
A Simple Collaborative Method in Web Proxy
Access Control for Supporting Complex

Authentication Mechanisms
Shingo Takada∗, Akira Sato∗, Yasushi Shinjo∗, Hisashi Nakai†, Koichi Sakurai∗ and Kozo Itano∗

∗Graduate School of Systems and Information Engineering
University of Tsukuba,

Tsukuba, Japan
Email: {takada@softlab.cs, akira@cc, yas@cs, sakura@softlab.cs, k3itano@cs}.tsukuba.ac.jp

†Graduate School of Library, Information and Media Studies
University of Tsukuba,

Tsukuba, Japan
Email: nakai@slis.tsukuba.ac.jp

Abstract—Modern authentication mechanisms, including Shib-
boleth and OAuth, provide user attributes such as affiliations
and e-mail addresses. Conventional collaborative methods have
problems using such attributes in egress access control for the
Web. This paper proposes a new collaborative method using Web
browsers, proxy servers, and authentication servers. The pro-
posed method simplifies communications among these elements
by using a trusted shared repository that stores user attributes.
A new authentication mechanism can be added to the system
by deploying an authentication server of the new authentication
mechanism. This authentication server is a Web application and
stores user attributes in a shared repository associated with the
user identifiers. When proxy servers receive requests from Web
browsers, the proxy servers retrieve user attributes from the
shared repository and the proxy servers decide whether or not
to allow access to external Web pages in accordance with the
URLs and relevant user attributes. Unlike in a standard such
as the Simple and Protected GSSAPI Negotiation Mechanism
(SPNEGO), neither Web browsers nor proxy servers are required
to include extensions for authentication mechanisms. On the basis
of the simple collaborative method, the authors have implemented
an egress access control system for the Web that performs user
authentication with Shibboleth and Facebook. The access control
system has been operational in a university library for more than
a year.

Index Terms—Web proxy servers, access control, user authen-
tication, Shibboleth, OAuth

I. INTRODUCTION

In public spaces such as libraries and hotels, network ad-
ministrators often perform egress access control. Egress access
control is access control that allows or disallows internal users
to access external networks according to rules. An example of
this is a captive portal performing user authentication before
internal users access the Internet. In a captive portal, network
administrators can write access control rules with IP addresses
and port numbers.

In some organizations, network administrators are required
to write access control rules with URLs. We call this URL-
level access control. For example, network administrators

in a library may wish to allow visitors to access external
Web sites such as an Online Public Access Catalog (OPAC)
and e-journals without user authentication. They may also
wish to allow visitors to access any external Web sites with
user authentication. Parental control of Web sites is another
example of URL-level access control. In this paper, we focus
on URL-level egress access control performed by Web proxy
servers.

In typical URL-level egress access control systems, the
following three types of elements work together: 1) Web
browsers that are operated by users, 2) Web proxy servers that
handle requests sent from Web browsers, and 3) authentica-
tion servers that perform user authentication. In conventional
collaborative methods, these elements collaborate with one
another as follows.

1) Web browsers send authentication factors (typically user
names and passwords) to authentication servers.

2) The authentication servers verify these factors and send
credentials back to the Web browsers. Here, a credential
is proof of an authentication result and is often repre-
sented as a cookie, token, or ticket.

3) The Web browsers send URLs of external Web pages to
Web proxy servers along with the credentials. The Web
proxy servers verify the credentials and decide whether
or not to allow access to the Web pages associated with
the URLs according to the credentials and rules.

In Step 3, Web browsers and proxy servers communicate
in accordance with standards including Basic Authentication,
Digest Authentication, and the Simple and Protected GSS-
API Negotiation Mechanism (SPNEGO) [8][11][15]. GSSAPI
stands for the Generic Security Service Application Program
Interface[18].

These conventional collaborative methods have problems
with modern complex authentication mechanisms because
these mechanisms use identity servers that provide user at-

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250446

tributes, i.e., supplemental information other than user iden-
tifiers. For example, the identity servers of Facebook provide
names, groups, and e-mail addresses to connected Web ap-
plications. Facebook uses OAuth [6] to transfer such user
attributes to Web applications. In Shibboleth [1], a single-
sign-on system, Web applications can obtain user attributes
such as display names, affiliations, and e-mail addresses from
identity servers. Network administrators wish to use these
user attributes for URL-level egress access control. However,
this is no trivial matter because most standards [8][11][15]
require authentication mechanism-specific communication be-
tween Web browsers and Web proxy servers. Adding a new
modern authentication mechanism requires developing both a
Web browser extension and a Web proxy extension. We will
describe the details of these problems in Section III.

