
A preemptive connection pool manager for web-based
application collaboration

Zhen Zhao
Comcast, 1701 John F. Kennedy Blvd, Philadelphia, PA 19103

email: zhen zhao@comcast.com

Abstract—Most of web-based applications are free marketing
systems. They compete network resources usually in first-come-
first-service (FCFS) mechanism. As a big company with thou-
sands of applications, Comcast faces how to maximize its rev-
enue through all these applications. Currently, all these appli-
cations have no collaborations even they are considered in one
big system. When the resource limit is reached and increasing
the capacity is not an applicable method, FCFS may degrade
critical services with running some less important applications. We
propose a priority-based collaboration solution. Every application
has its pre-determined priority. When the network resource is all
occupied, new incoming requests from applications with higher
priorities preempt those with lower priorities and so the high
priority work can be processed with sacrificing the low priority
work’s performance. Specifically, we implement a connection pool
manager that admits new connections for the critical requests at
the cost of preempting out some less important connections when
the system safety limitation is approached. The major win here
is that we increase our system usability for the most important
features and maximize the revenue during a traffic burst exceeding
our resource capacity.

Index Terms—loss network, admission control, preemption, co-
ordinate convex, dynamic programming

I. INTRODUCTION

Applications may be divided into two categories: i) first-
come-first-service (FCFS) applications and ii) priority-based
applications, see Fig. 1. The current Internet is an example of
a FCFS network and so are most of web-based applications.
It is well-known that FCFS is appropriate for the traditional
data service but do not guarantee the adequate performance of
critical applications. Priority-based applications are introduced
to guarantee higher priority service gains higher quality of
service (QoS). A well-known mechanism is admission control.
However, it is also known as inefficient for bursty connections.
Preemption is a method allowing FCFS when there is still free
resource and starting priority-based control when the remaining
resource is not enough to handle the new incoming request. The
priority-based control of preemption is dropping the work of
lower priority to free some resource for the incoming higher
priority requests.

In recent years, collaborations between human beings are
becoming more and more important. However, few efforts are
focused on the collaboration of web-based applications. Most
current web-based applications are running on networks as
in a free market. Even within an organization or a website,
FCFS is applied by most web-based applications. There are no
collaborations between them.

Fig. 1. A single queue model showing First-come-first-service (FCFS) does
not control resources while priority-based control rearrange the “Upsell” job
ahead of “email” even “email” request arrives first.

Web-based applications within one organization usually
share certain http connection pools. Http requests comprise a
rapidly growing fraction of the connections from client side
to service in recent years. No collaborations between these
requests may result in blocking critical requests when the
connection pool is full. Due to the limitation of resource and
the bursty features of http requests, avoiding connection pool
being filled up is not always feasible. Therefore, a mechanism
to better take care of this scenario becomes necessary.

Some web-based applications such as “upsell” is funda-
mentally different from other elastic applications (e.g., data
transfer applications like web and email) in terms of their direct
contributions to the revenue. As a profit company, satisfactory
performance of these critical applications requires quality of
service (QoS) guaranty such that these requests are serviced
even the connection pool is full. Thus, a collaboration mech-
anism is necessary to rearrange the connection resource.

Kelly [1] presents a model that is defined as a collection of
connections, where a control mechanism determines whether or
not to admit each arriving call on each connection.

The importance of certain web-based applications to an
organization and the fact that Kelly’s model is the appropriate
architecture to offer the QoS guarantees that such applications
requires motivates this study of applying loss networks control
mechanism into web-based.

Http connection pools offering multiple service classes are
capable of discriminating among different connection requests,

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250465

see Fig. 2. Multi-class connection pools service multiple classes
of calls, where classes often indicate call priority, and call
priority often reflects the importance to the organization for
each admitted call. In the general case arrival rate, service
rate, and call rate/size (the number of circuits on each connec-
tion consumed by a call of that class) are class specific. The
importance of multi-class service discrimination arises from
the widely heterogeneous nature of collaborated web-based
applications, ranging from casual email recommendations to
critical services (e.g., upsell). This importance motivates our
study of multi-class connection pools.

Fig. 2. Multi-class connection pools are capable of service discrimination
whereas single class connection pools are not.

The facts that connection pools have a finite amount of
circuits and that admitted calls reserve resources requires that
connection managements employ some form of control to limit
resource consumption. There are three popular control mech-
anisms for multi-class connections control: admission control,
preemption control, and capacity adaptation. See Fig. 3. The
most widely used control mechanism in is admission control.
An admission control policy specifies whether or not to admit
an arriving call of a given class as a function of the number of
active calls of each class in the pool.

A second control mechanism for connection pool is capacity
adaptation, where incoming calls may ask for dynamically
adjusting the connection pool capacity in response to changes in
the instantaneous connection occupancy. How the capacity of a
pool changes and by how much, are specified by the adaptation
policy.

