time
as needed. In addition, our solution offers a high assurance
platform authentication where the cloud user can be
authenticated by the cloud storage server to prevent its
storage space be wasted by malicious attackers. By verifying
the evidence sent by the user, the cloud storage provider
ensures that the requests actually came from the legitimate
user‘s platform free from running any malicious software.

In the near future, we plan to formalize the proof of our
security protocols using a security verification tool such as
SPIN or fs2pv [26]. As the mobile devices such as
smartphone and tablet PCs becoming a big player in the
cloud computing, we have a plan to port our proposal into
these devices. Also, we plan to incorporate our solution to
work with a commercially available cloud storage service
such as Amazon S3.

REFERENCES

[1] Amazon Simple Storage Service (S3): aws.amazon.com/s3/
[2] Trusted Computing Group (TCG):

www.trustedcomputinggroup.org
[3] TPM: www.trustedcomputinggroup.org/groups/tpm/
[4] Australian Government Report, Cloud Computing: Trends

and Threats:
http://www.aic.gov.au/documents/C/4/D/%7BC4D887F9-
7D3B-4CFE-9D88-567C01AB8CA0%7Dtandi400.pdf, 2010

[5] Cloud Security Alliance, Top Cloud Computing Threats:
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf

[6] C. Wang, Q. Wang, K. Ren, and W. Lou: Ensuring data
storage security in Cloud Computing. IWQoS 2009: 1-9

[7] C. Wang, Q. Wang, K. Ren, and W. Lou: Privacy-Preserving
Auditing for Data Storage Security in Cloud Computing,
InfoCom 2010, 525 -533

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia: Above the clouds: A Berkeley view of cloud
computing. University of California, Berkeley, Tech. Rep.
USB-EECS-2009-28, Feb 2009.

[9] R. Neisse, D. Holling, A. Pretschner: Implementing Trust in
Cloud Infrastructure. CCGrid 2011: 524-533

[10] S. Pearson, Y. Shen, M. Mowbray: A privacy manager for
cloud computing. CloudCom 2009: 90–106

[11] L. Chen, R. Landfermann, H. L¨ohr, M. Rohe, A.-R. Sadeghi,
and C. St¨uble. A protocol for property-based attestation.
STC’06

[12] S. Nepal, J. Zic, D. Liu, J. Jang: Trusted Computing Platform
in Your Pocket. TrustCom 2010: 812-817

[13] J. Jang, H. Hwang, S. Nepal: Biometric Enabled Portable
Trusted Platform Module: TrustCom 2011:436-432

[14] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D.
Boneh. Terra: A virtual machine based platform for trusted
computing. SOSP:2006; 193–206.

[15] R. Meushaw and D. Simard. NetTop: Commercial technology
in high assurance applications (2000).
http://www.vmware.com/pdf/TechTrendNotes.pdf

[16] A.-R. Sadeghi, T. Schneider, and M. Winandy: Token-based
cloud computing. in TRUST, ser. Lecture Notes in Computer
Science, A. Acquisti, S. W. Smith, and A.-R. Sadeghi, Eds.,
vol. 6101. Springer, 2010, pp. 417–429.

[17] R. Perlman: The Ephemerizer: Making Data Disappear. Sun
Microsystems Technical Report SMLI TR-2005-140 February
2005

[18] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R.
Masuoka, J. Molina: Controlling data in the cloud:
outsourcing computation without outsourcing control. CCSW
2009:85–90

[19] T. Mather, S. Kumaraswamy, S. Latif: Cloud Security and
Privacy. O'Reilly, 2009.

[20] M. Jensen, J.O. Schwenk, N. Gruschka, and L.L. Iacono:On
Technical Security Issues in Cloud Computing: CLOUD-II
2009:109-116.

[21] M.A. Vouk: Cloud computing issues, research and
implementations. ITI 2008:31-40.

[22] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song: Provable data possession at untrusted
stores: CCS2007: 598–609.

[23] A. Juels and B. S. Kaliski, Jr.:Pors: proofs of retrievability for
large files: CCS2007:584–597.

[24] E.-C. Chang and J. Xu: Remote integrity check with dishonest
storage server. ESORICS’08:223–237.

[25] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of TCG-based integrity measurement
architecture. In Proceedings of the USENIX Security
Symposium, 2004.

[26] Fs2Pv, Security Protocol Verifier:
http://research.microsoft.com/en-us/downloads/d54de3ef-
085e-47f0-b7dc-8d56c858aba2/default.aspx

[27] J. Yao, S. Chen, S. Nepal, D. Levy, and J. Zic. “TrustStore: Making
Amazon S3 Trustworthy with Services Composition”. CCGRID
2010, pp. 600-605.

[28] S. Nepal, C. Friedrich, L. Henry, S. Chen: A Secure Storage Sevice in
the Hybrid Cloud, UCC 2011, pp 334-335.

[29] S. Kamara and K. Lauter, "Cryptographic cloud storage," in RLCPS,
January 2010, LNCS. Springer, Heidelberg.

[30] S. Nepal, J. Zic, H. Hwang, D. Moreland: Providing Mobility and
Portability of Trust in Cooperative Information Systems, CoopIS,
2007, pp 253-271

[31] S. Nepal, J. Zic, J. Jang and D. Liu: A Mobile and Portable Trusted
Computing Platform, EURASIP Journal on Wireless: 7(1):75-94,
2011.