In this paper, we propose a simple collaborative method for
Web proxy access control that enables the use of advanced
user attributes of modern complex authentication mechanisms.
Our method simplifies communications among Web browsers,
proxy servers, and authentication servers by using a trusted
shared repository that stores user attributes. These elements
work together as follows:

1) Web browsers send authentication factors to authen-
tication servers along with authentication mechanism-
independent user identifiers.

2) The authentication servers verify authentication factors,
obtain user attributes from external identity servers,
and store the attributes on a trusted shared repository
associated with the user identifiers.

3) The Web browsers send the URLs of external Web pages
to Web proxy servers along with user identifiers. The
Web proxy servers then retrieve user attributes from the
trusted shared repository with the user identifiers and
decide whether or not to allow access to Web pages with
the URLs according to the user attributes and rules.

In our simple collaborative method, a new authentication
mechanism can be added to the system by deploying an au-
thentication server. Since an authentication server is a regular
Web application, we can implement such a Web application
with widely available libraries and tools. Unlike in SPNEGO,
neither Web browsers nor proxy servers are required to include
extensions for a new authentication mechanism.

On the basis of our simple collaborative method, we have
implemented a Web proxy access control system that per-
forms user authentication with Shibboleth and Facebook. The
Shibboleth implementation has been fully operational in our
university library since more than a year ago.

II. RELATED WORK

A. Access Control with User Attributes for Base Web Servers

The Apache HTTP server allows writing access control
rules with not only user identifiers but also groups of users
belonging to Basic Authentication or Digest Authentication
[9]. In addition to simple groups, many access control mech-
anisms with advanced user attributes have been proposed and

implemented for base Web servers. The method in [22] enables
us to use the role of a users in Role-Based Access Control
(RBAC). The methods in [16][7][5] enable us to use attributes
in X.509 certificates. The method in [4] enables us to use proof
based on proof-carrying authorization. All these mechanisms
perform ingress access control on base Web servers. Our
method performs egress access control on Web proxy servers.

B. Parental Control and Content Filtering for Web Pages

Parental control enables parents to restrict children’s use of
computers. This includes restricting Web access. This type of
control can be provided via operating systems [3], extensions
of Web browsers [10], and proxy servers [21]. These meth-
ods use the authentication mechanisms of operating systems
and simple password-based authentication mechanisms. Our
method performs egress access control using advanced user
attributes in modern complex authentication mechanisms.

C. Egress Network Access Control

Captive portals are often used to perform egress network
access control in public spaces such as libraries and hotels
[2][27]. A captive portal intercepts access to external servers
and enforces user authentication before allowing access. A
captive portal usually performs egress access control at the IP
address level in routers. The method in [25] performs egress
access control at the name level in DNS servers and routers.
None of these systems can perform egress access control at
the URL level.

D. Web Proxy Authentication and SPNEGO

RFC 2616 [8] and RFC 2617 [11] include standards
of user authentication between Web browsers and proxy
servers. In these standards, Web proxy servers ask Web
browsers to send credentials with Proxy-Authenticate
headers in HTTP responses, and the Web browsers com-
ply by sending the credentials to Web proxy servers with
Proxy-Authorization headers in HTTP requests. These
standards enable Basic Authentication and Digest Authentica-
tion in proxy servers.

The Simple and Protected GSSAPI Negotiation Mechanism
(SPNEGO) [29] is an authentication mechanism that supports
negotiation between Web browsers and base Web servers.
GSSAPI stands for Generic Security Service Application Pro-
gram Interface [18]. SPNEGO is designed to perform user
authentication with Kerberos [24] and Windows NT LAN
Manager (NTLM) [13].

These standards can be used together. i.e., we can use
SPNEGO in Proxy-Authorization1. However, using
SPNEGO in proxy servers does pose some problems, which
we discuss in detail in Section III.

1http://sourceforge.net/projects/squidkerbauth/
http://wiki.squid-cache.org/Features/NegotiateAuthentication

E. Shibbolizing Web Proxy Servers

Komura et al. have achieved Shibboleth authentication in
Web proxy servers that can perform URL-level egress access
control [26]. In their method, Web proxy servers identify users
by cookies [17]. When a Web browser sends a URL to the Web
proxy server to access an external Web page, it is redirected
to a Shibboleth authentication server that is running on the
same host as the proxy server. The Shibboleth authentication
server performs access control with user attributes provided
by Shibboleth and redirects to a fake URL called a phantom
URL. This phantom URL has the same domain value of the
external Web page. The proxy inserts a session cookie into the
phantom URL and redirects it to the external Web page. The
Web browser then sends the URL to the Web proxy again,
along with the session cookie. The proxy allows access if the
session cookie is valid. This cookie insertion is repeated for
each domain of the external Web pages.