A third control mechanism for multi-class connection pools
is preemption, where an arriving call may be admitted by
possibly preempting an active connection of lower priority.
The preemption policy is typically a function of the number
of active calls of each priority level, which we call the state of
the pool. The preemption policy specifies whether to i) block,
ii) admit without preemption, or iii) admit with preemption
an arriving call of each possible class as a function of the

Fig. 3. Control mechanisms for multi-class connection pools include admis-
sion control, preemption and adaptation.

state. The preemption policy enables service differentiation in
that the blocking probability is typically smaller for higher
priority calls, but incurs the cost that lower priority calls may
find themselves admitted then preempted before their requests
get intended responses. Preempted calls may be rerouted (for
example through a proxy) or put into the backlog of the queue
or dropped depending upon the network policy and resource
availability. In short, preemption may be used to assure that
high priority calls are established along its desired connections.
The use of preemption policies for critical calls in connection
pools has gained attention in recent years as a flexible and
effective control mechanism to dynamically allocate resources
among competing web service requests with different priorities.
This paper addresses the performance analysis and policy de-
sign of preemptive multi-class connection pool within Comcast
, see Fig. 4.

The contributions of this paper includes: 1) proposing a
preemption policy and investigating the performance of a http
connection pool servicing multiple service classes under a
specified preemption policy. This work is the first to apply
preemption to web-based application collaborations. It suc-
cessfully analyzes the preemption rates under preemption and
characterizes the preemption rates/probabilities for each of K
preemptive classes with homogeneous service rates and the
limitation of those with heterogeneous service rates. The proof
of the proposed preemption policy being independent of the
admission optimization allows us to use this policy in addition
to the known optimization strategies.

This paper is organized as follows: Section II presents re-
lated work to this work. Section III presents a simple 2-class
homogeneous service rate model and performance analysis
of the proposed preemption policy on the connection pool.
An extension from 2-class to generic K-class is presented in

Fig. 4. Preemption control of multi-class loss networks and related context.

Section IV. Section V discussed the extension limitations of
heterogeneous service rates. Section VI proves the proposed
preemption policy fit the known optimal admission control.
Simulation results are shown in Section VII.

II. RELATED WORK

We divide our discussion of related work on preemption into
two parts. The first part discusses related work on proposed pre-
emption policies, both optimal and heuristic. Although much of
this work discusses the important issue of the computational
complexity of the proposed policies, in general this body of
work contains very little in the way of performance analysis.
The second part concentrates on performance analysis of a
model with preemptive priority.

A. Proposed preemption policies

The 1992 paper by Garay and Gopal addressed the call pre-
emption problem in communication networks [2], showing that
the problem of selecting a connection for preemption in order
to minimize the number of preempted connections or minimize
the amount of preempted bandwidth is NP-complete. They
propose heuristics for a centralized network framework that
are shown to perform reasonably well relative to the optimal
solution. Extending Garay and Gopal’s work, in 1997 Peyravian
and Kshemkalyani proposed decentralized network connection
preemption algorithms [3] that optimize three fixed criteria in a
given order of importance: number of connections, bandwidth,
and priority.

After these two seminal works, many of the subsequent pro-
posed preemption policies have been described in the context of
a Differentiated Services (DiffServ) aware MPLS scenario, e.g.,
[4], [5], [6], [7], [8], [9], [10], discussed below. In particular,
the decentralized policies in [3] are the basis for our earlier
work on flexible and adaptive preemption policies [4]. Here,
an order of importance for the considered criteria is not fixed,
but can be configured by the network provider according to

the network’s best interest. In [5], Sung-eok et al. propose a
centralized connection preemption algorithm that optimizes the
preemption criteria in a fixed order different from [3]. In [6],
Tong et al. present an algorithm that jointly considers both
bandwidth allocation and preemption.

Stanisic and Devetsikiotis propose simple preemption poli-
cies based on random selection; this dramatically reduces the
time needed to select a set of connections to be preempted [7].
Both Blanchy et al. [8] and Yu et al. [9] focus on preemption–
aware routing algorithms. In particular, a route is selected by
minimizing the number of connections (LSPs) that require pre-
emption. The routing algorithm therefore tries to minimize the
occurrence of preemption events and thereby minimize the need
for rerouting. Recently, Vieira and Guardieiro implemented de
Oliveira’s preemption policies in [4] using fuzzy logic and
genetic algorithms in an MPLS testbed [10].

B. Analysis of preemption

Ours is the first analytical treatment of the performance
of a preemptive connection pool. Related work studies either
a network servicing multi-class elastic (e.g., email, web) or
inelastic (e.g., voice, video) traffic with preemption, or a general
network servicing multi-class traffic (elastic or inelastic) with-
out preemption. The text by Ross [11] covers non-preemptive
loss networks (for inelastic traffic), while the text by Srikant
[12] covers non-preemptive best-effort networks (for elastic
traffic). Below, we restrict our attention to work on preemption
modeling.

Preemptive systems can be dichotomized into preemption
with delay and preemption with loss. Preemption with delay
means preempted calls are “put on hold”, and queued untill
their service resumes or restarts. Preemption with loss means
that preempted calls are removed, this can mean either transfer
or eviction. Preemption with delay is usually modeled by an
M/G/c queue (infinite queueing), while preemption with loss is
usually modeled by an M/G/c/c queue (no queueing).

Preemption with delay. The earliest analysis of preemption
is in the context of preemption with delay. In fact, the first
paper published on priority queueing with preemption is from
1958, by White and Christie [13]. In this paper, White and
Christie analyze the average queue length and the average
time in system for a preemptive resume and repeat policy.
They also study a “breakdown” system where the preemptive
server is prone to fapoolure (vacations). Miller [14] uses matrix-
geometric methods to compute steady state probabilities for an
M/M/1 priority queue, modeling a pool servicing elastic traffic
with preemption. Buzen and Bondi [15] published an article
in 1983 studying a network of M/M/c queues with preemptive
resume policies. Their results are focused on moments in a
preemptive–delay network. Ngo and Lee published a short note
in 1990 [16] on a single M/M/c queue with preemptive priority,
extending [14]. The work in [14] is further generalized by Cho
and Un [17], who provide an analysis of a combined preemp-
tive/nonpreemptive priority M/G/1 queue. There are many other
papers in the queueing literature on preemption with delay;

these analyses are of limited relevance to our work since our
focus is on preemption with loss.

Preemption with loss. The above articles analyze the per-
formance of a preemption system with delay. Unfortunately,
the more prevalent use of preemption policies (e.g., MPLS)
is to drop (as in the loss model), rather than postpone (as in
the delay model) the preempted calls. There is some existing
work on preemption with loss, but all such work is either
analysis of a pool, or has a numerical/computational focus for
multiple parallel pools. The earliest performance analyses of
a preemption policy in a loss context are by Helly [18] and
Burke [19], both from 1962. These short papers present the
framework for employing the Erlang B blocking probability
equation on a pool with preemption. These two papers served
as an inspiration for our results in §III. After that, the literature
appears to be spilent untill 1980 when Calabrese et al. [20]
published an analysis of a voice network of multiple parallel
pools with preemption. Their paper includes a discussion of a
variety of different preemption policies, which they term “ruth-
less” and “friendly.” This model combines the two preemption
policies with the estimated probability that a high priority call
returns to the original pool after searching all alternate pools
and finding them blocked. Although this paper studies multiple
parallel pools, the focus is on algorithms for computation of the
performance metrics, along with numerical approximations of
the optimal solution. In contrast, our work focuses on closed-
form performance expressions. Moreover, [20] is essentially a
“soft” preemption model, where high-priority calls only pre-
empt low-priority calls if each of the routes is full, whereas our
“hard” preemption model allows high-priority calls to preempt
low-priority calls if the primary pool is full, regardless of the
status of the backup pool. In 1980, Fischer [20] discussed the
blocking and preemption probabilities of two priority classes
with different service times in a single preemptive connection
pool. In that paper, due to the difficulty in solving the steady
state equations, the author analyzed three special cases of the
solution: i) M/M/1/1, ii) M/M/c/c with ratio of class 2 to class
1 mean holding time tends to 0 and iii) M/M/c/c with ratio of
class 2 to class 1 mean holding time tends to∞.

III. DEFINITIONS AND MODELING DESCRIPTIONS

In this article, we consider that connections have two priority
levels: high (HP) and low (LP). When congestion occurs,
preemption is called, and low priority connections are then
removed from the pool. We consider two performance metrics:
blocking probability and preemption rate, the latter meaning
how much of LP connections are preempted from the pool due
to the congestion.
Blocking probability: connections are blocked if there is not
sufficient capacity to accommodate them at their time of arrival.
Preemption is employed then HP connections can free up
capacity by preempting LP connections out of the pool, and a
HP is only blocked if the only connections in the pool are other
HP connections.
Rate of preemption: Number of preemption events per time

unit. The time average is calculated as follows:

lim
t→∞

1

t

∫ t

0

1(preempt at time t) dt (1)

where t is the observation duration.
Firstly, we focus on a simple case where a connection pool

servicing two classes of connections: HP and LP.
The scenario is depicted graphically in Fig. 5

Fig. 5. Preemption control of two-class connection pool.

The high and low priority arrival processes are independent
Poisson processes of intensities λh and λl respectively. Con-
nection durations are exponential with average value µ−1

h =
µ−1
l = µ−1 seconds. Connections are multiplexed onto the pool

of capacity c. Our purpose is to study how our two performance
metrics vary in the aggregate offer load ρ = λhµ

−1 + λl]µ
−1

for both high and low priority application requests.

A. Blocking probabilities

When we consider blocking probability of HP connections,
it is straightforward that incoming HP connections only “see”
other HP connections being serviced under preemption policy.
That is, when a HP connection can preempt a LP connection,
the blocking of incoming HP connections is unrelated to the
state of LP connections. Thus, the HP blocking probability can
be computed using the model shown as the left lower subfigure
in Fig. 5.

When we consider blocking probability of LP connections,
we recognize when a LP connection request arrives, it sees
both HP and LP connections. Thus, its blocking events are due
to the aggregate occupancy of both HP and LP connections.
Therefore, the LP blocking probability can be computer using
the model shown as the right lower subfigure in Fig. 5.

Suppose we are not employing preemption. Let nh, nl denote
the mean number of high and low priority connections at some
typical time, i.e., when the pool is in steady state. By Little’s
Law we can relate nh, nl to λh, λl through

nh = λhµ
−1, nl = λlµ

−1. (2)

Grounded on our assumption of the arrival processes of
HP and LP are Poisson and service time are exponential, the
occupancy of high and low priority connections is modeled as

a M/M/c/c Markov chain, where (nh, nl) is the state of this
2-dimensional Markov process.

For an overview of the M/M/c/c queue and the Erlang-B
blocking probability equation, the reader is referred to Kelly’s
[1]. We write E(ρ, c) for the Erlang-B blocking probability of
an M/M/c/c queue with arrival rate λ, service rate µ, and
offered load ρ = λ/µ. For notational convenience we will write
Ē(ρ, c) = 1 − E(ρ, c) to denote the admission probability of
an M/M/c/c queue.