This method, however, has a couple of problems. First, it is
very complex, requiring fake URLs and complex redirections.
Second, it is specific to Shibboleth. Our proposed method, in
contrast, is a simple and generic method for URL-level egress
access control.

III. SIMPLE COLLABORATIVE METHOD FOR WEB PROXY
ACCESS CONTROL

In this section, we describe our simple collaborative method
for Web proxy access control.

The collaboration process in a conventional method and
the proposed method is shown in Fig. 1. A conventional
Web proxy access control system typically consists of a
Web browser, a Web proxy server, and two authentication
servers (Fig. 1(a)). First, the Web browser sends authentication
factors, usually user names and passwords, to the authenti-
cation servers. In a public key infrastructure (PKI), authen-
tication factors are X.509 certificates. Second, the authenti-
cation servers perform user authentication with the received
authentication factors. If these user authentication actions are
successful, the authentication servers send the credentials back
to the Web browser. (Here, a “credential” is proof of the fact
that the user has been authenticated.) Third, the Web browser
sends a URL with credentials to a Web proxy server over
SPNEGO. Fourth, the Web proxy server verifies the credentials
and performs access control in accordance with the credentials
and the URL.

Conventional collaborative methods using SPNEGO work
well for Kerberos. However, they face difficulties when used
with modern complex authentication mechanisms such as
Shibboleth and OAuth. First, in SPNEGO, Web browsers and
proxy servers communicate in an authentication mechanism-
specific way, so adding a new authentication mechanism
requires defining a new protocol. To add Shibboleth authenti-
cation, we have to define how user attributes are delivered
in Security Assertion Markup Language (SAML). To add
OAuth authentication, we have to define how access tokens
are delivered from Web browsers to proxy servers.

(a) Collaboration among a browser, authentication servers,
and a proxy in SPNEGO.

(b) Collaboration among a browser, authentication servers,
and a proxy in proposed method.

Browser Proxy

Auth
server 1

Auth
server 2

External
servers

HTTP
requests

HTTP requests
with MI-UID

:
Mechanism-
independent
user identifier

: User
attributes

Send auth factors
with MI-UID

Auth factors >>

:MI-UID

Auth f to >>

MI-UID MI-UID

MI-UIDMI-UID

MI-UID

User
attribute

store

A1

A2

A2
MI-UID

A1

Browser Proxy

Auth
server 1

Auth
server 2

External
servers

HTTP
requests

HTTP requests
with credentials

SPNEGO

: Credential

: SPNEGO
module

Auth factors >>

Verify

Verify

<< Credential

Auth factors >>

<< Credential

A1

A2

A1

A2

<<
C1

<<
C2

C2

:

C1

C2

C2C1

Fig. 1. Collaboration among Web browser, proxy server, and two authenti-
cation servers.

The second problem is that adding a new modern authen-
tication mechanism requires developing both a Web browser
extension and a Web proxy extension. The Web browser in Fig.
1(a) includes two extensions, and the proxy server also has
two extensions. Needless to say, developing such extensions
requires a lot of effort. For example, to add Shibboleth
authentication, we have to develop Web browser extensions
for Firefox, Internet Explorer, Safari, Opera, Google Chrome,
etc., as well as a proxy server extension. Instead of using the
HTTP headers of SPNEGO, we could use cookies to transfer
user attributes and access tokens from Web browsers to proxy
servers. However, using cookies has its own set of problems,
which we describe in Section IV-A.

We address these problems with a simple collaborative
method, shown in Fig. 1(b). The Web proxy access control
system based on our method consists of a Web browser, a Web
proxy server, authentication servers and a user attribute store.
First, the Web browser sends authentication factors to the au-
thentication servers along with an authentication mechanism-
independent user identifier. Second, the authentication servers
perform user authentication with the received authentication
factors. If these user authentication actions are successful, the
authentication servers store the user attributes associated with
the user identifier in the user attribute store. Third, the Web
browser sends a URL along with the user identifier to a Web
proxy server. Fourth, the Web proxy server retrieves these

attributes and performs access control in accordance with the
user attributes and the URL.

Our simple collaborative method has four distinct advan-
tages over conventional methods.

First, we do not have to define any protocols to deliver
user attributes or access tokens from Web browsers to proxy
servers over SPNEGO. This also means that we do not have to
implement SPNEGO modules in the Web browsers and proxy
servers.

Second, we can easily add a new authentication mechanism
to the system by deploying an authentication server of the new
authentication mechanism. This authentication server is a regu-
lar Web application that is protected by the new authentication
mechanism. We can implement such applications with widely
available libraries and tools. In addition, we can reuse existing
authentication modules for base Web servers. We will discuss
concrete examples of Web applications in Section IV-E.

Third, the verification of attributes in proxy servers can
be done quite simply. User attributes are delivered only
through trusted components, authentication servers, and the
user attributes store. Proxy servers do not have to verify user
attributes that are thus obtained from the trusted user attribute
store.

Fourth, our method can easily allow a single user to log in
with multiple authentication mechanisms at the same time. For
example, a user can log in to both Shibboleth and Facebook
simultaneously. This user can then access external Web pages
allowed by both the Shibboleth and Facebook authentications.

Our method does have an implementation issue, in that
we have to realize authentication mechanism-independent user
identifiers. We discuss the requirements of user identifiers in
the following subsection.

A. Authentication mechanism-independent user identifiers
Our collaboration method for Web proxy access control

systems requires authentication mechanism-independent user
identifiers. These user identifiers are the key to enabling
collaboration among Web browsers, authentication servers,
proxy servers, and the attribute store.

In the proposed method, user identifiers should have the
following characteristics:

• Be unique within a local area network.
• Be authentication mechanism-independent.
• Must not change after user authentication.
• Must be strong against spoofing attacks.
• Must be delivered from a Web browser to a proxy server

in every HTTP request.

B. The User Attribute Store
The user attribute store is a trusted key-value store for

storing user attributes associated with user identifiers. The user
attribute store should be isolated from Web browsers.

The user attribute store manages the following entries:
(<user identifier>, [<attribute_1>, ...])

Each entry consists of a user identifier and a list of user
attributes. When a user logs in, an entry is created by an

authentication server. The entry of a user should expire after
the user logs out.

The user attribute store provides following procedures:
append_attr(uid, attr)

This procedure adds attributes (attr) to the entry
of the user identifier (uid). If there is no entry, the
user attribute store creates a new one. This procedure
is executed by authentication servers.

get_attr(uid)
This procedure returns the list of attributes that
are associated with the user identifier (uid). It is
executed by proxy servers.

remove_attr(uid)
This procedure deletes the entry of the user identifier
(uid). It is executed by authentication servers.

C. Proxy servers

Proxy servers are Web proxy servers that perform egress
access control at the URL level. Proxy servers run on the
borders between the local area network to external networks
and relay HTTP requests from Web browsers running in
the local area network and Web servers running in external
networks. Network administrators describe a policy and install
it on proxy servers.

In the proposed method, network administrators can de-
scribe a policy by using advanced user attributes of modern
complex authentication mechanisms. For example, network
administrators in a library can allow a “staff” of Shibboleth
to access any external servers while they allow a “student” to
access only external e-journals.

While network administrators can use advanced user at-
tributes, they can describe a policy in a uniform and au-
thentication mechanism-independent way. When we add an
authentication mechanism, we do not have to add extensions to
proxy servers. Network administrators can write mechanism-
independent rules as well as mechanism-specific rules. For
example, administrators can write a rule that allows users to
access external Web pages if the users provide their e-mail
addresses. The user attribute e-mail address can be obtained
from identity servers connected to OAuth, Shibboleth, and
other authentication mechanisms.

D. Authentication Servers

Authentication servers perform user authentication and save
user attributes in the user attribute store. Since a modern
complex authentication mechanism often requires multiple
servers to complete a single user authentication process, we
allow that in our method user authentication can be done
by multiple servers. For example, the user authentication
in Shibboleth is done by two servers: a Shibboleth service
provider and a Shibboleth identity provider.

Our method does not mediate communication between Web
browsers and individual authentication servers. This improves
the modularity of authentication servers. Each authentication
server can obtain user attributes from an identity server in
an authentication mechanisms-specific way. For example, an

Proxy server

User
attribute

store

Auth Apps
for each auth
mechanism

User

Request

Proxy server

Allowed by
whitelist or
authenticated
rules

Denied or not
authenticated

Register

Look up

Access
controller

Squid

Shibboleth

Facebook

Kerberos

Login Portal

Choose and
log in

Fig. 2. Implementation overview.

authentication server of Shibboleth can obtain user attributes
from a token in Security Assertion Markup Language (SAML)
[20]. The authentication server receives this token from a
Web browser through a redirection. An authentication server
connected to Facebook obtains user attributes from external
identity servers with a remote procedure call. After obtaining
user attributes, authentication servers save them into the user
attribute store. Proxy servers can thus retrieve various user
attributes in a uniform way.

In Section IV-E, we describe the implementations of au-
thentication servers of Shibboleth and Facebook.

IV. IMPLEMENTATION OF EGRESS ACCESS CONTROL
SYSTEM FOR THE WEB

In Section III, we described our simple collaborative method
for URL-level egress access control. In this section, we de-
scribe the implementation of a URL-level egress access control
system based on our simple collaboration method. This imple-
mentation supports modern user authentication mechanisms of
Shibboleth and Facebook OAuth as well as a legacy one of
Kerberos.