Extending this idea to finding congestion points when pre-
emption is employed, we find that the congestion arrival rates
for high and low priority connections are found in the two lower
figures in Fig. 5. Therefore, the blocking probabilities of HP
and LP connections are

P(HP blocking) = E(ρh, c), ρh = λhµ
−1, (3)

P(LP blocking) = E(ρh + ρl, c), ρl = λlµ
−1. (4)

Analysis of admission and service completeness rates for
HP connections. Although the HP connections may induce
preemption in the LP connections, as we pointed out, the HP
connections admission process is in fact independent of the
number of LP connections. The pool admission rate Ah and
service completeness rate Dh for the HP connections are given
by:

Ah = Dh = λhĒ(ρh, c).

Analysis of admission rates for LP connections. The analysis
of LP connections admission rates Al is siMillar to that of HP
connections except that the total load ρ = ρ1 + ρ2 is used in
calculating the blocking probabilities:

Al = λlĒ(ρ, c).

B. Preemption rates

To find out the preemption rates, we need figure out under
what conditions preemption policy is employed.

From what we described before, preemption policy is applied
when HP connection request sees the pool is filled with HP
and LP connections, which is equal to the scenario that LP
connections see blocking. In a word, preemption is employed
when LP is blocked while HP is not blocked.

The set of states that cause HP blocking, LP blocking, and
LP preemption are:

SHP blocking = {(c, 0)},
SLP blocking = {(nh, nl) : nh + nl = c},
SPreemption = SHP blocking \ SLP blocking.

The first equation says a HP connection is blocked at the
connection pool iff it arrives to find the pool filled with c
HP connections. The second equation says a LP connection
is blocked at the pool iff it arrives to find the pool filled with
c connections total. The third equation says a HP connection
causes a preemption of a LP connection from the pool iff it

arrives to find the pool filled with c connections total and one
or more of them are LP. See Figure 6 for a picture of these three
events.

C

n_l

Preemption

LP blocking

HP blocking

n_h
C

Fig. 6. Illustration of the state space S for the connection pool with c.
The x-axis is the number of HP connections, the y-axis is the number of LP
connections.

By PASTA (Poisson arrivals see time averages), the prob-
ability of these events are found by summing the invariant
distribution over the states comprising the event. The invariant
distribution for this system is not known in closed form (to our
knowledge) but the probabilities of the events of interest are
known. In particular:

P(HP blocking) = P((Nh, Nl) ∈ SHP blocking) = E(ρh, c),

P(LP blocking) = P((Nh, Nl) ∈ SLP blocking) = E(ρ, c),

P(Preemption) = P((Nh, Nl) ∈ SPreemption)

= P(LP blocking)− P(HP blocking)

= E(ρ, c)− E(ρh, c).

This line of reasoning is originally due to [?]. Thus the preemp-
tion rate from pool is

R = λh[E(ρ, c)− E(ρh, c)]. (5)

IV. K-CLASS POOL MODEL

In the last section, we investigated a simple case where 2-
class connections with the same service mean duration are put
into one pool. In this section, we study how to extend it to a
more general case and the limitation of the extension.

A. K-class in a pool

Two direct extensions include: 1) multi-class in the connec-
tion pool; 2) the preempted LP connections may be dropped or
put into another pool, see Fig. 7.

It is easy to extend the model in the previous section from
2-class to K-class, see Fig. 8 .

By an exactly analogous argument the probability of any
request with higher priority than class k connections in a state
that would cause a class k or lower priority connection to be
preempted from the pool is found to be

Fig. 7. K-class in the connection pool. Preempted connections may be dropped
or put into another pool.

. . .k + 1k − 1. . .21Class

LPHP

λ1 λk

Λk−1 =
∑k−1
i=1 λi

Λk =
∑k
i=1 λi

HP+LP

k K
λK

Fig. 8. For K-class connections in a pool, a class k connection request only
sees class 1, . . . , k connections in the pool and all the classes 1, . . . , k − 1 as
HP. Therefore, we can group all the 1, . . . , k − 1 classes as HP and class k as
LP for the general cases.

Pk(Preemption) = P

(k−1∑

i=1

ni,

K∑

j=k

nj

)
∈ SPreemption

= P(class 1, . . . ,K blocking)

−P(class 1, . . . , k − 1 blocking)

= E

((K∑

i=1

λi

)
µ−1, c

)

−E
((k−1∑

i=1

λi

)
µ−1, c

)
.

Thus the total rate of preemption from the pools caused by class
k is

Rk = λk

[
E

((K∑

i=1

λi

)
µ−1, c

)
− E

((k∑

i=1

λi

)
µ−1, c

)]
.

(6)

V. HETEROGENEOUS SERVICE RATES

In this section we discuss the reasons why the heteroge-
neous service rates case is in general intractable. Heterogeneous
service rates mean connections have different service mean
durations. This is unrelated to the priority so instead of using
h, l to label the two classes, we use 1, 2 to distinguish them,
µ1 6= µ2. We then discuss an approximate solution valid in a
time-scale separation regime.

The primary reason for the intractability of the heteroge-
neous service rates case is the fact that the CTMC {n(t)} is
not lumpable under a partition aligned with the performance
metrics of interest.

Occupancy partitions. We introduce two occupancy parti-
tions for the Markov chain {n(t)}.

Definition 1: The aggregate occupancy partition (aop) of S
is Saop

m = {n ∈ S : NK = m} for each m = 1, . . . , c.