An overview of the implemented system is shown in Fig.
2. The system consists of Web browsers, the proxy server,
the user attribute store, a Login Portal, and Auth Apps.
The proxy server consists of two parts: a Squid proxy server
and an extension module called the Access Controller. The
Squid proxy server invokes the Access Controller every time
it receives an HTTP request. The Access Controller returns
true if the access is granted. Otherwise, it returns false.

The Login Portal is a portal page for choosing authentica-
tion mechanisms. On this page, users choose the necessary
authentication mechanism to access external Web resources.
Each authentication mechanism-specific procedure is realized
by an Auth App that is a Web application.

A. Implementation of authentication mechanism-independent
user identifiers

We discussed the requirements of authentication
mechanism-independent user identifiers in Section III-A.
In this subsection, we discuss three implementations of user
identifiers.

The first implementation is an ideal one and uses HTTP
headers. We introduce two new HTTP headers:

Proxy-Set-Cookie: <set-cookie-string>
Proxy-Cookie: <cookie-string>

These headers enable cookies within a proxy server. The
first header is similar to Set-Cookie in [17] but differs in
that it is used in a reply message delivered from a proxy server
to a Web browser. The second header is similar to Cookie
but differs in that a Web browser sends a user identifier to
both an authentication server and a proxy server.

The second implementation is also an ideal one and uses
HTTP headers. Instead of introducing new headers, we use an
existing one:

Proxy-Authorization: Basic <rnd_uid>:<rnd_pw>

This header is similar to Proxy-Authorization:
Basic in [11] but differs in that it sends a random uid and
a random password to identify the user. During a single login
session, a Web browser must send the same uid and password.

These two implementations require changing existing Web
browsers and proxy servers.

The final implementation is a practical one and does not use
any HTTP headers. We use the IP addresses of client com-
puters that run Web browsers as authentication mechanism-
independent user identifiers. The IP addresses satisfy the
requirements discussed in Section III-A. A computer’s IP
address is unique in a local area network and is authentication
mechanism-independent. The IP address of a computer can
be fixed while a user logs in. If we use intelligent network
switches, we can fix the IP addresses of a client computer
and prevent IP address spoofing2. Some routers with password
user authentication use source IP addresses as user identifiers
[2][27]. In our target local area network, IP addresses were
sufficient for URL-level egress access control.

Using IP addresses as user identifiers makes implementa-
tions simple. We do not have to modify Web browsers. We can
obtain the IP addresses of computers that run Web browsers
in proxy servers and authentication servers.

On the other hand, using IP addresses as user identifiers
has limitations. First, we cannot deal with the sharing of IP
addresses. For example, we cannot allow the use of Network
Address Translation (NAT) in a local area network. Second,
we must defend against IP address spoofing with intelligent
switches or other techniques. Finally, we should turn off
Privacy Extensions for Stateless Address Autoconfiguration

2Cisco Catalyst 2960 has Dynamic Host Configuration Protocol (DHCP)
Snooping, Dynamic Address Resolution Protocol (ARP) Inspection, and IP
Source Guard capabilities that can identify the IP address of each computer
and prevent malicious users from carrying out spoofing attacks.

in IPv6 [19]. We can enable this option on the proxy server
hosts to prevent external servers from tracking users with IP
addresses.

B. User Attribute Store

The user attribute store is a trusted key-value store for
storing user attributes associated with user identifiers. We have
implemented the user attribute store by using a tuple space of
Linda, a coordination language [12]. Since we implemented
the user attribute store in Ruby, we used Rinda [23] which
realizes tuple spaces for Ruby.

An example of the tuple space is as follows.

[MAGIC_attr, uid1, attr1_shib]
[MAGIC_attr, uid1, attr1_oauth]
[MAGIC_attr, uid2, attr2_shib]
[MAGIC_attr, uid3, attr3_oauth]

The first item, MAGIC_attr, is a magic string indicating
that the tuple contains user attributes. The second items are
user identifiers, and the third items are user attributes. In
this example, the user associated with uid1 has two user
attributes: attr1_shib and attr1_oauth.

A tuple is created by an authentication server, as follows.

space.write([MAGIC_attr, uid, attr])

The procedure write() creates a tuple in the brackets
“[” and “]” in the tuple space. An authentication server
creates a tuple for each user with this procedure after user
authentication. Multiple tuples can be created for a single user
by multiple authentication servers.

Tuples are retrieved by proxy servers as follows.

attr_list = space.read_all(
[MAGIC_attr, uid, nil])

attr_list.each {|tuple|
attr = tuple[2]
use(attr)

}

The procedure read_all() returns a list of tuples that
matches the pattern in the argument. In this code, nil means
a wild card.

As discussed in Section III-B, the tuple space server should
be isolated from Web browsers. In the current implementation,
we run the tuple space server, the proxy server, the Login
Portal and Auth Apps on a single host. The tuple space
server accepts connections only from these servers. Since the
tuple space server supports SSL, we can protect it with SSL
certificates.

C. Web Proxy and Access Controller

We implemented the proxy server by using Squid3, an open
source Web proxy server. Squid has an extension mechanism
to rewrite URLs in HTTP requests. This extension program is
called a URL rewrite program. We have realized the Access
Controller as a URL rewrite program of Squid.

When Squid is executed, it spawns the process of the Access
Controller. Each time Squid receives an HTTP request from a

3http://www.squid-cache.org/

Matches
whitelist?

Apply rules

Authenticated
by any

mechanism?

Allow Deny

No

At least
one rule
returns
ACCEPT

Other-
wise

Yes No

Yes

Fig. 3. Access control decision flow.

Web browser, it passes the requested URL, the IP address of
the Web browser, and the request method (GET, POST, etc.)
to the Access Controller through a pipe that connects the two.
The Access Controller returns the same URL through another
pipe if the access is granted. Squid relays the request to the
external server and the response from the external server to
the Web browser. Otherwise, the Access Controller returns
the URL of the Login Portal and Squid sends a redirection
message to the Web browser.

When the Access Controller receives a URL, an IP address,
and a request method, it decides whether or not to allow
access to the Web page, as shown in Fig. 3. First, the Access
Controller matches the URL with patterns in a whitelist that
includes regular expressions and is maintained by network
administrators. If the URL matches a pattern in the whitelist,
the Access Controller returns the same URL and the request
is allowed. Next, it tries to obtain user attributes from the user
attribute store with the IP address. If no user attribute entry is
found, it means the user is not authenticated and the Access
Controller returns the URL of the Login Portal to cause a
redirection to it.

If any user attributes are found in the user attribute store, the
Access Controller applies rules. We will describe the details of
these rules in Section IV-D. If at least one rule allows access,
the Access Controller returns the same URL and the request
is allowed. If not, the Access Controller returns the URL of
the Login Portal.

The Access Controller caches user attributes for perfor-
mance. It maintains the consistency of the cache, by using
Rinda’s update notification mechanism.

D. Access Control Rules

Network administrators describe an access control policy
as a list of rules, and save these rules in a configuration file
belonging to the Access Controller. A single rule consists of a
head and a body. The head describes the subjects (users), and
the body includes URL patterns and actions.

Fig. 4. Screenshot of Login Portal.

The Access Controller evaluates the rules as follows. First,
it evaluates the head part with user attributes. If the condition
is satisfied, the body part is evaluated. This body part is a list
of a URL pattern, a request method (GET, POST, PUT, etc.),
and an action. A URL pattern is a regular expression, and an
action is either ACCEPT or REJECT.

An example of a rule is:

- cond:
affiliation: "student@.+"

do:
- url: "http://example\.com"
action: REJECT

- url: "http://bbs\.example\.net"
method: POST
action: REJECT

default_policy: ACCEPT

This rule is applied to users whose affiliation attribute
is “student”. If the user sends a request to example.com,
it is denied. If the user sends an HTTP POST request to
bbs.example.net, it is also denied. Otherwise, the request is
allowed because the default policy is ACCEPT.

Another example rule is:

- cond:
group: "important_visitor"
email: ".+@.+$"

do:
- url: "http://.*example\.org/"
action: ACCEPT

default_policy: REJECT

This rule permits access to services on example.org if the
user provides an email address and belongs to the group
“important visitor”.

E. Login Portal and Auth Apps

Login Portal is a portal Web page where a user can choose
an authentication mechanism. A screenshot of the Login Portal
is shown in Fig. 4. On this page, a user can choose one
of three authentication mechanisms: Shibboleth, Facebook, or
Kerberos. Clicking any of these links executes the relevant
Auth App.

#!/usr/bin/env ruby
require ’rinda/tuplespace’

uri = "http://attr-store-host:port/"
space = DRbObject.new_with_uri(uri)
uid = ENV["REMOTE_ADDR"];
attrs = {"mechanism" =>"shibboleth",

"email" =>ENV[’mail’],
"affiliation"=>ENV[’affiliation’],
"persist_id" =>ENV[’persistent_id’]}

space.write(["MAGIC_attr",uid,attrs])

Fig. 5. Auth App for Shibboleth authentication.

AuthType shibboleth
AuthName "Shibboleth User Only"
ShibRequireSession On
ShibUseHeaders On
require valid-user

Fig. 6. The .htaccess file to protect the Auth App for Shibboleth authenti-
cation.