0, 0 2, 0

1, 1

0, 2

0, 1

λ2

1, 0

μ2λ2

2μ2

μ1

μ1 2μ1

λ1 λ1

μ2λ2

λ1

λ1

λ1

0, 0 2, 0

1, 1

0, 2

0, 1

1, 0
2μ1

λ1

λ2 2μ2

λ2 μ2

μ1

λ1

μ1

λ1

λ1

μ2 λ1λ2

0, 0 2, 0

1, 1

0, 2

λ1
2μ2

λ1

λ1

0, 1

λ1

λ1 μ2μ2

λ2

2μ1

μ1

μ1
λ2 λ2

1, 0

Fig. 9. Illustration of the occupancy partitions for c = 2 and K = 2. Each
state shown represents an occupancy of n = (n1, n2). Top left: the priority 1
occupancy partition, top right: the priority 2 occupancy partition, bottom: the
aggregate occupancy partition.

Definition 2: The priority k occupancy partition (pop-k) of
S is Spop,k

m = {n ∈ S : nk = m}, for each occupancy level
m = 0, . . . , c and some priority level k = 1, . . . ,K.

The aop, pop-1, and pop-2 partitions are shown in Fig. 9 for
the case of a pool with capacity c = 2 and K = 2 priority
classes. The following theorem identifies when the Markov
chain {n(t)} is lumpable over these partitions.

Theorem 1: The CTMC {n(t)} is:
1) Lumpable under the aop with homogeneous service rates,

and is Markovian across subsets.
2) Not lumpable under the aop with heterogeneous service

rates, and therefore not Markovian across subsets.
3) Lumpable under the pop-1 with homogeneous or hetero-

geneous service rates, and so Markovian across subsets.
4) Not lumpable under the pop-k (for k > 1) with homoge-

neous or heterogeneous service rates, and therefore not
Markovian across subsets.

Proof: Consider transitions from occupancy level m to
m + 1 and to m − 1. Let n ∈ Sm be a state in occupancy
level m.

1. The transition rate from n in aggregate occupancy level
m > 0 to aggregate occupancy level m− 1 is

∑

n′∈Saop
m−1

qn,n′ = n1µ+ · · ·+ nKµ = mµ, (7)

and the transition rate from n in aggregate occupancy levelm <
c to aggregate occupancy level m+ 1 is

∑

n′∈Saop
m+1

qn,n′ = λ1 + · · ·+ λK = ΛK . (8)

In both cases the transition rate is independent of the state n.

2. The transition rate from n in aggregate occupancy level
m > 0 to aggregate occupancy level m− 1 is:

∑

n′∈Saop
m−1

qn,n′ = n1µ1 + · · ·+ nKµK . (9)

The transition rate depends upon the state n.
3. The transition rate from n in priority 1 occupancy level

m > 0 to priority 1 occupancy level m− 1 is:
∑

n′∈Spop,1
m−1

qn,n′ = n1µ1 = mµ1, (10)

and the transition rate from n in priority 1 occupancy levelm <
c to priority 1 occupancy level m+ 1 is

∑

n′∈Spop,1
m+1

qn,n′ = λ1. (11)

In both cases the transition rate is independent of the state n.
4. The transition rate from n in priority k > 1 occupancy

level m > 0 to priority k occupancy level m+ 1 is:
∑

n′∈Spop,k
m+1

qn,n′ = λk1n1+···+nk<c. (12)

The transition rate depends upon the state n.

The key reason why the chain is lumpable under the aop is
that preemptions do not change the aggregate occupancy level.
It is also worth noting that the CTMC is lumpable under pop-1
precisely because class 1 has preemptive priority over all other
calls. The multi-class model where priorities are not preemptive
is not lumpable under pop-1.

The aop is a valuable partition for the preemption model
because the preemption probability can be expressed in terms
of the probability of being in aggregate occupancy level c.
Unfortunately, as we have seen, aop is only lumpable under
homogenous service rates. The pop-1 is appealing as it is
lumpable under heterogeneous service rates, but this is of less
value than aop because the partition does not map easily to the
performance metrics of interest, i.e., the preemption probabili-
ties and rates. Nonetheless, the pop-1 is still of value in comput-
ing performance, especially when a time-scale separation holds
among the various classes.

A. Decomposability and time-scale separation

Whereas Lumpability refers to a partition where the tran-
sition across subsets is not state-dependent, decomposability
refers to a partition where the transition rate across subsets
is zero, i.e., the chain is reducible. Thus decomposability is a
special case of Lumpability. Both lumpable and decomposable
may be relaxed to quasi-lumpable (QL) and nearly completely
decomposable (NCD), respectively. A CTMC is said to be ε
quasi-lumpable if Q can be decomposed as Q = Q− + Qε

where Q− is lumpable and the largest element in Qε has
absolute value no larger than ε. A CTMC is said to be nearly
completely decomposable if the states may be arranged into
blocks such that Q = Q+ + Qδ , where Q+ is block diagonal,

and the norm of the off-diagonal transition rates, ‖Qδ‖ is the
degree of coupling. The intuition for QL is that “most” transi-
tions across subsets are state-independent, and the intuition for
NCD is that “most” transitions are within (rather than across)
subsets. Just as decomposability implies Lumpability, Dayar
and Stewart have shown that NCD implies QL, but the inverse
need not hold [21]. In other words, NCD is a stronger condition
than QL. This is natural since QL asserts the transitions across
the subsets have a simple form, whereas NCD asserts the
transitions across the subsets may be effectively ignored.

The previous subsection identified the priority 1 occupancy
partition as lumpable, but pointed out that this by itself is
of limited value since the partition does not map easily to
the computation of the performance metrics of interest, i.e.,
the preemption rates and probabilities. We now establish that
the priority 1 occupancy partition is NCD under a time-scale
separation among classes. A thorough discussion of time-scale
separation for discrete time Markov chains is given in the
book by Yin and Zhang [22]; Reiman and Schmitt use time-
scale separation for a multi-class non-preemptive load on a
connection pool [23]. We now establish that the pop-1 is NCD
under a time-scale separation among classes.

Definition 3: The arrival rates and service rates obey a high-
slow low-fast (hslf) time-scale separation if

λ1 � · · · � λK , µ1 � · · · � µK . (13)

They obey a high-fast low-slow (hfls) time-scale separation if

λ1 � · · · � λK , µ1 � · · · � µK . (14)

VI. RELATIONSHIP TO THE OPTIMAL ADMISSION
CONTROL

In the previous sections, we present our proposal and analyze
the proposal through a Markov chain model. In this section, we
show why we propose this certain preemption policy. It is well
known that admission control is optimized through threshold
policy. An immediate question of our proposal is what is the
relationship of our proposed preemption policy to the optimal
admission control? The following proposition shows under our
proposal, the optimal admission control is still threshold-type.
In a word, our proposal is suitable to the existing admission
control policy.

Proposition 2: Under our preemption policy – only pre-
empts lower priority connections when the pool is full, the
coordinate convex admission control policy space equals the
threshold admission control policy space: Πa

cc = Πa
th.

Proof: It is simple to verify that a threshold policy is
coordinate convex. It remains to show that a coordinate convex
policy is a threshold policy, or, equivalently, a non-threshold
policy is not coordinate convex. Let Ω be the set of achievable
states of a coordinate convex policy – we will show that
admissions under a non-threshold policy violate the rules for
Ω. A non-threshold policy must have two distinct states in one
of the following two scenarios. If no two such states exist then
the policy is of threshold type. See Fig. 10.
• Consider states n, n′ be with n2 < n′2, n1 + n2 < c,

and n′1 + n′2 < c such that πa(n) = 0 and πa(n′) =

1. Suppose n1 ≤ n′1 (Fig. 10 left). Observe that i) n′ ∈
Ω and ii) n + e2 6∈ Ω (due to πa(n) = 0). But such a
set is not coordinate convex by repeated application of the
requirement n′ ∈ Ω with n′k > 0 implies n′ − ek ∈ Ω.
Suppose instead n1 > n′1 (Fig. 10 middle). Observe that i)
πa(n) = 0 so that n+e2 = (n1, n2+1) 6∈ Ω. However, by
repeating application of the requirement n′ ∈ Ω with n′2 >
0 implies n′−e2 ∈ Ω, we obtain (n′1, n2 +1) ∈ Ω. Notice
n′1 < n1, n

′
1 +n2 + 1 < n1 +n2 + 1 ≤ c, we admit class

1 calls from state (n′1, n2 + 1) till occupancy sum equals
c, which means n+ e2 ∈ Ω, which is a contradiction.

• Consider states n, n′ with n2 = n′2, n1 < n′1, and n′1 +
n′2 < c such that πa(n) + πa(n′) = 1 (Fig. 10 right). If
πa(n) = 0, πa(n′) = 1, then n′+e2 ∈ Ω and n+e2 6∈ Ω.
Repeating application of the requirement n′+e2 ∈ Ω with
n′1 > 0 implies n′ + e2 − e1 ∈ Ω, we obtain n+ e2 ∈ Ω,
which is a contradiction. If πa(n) = 1, πa(n′) = 0, then
n + e2 ∈ Ω and n′ + e2 6∈ Ω. However, Assumption ??
implies n′ + e2 ∈ Ω due to n + e2 ∈ Ω, n1 < n′1, which
is a contradiction.

n1

n2

n1 n�
1

n�
2

n2

c

c

n

n�

n
+

e 2

n1

n2

n1n�
1

n�
2

n2

c

c

n + e2
n

n�

n� − e2

n1

n2

n1 n�
1

n�
2n2

c

c

n
+

e 2

n� + e2

n n�

Fig. 10. Three cases of non-threshold policies discussed in the proof of Prop.
2.

We have the following relationships among the admission
control policies and spaces:

πacs ∈ Πa
th = Πa

cc ⊆ Πa
mf . (15)

Thus for any performance objective, say g, that depends upon
the admission control policy πa we have:

gπa
cs
≤ max
π∈Πa

th

gπ = max
π∈Πa

cc

gπ ≤ max
π∈Πa

mf

gπ. (16)

The restriction to coordinate convex policies (equivalently,
here, threshold policies) may preclude achieving the overall op-
timal reward rate. For example, it would appear quite natural to
consider a class of “sum rate threshold policies” (none of which
is coordinate convex) where πa(n) = 1 for n1 + n2 < τ ≤ c
for some τ ∈ [c]. It is worth noting, however, that restriction
to coordinate convex policies is common in the loss network
admission control literature [24], [25], [26].