As stated previously, an Auth App is a Web application that
mediates an authentication mechanism and the user attribute
store. It performs user authentication in an authentication
mechanism manner and then stores user attributes into the user
attribute store.

Fig. 5 shows the main part of the Auth App for Shibboleth.
This is a Common Gateway Interface (CGI) program running
on the Apache HTTP server and is protected with the access
control description shown in Fig. 6. This access control
description activates the Apache module (mod shib [28]) that
allows the CGI program to access Shibboleth user attributes
through environment variables.

When a Web browser accesses this Auth App for the first
time, it is redirected to a Shibboleth identity provider. This
redirection is automatically caused by the file shown in Fig.
6. In the identity provider, the user inputs his/her user name
and password, and after the identity provider verifies these,
it redirects the Web browser back to the Auth App. The
second time, the Auth App (Fig. 5) is granted by the file
shown in Fig. 6. When the Auth App is executed, it obtains
two Shibboleth attributes from environment variables. One is
an affiliation, which is the affiliation of the user (such as
“staff” or “student”). The other is a persistent id, which is an
anonymized identifier of the user. These attributes are packed
into a single hash table, which the Auth App saves in the user
attribute store. The total size of this Auth App for Shibboleth
was 14 lines of code.

Fig. 7 shows the main part of the Auth App for Facebook.
This is a Web application of Facebook. It is similar to the
Shibboleth Auth App in Fig. 5, but there are two differences.
First, the Facebook one has to determine if the user has
been authenticated by itself. Second, it obtains user attributes
not from environment variables but from the class library
FacebookOAuth::Client.

The Facebook Auth App checks the parameter “code”,
which is an access token in OAuth. If no access token is given,
the Auth App redirects to a Facebook identity server. After

#!/usr/bin/env ruby
require ’cgi’
require ’rinda/tuplespace’
require ’oauth’
require ’facebook_oauth’

uri = "http://attr-store-host:port/"
space = DRbObject.new_with_uri(uri)
uid = ENV["REMOTE_ADDR"];

if cgi.params["code"].empty?
mode = :redir_for_auth

else
mode = :auth_done
token = cgi.params["code"][0]

end

client = FacebookOAuth::Client.new(
:application_id => APP_ID,
:application_secret => APP_SECRET,
:callback => callback_url)

if mode == :redir_for_auth
auth_url = client.authorize_url(

:scope => ’user_groups,email’)
print cgi.header(:location => auth_url)

elsif mode == :auth_done
client.authorize(:code => token)
fggroups = get_fbgroup(client)
group = fggroups.includes?

IMPORTANT_VISITORS :
"important_visitors":""

attrs = { "mechanism" => "facebook",
"id" => client.info["id"],
"email" => client.info["email"],
"group" => group}

space.write(["MAGIC_attr",uid,attrs])
end

Fig. 7. Auth App for Facebook authentication.

user authentication, the Auth App is executed again with an
access token. If an access token is given, the Auth App uses it
to obtain the user attributes. In the example shown in Fig. 7,
the Auth App obtains three attributes from a Facebook identity
server: the user identifier (ID) on Facebook, the user’s e-mail
address, and a list of groups that the user belongs to. The Auth
App then packs these attributes into a single hash table and
saves it in the user attribute store. The total size of this Auth
App for Facebook was 33 lines of code.

F. Reusing Legacy Authentication Mechanisms for Base Web
Servers

In our egress access control system for the Web, we can
reuse legacy authentication mechanisms for base Web servers.
Fig. 8 shows the main part of the Auth App for Kerberos. This
is a CGI program running on Apache and is protected with the
access control description shown in Fig. 9. This program and
the description of Kerberos are similar to those of Shibboleth
in Figs. 5 and 6. The access control description in Fig. 9 actives
the module mod auth kerb4. In Fig. 8, the Auth App obtains
the principal name of Kerberos from an environment variable
and then uses it to create an e-mail address. It then puts the

4http://modauthkerb.sourceforge.net/

#!/usr/bin/env ruby
require ’rinda/tuplespace’

uri = "http://attr-store-host:port/"
space = DRbObject.new_with_uri(uri)
uid = ENV["REMOTE_ADDR"];
princ = ENV["REMOTE_USER"];
princ_name = princ.split("@")[0]
email = "#{princ_name}@example.edu"
attrs = {"mechanism" =>"kerberos",

"email" => email,
"principal" => princ}

space.write(["MAGIC_attr",uid,attrs])

Fig. 8. Auth App for Kerberos authentication.

AuthType Kerberos
AuthName "Kerberos User Only"
KrbMethodNegotiate On
KrbMethodK5Passwd Off
KrbAuthRealms REALM.EXAMPLE.EDU
Krb5KeyTab /etc/httpd/conf/keytab
require valid-user

Fig. 9. The .htaccess file to protect the Auth App for Kerberos authentication.

e-mail address and the principal name into a hash table and
saves it in the user attribute store.