VII. SIMULATION RESULTS

Consider a single IL with c = 100, K = 2, arrival rates
λ1, λ2 (to be varied), and µ1 = µ2 = 1 (homogeneous service
rates). Fig. 11 contains a plot of preemption probabilities versus
r. The preemption probabilities are obtained from the rate
expressions by dividing by the appropriate arrival rate: the

preemption probability for class 1 is P1/λ1. The probability
is to be understood as a “customer” average, e.g., P1/λ1 is
the fraction of arriving class 1 calls that cause a preemption.
Further, each curve is actually a superposition of simulation
results, exact numerical results (from §IV).

Fig. 11 presents P1/λ1 where λ1 = r, and λ2 is varied
among 10r, r, and 0.1r. In each case the preemption prob-
ability is seen to be increasing, reach a maximum very near
to λ1 = ρ1 = c1 = 100, and then be convex decreasing.
The initial increase is because increasing λ1 moves the link
from an underloaded regime to an overloaded regime: the
number of preemptions increases as the system “fills up”. The
subsequent decrease is because as λ1 continues to increase, it
is increasingly likely that all circuits are occupied by class 1
calls, and thus arriving class 1 calls are blocked, rather than
admitted by preempting a class 2 call. P1/λ1 is increasing as
λ2 increases from 0.1λ1 to λ1 to 10λ1: a higher λ2 means there
are more class 1 arrivals that preempt class 2 calls.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 100 200 300 400 500 600 700 800 900 1000Pr
ob

ab
ili

ty
 o

f
ca

us
in

g
pr

ee
m

pt
io

n
: P

1
/ λ

1

 Arrival rate scaling parameter (r)

a

b

c a : λ1 = r

 λ2 = 0.1 r

b : λ1 = r

 λ2 = r

c : λ1 = r

 λ2 = 10 r

0.80

0.85

0.90

0.95

 40 60 80 100 120

c

Fig. 11. Single link with K = 2 classes and homogeneous service rates.
Preemption probabilities versus the arrival rate scaling parameter r. Top:
P1/λ1 versus r; Middle:Q2/λ2 versus r; Bottom:P1/λ1 andQ2/λ2 versus
r.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 100 200 300 400 500 600 700 800 900 1000

B
lo

ck
in

g
an

d
pr

ee
m

pt
io

n
pr

ob
ab

ili
tie

s

 Arrival rate scaling parameter (r), λ1 = 10r, λ2 = r

B1 / λ1 : numerical
B1 / λ1 : simulation

B2 / λ2 : approximation
B2 / λ2 : simulation

P1 / λ1 : approximation
P1 / λ1 : simulation

Fig. 12. Single link with K = 2 classes and homogeneous service rates.
Preemption probabilities versus the arrival rate scaling parameter r. Top:
P1/λ1 versus r; Middle:Q2/λ2 versus r; Bottom:P1/λ1 andQ2/λ2 versus
r.

Consider a connection pool with c = 100 servicing K = 2
classes with two different settings for λ1, λ2, µ1, µ2:

scaling λ1 λ2 µ1 µ2 ρ1 ρ2

hfls 10r r 10 1 r r
hslf 0.1r 10r 0.1 10 r r

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 100 200 300 400 500 600 700 800 900 1000

B
lo

ck
in

g
an

d
pr

ee
m

pt
io

n
pr

ob
ab

ili
tie

s

 Arrival rate scaling parameter (r), λ1 = 0.1r, λ2 = 10r

B1 / λ1 : numerical
B1 / λ1 : simulation

B2 / λ2 : approximation
B2 / λ2 : simulation

P1 / λ1 : approximation
P1 / λ1 : simulation

Fig. 13. Single link with K = 2 classes and homogeneous service rates.
Preemption probabilities versus the arrival rate scaling parameter r. Top:
P1/λ1 versus r; Middle:Q2/λ2 versus r; Bottom:P1/λ1 andQ2/λ2 versus
r.

The first scaling corresponds to a hfls time-scale separation,
and the second to a hslf time-scale separation. Note that the
offered loads for the two classes are equal for both scalings, i.e.,
ρ1 = ρ2. The fact that µ1 6= µ2 means we have heterogeneous
service rates. Fig. 12 presents numerical and simulation results
of the preemption probability P1/λ1 and the blocking probabil-
ities B1/λ1 and B2/λ2 versus r. The top figure demonstrates
the inaccuracy of the NCD approximations in the scaling of
high priority fast, low priority slow, while the bottom figure
shows the NCD approximation to be accurate in the scaling of
high priority slow, high priority fast.

VIII. CONCLUSION

In this paper, we propose to apply preemption policy to the
http connection pool so the web-based applications within our
company can collaborate with each other when the resource is
almost filled up. After modeling and analyzing the performance
of this proposal, we derive the close-form of characterizations
of our proposed preemption policy and show the model limita-
tions to it. Moreover, we show our proposal fit the optimal ad-
mission control which allows the organization that has already
employed the optimal admission control to their applications
to use our preemption policy. Our numerical and simulation
results show the model works fine with homogeneous service
rate and also show under certain conditions the model works
fine (not good) with heterogeneous service rates.

REFERENCES

[1] Frank Kelly, “Loss Networks,” Annals of Applied Probability, vol. 1, pp.
319–378, 1991.

[2] J.A. Garay and I.S. Gopal, “Call preemption in communication net-
works,” in Proceedings of IEEE INFOCOM, Florence, Italy, May 1992,
vol. 3, pp. 1043–1050.

[3] M. Peyravian and A.D. Kshemkalyani, “Connection preemption: issues,
algorithms, and a simulation study,” in Proceedings of IEEE INFOCOM,
Kobe, Japan, April 1997, vol. 1, pp. 143–151.

[4] J.C. de Oliveira, C. Scoglio, I.F. Akyildiz, and G. Uhl, “New preemption
policies for DiffServ-aware traffic engineering to minimize rerouting in
MPLS networks,” IEEE/ACM Transactions on Networking, vol. 12, no.
4, pp. 733–745, August 2004.

[5] J. Sung-eok, R.T. Abler, and A.E. Goulart, “The optimal connection
preemption algorithm in a multi-class network,” in Proceedings of IEEE
International Conference on Communications (ICC), New York, NY,
April 2002, vol. 4, pp. 2294–2298.

[6] S. Tong, D. Hoang, and O. Yang, “Bandwidth allocation and preemption
for supporting differentiated-service-aware traffic engineering in multi-
service networks,” in Proceedings of IEEE International Conference on
Communications (ICC), New York, NY, April 2002, vol. 2, pp. 1305–
1309.

[7] V. Stanisic and M. Devetsikiotis, “A dynamic study of providing quality
of service using preemption policies with random selection,” in Pro-
ceedings of IEEE International Conference on Communications (ICC),
Anchorage, AK, May 2003, vol. 3, pp. 1543–1546.

[8] F. Blanchy, L. Melon, and G. Leduc, “Routing in a MPLS network
featuring preemption mechanisms,” in Proceedings of the International
Conference on Telecommunications (ICT), Tahiti, Papeete, French Poly-
nesia, February 2003, vol. 1, pp. 253–260.

[9] K. Yu, L. Zhang, and H. Zhang, “A preemption-aware path selection
algorithm for DiffServ/MPLS networks,” in Proceedings of the IEEE
Workshop on IP Operations and Management, Beijing, China, October
2004, pp. 129–133.

[10] R.C. Vieira and P.R. Guardieiro, “A proposal and evaluation of a LSP pre-
emption policy implemented with fuzzy logic and genetic algorithms in a
DiffServ/MPLS test-bed,” in Proceedings of International Conference on
Communications, Circuits and Systems, Hong Kong, China, May 2005,
vol. 1, pp. 109–114.

[11] Keith W. Ross, Multiservice loss models for broadband communication
networks, Springer Verlag, 1995.

[12] R. Srikant, The mathematics of Internet congestion control, Birkhäuser,
Boston, MA, 2003.

[13] H. White and L.S. Christie, “Queuing with preemptive priorities or with
breakdown,” Operations Research, vol. 6, no. 1, pp. 79–95, Jan.–Feb.
1958.

[14] D.R. Miller, “Computation of steady-state probabilities for M/M/1
priority queues,” Operations Research, vol. 29, no. 5, pp. 945–959, Sep.–
Oct. 1981.

[15] J.P. Buzen and A.B. Bondi, “The response times of priority classes under
preemptive resume in M/M/m queues,” Operations Research, vol. 31,
no. 3, pp. 456–465, May–June 1983.

[16] B. Ngo and H. Lee, “Analysis of a pre-emptive priority M/M/c model
with two types of customers and restriction,” Electronics Letters, vol. 26,
no. 15, pp. 1190–1192, July 1990.

[17] Y.Z. Cho and C.K. Un, “Analysis of theM/G/1 queue under a combined
preemptive/nonpreemptive priority discipline,” IEEE Transactions on
Communications, vol. 41, no. 1, pp. 132–141, January 1993.

[18] W. Helly, “Two doctrines for the handling of two-priority traffic by a
group of N servers,” Operations Research, vol. 10, no. 2, pp. 268–269,
Mar.–Apr. 1962.

[19] P.J. Burke, “Priority traffic with at most one queueing class,” Operations
Research, vol. 10, no. 4, pp. 567–569, Jul.–Aug. 1962.

[20] D.A. Calabrese, M.J. Fischer, B.E. Hoiem, and E.P. Kaiser, “Modeling a
voice network with preemption,” IEEE Transactions on Communications,
vol. 28, no. 1, pp. 22–27, January 1980.

[21] T. Dayar and W.J. Stewart, “Quasi lumpability, lower-bounding coupling
matrices, and nearly completely decomposable Markov chains,” SIAM
Journal of Matrix Analysis and its Applications, vol. 18, no. 2, pp. 482–
498, April 1997.

[22] G.G. Yin and Q. Zhang, Discrete-time Markov chains: two-time-scale
methods and applications, Springer, New York, NY, 2005.

[23] M.I. Reiman and J.A. Schmitt, “Performance models of multirate traffic
in various network implementations,” in The Fundamental Role of
Teletraffic in the Evolution of Telecommunication Networks, pp. 1217–
1228. Elsevier, 1994.

[24] J. S. Kaufman, “Blocking in a shared resource environment,” IEEE
Transactions on Communications, vol. COM-29, no. 10, Oct. 1981.

[25] K. W. Ross and D. H. K. Tsang, “The stochastic knapsack problem,”
IEEE Transactions on Communications, vol. 37, no. 7, Jul. 1989.

[26] J. M. Aein, “A multi-user-class blocked-calls-cleared demand access
model,” IEEE Trans. Commun., vol. COM-26, Mar. 1978.