We can reuse other legacy authentication mechanisms in the
same manner as Kerberos, including simple password files,
the Lightweight Directory Access Protocol (LDAP), and SSL
client certificates.

V. EVALUATION

In this section, first, we evaluate our method of providing
collaboration among Web browsers, Web proxy servers, and
authentication servers that realizes egress access control for
the Web. Next, we describe an actual application of the
proposed system in our university library. Finally, we discuss
the scalability of our egress access control system for the Web.

A. The Simple Collaborative Method Among Web Browsers,
Proxy Servers, and Authentication Servers

As described in Section III, conventional collaborative
methods have several problems with modern complex authenti-
cation mechanisms such as Shibboleth and OAuth. To recap: in
SPNEGO, Web browsers and proxy servers must communicate
in an authentication mechanism-specific way, which means
defining a new protocol is required if we want to add a new
authentication mechanism. This requires developing both a
Web browser extension and a Web proxy extension, which
of course requires a lot of effort.

Our collaborative method solves these problems. It has
several advantages over conventional methods, as we described
in Section III, and briefly recap here. First, since we use a
generic method, it is not necessary to define a protocol to
deliver user attributes or access tokens for each authentication
mechanism. This also means that we do not have to implement
SPNEGO modules in both Web browsers and proxy servers.
Second, we can add a new authentication mechanism to the
system simply by deploying an authentication server of the

new authentication mechanism. Third, it is simple to verify
user attributes in proxy servers. Finally, our method can easily
allow a single user to log in with multiple authentication
mechanisms at the same time.

Our method requires the use of authentication mechanism-
independent user identifiers. In Sections III-A and IV-A,
we discussed the requirements and implementations of such
user identifiers. The current implementation running in our
university library uses IP addresses as user identifiers. As
discussed in Section IV-A, using IP addresses has several
limitations. We also show ideal implementation methods of
authentication mechanism-independent user identifiers by us-
ing HTTP headers.

As discussed in Section III-B, we have to isolate the
user attribute store from Web browsers. We can perform this
isolation with regular ways such as using packet filters and
SSL certificates.

B. Application in our university library

We applied our method to an egress access control system
for the Web in our university library. This library has 182 kiosk
terminals that automatically run Web browsers in Windows.
With kiosk terminals, visitors are allowed to access OPAC Web
sites, library information pages, bus timetables, e-journals,
and so on without user authentication. University students
and staff are allowed to access any external page with user
authentication through Shibboleth.

The egress access control system consists of a proxy
server, a user attribute store, and an authentication server of
Shibboleth. Web browsers running on the kiosk terminals are
configured to use the proxy server. The authentication server is
connected to the common identity provider of our university.
Since this common identity provider is shared with other major
services, including the e-learning system Moodle, students
enjoy the single-sign-on feature of Shibboleth.

This egress access control system has been operational since
May 2011. In this study, we analyzed the system’s access logs.
Fig. 10 shows the request rates on January 12, 2012, the day
the maximum number of accesses per second was recorded.
The X-axis is the time of day and the Y-axis is the number of
accesses per second.

We ran the proxy server, the tuple space server of the user
attribute store, and the authentication server in a single phys-
ical machine. This machine had a Xeon X5570 processor, 2
GB of memory, and a 1000Base-T network card. Its operating
system was Linux CentOS 5.8. All the kiosk terminals and the
server machine were connected to a gigabit network.

The system’s performance was efficient to serve 182 kiosk
terminals with a single physical machine. The peak access
was 381 requests per second at 13:09:33. The total number
of accesses on the day was 587,325, 76% of which were
accesses with user authentication. The rest were accesses
that matched patterns on the whitelist. The number of user
authentication processes performed was 575. The whitelist had
712 patterns and was maintained by network administrators

 0

 50

 100

 150

 200

 250

 300

 350

 400

08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

N
um

be
r

of
 a

cc
es

se
s

[r
ps

]

Time

Date: 2012/01/12

Fig. 10. Number of accesses per second on January 12, 2012. The peak was
381 requests per second.

of the university library. A total 8,800 people used this access
control system over the course of one year.

C. Scalability of Our Egress Access Control System for the
Web

In our collaboration method, we use a shared repository
(the user attribute store) to share user attributes among proxy
servers and authentication servers. This collaboration method
allows the running of multiple proxy servers and multiple
authentication servers as demand increases.

The scalability of the access control system is determined by
the user attribute store. In the current implementation, we used
Rinda, the tuple space implementation for the Ruby language.
We also realized user attribute caching in the proxy server by
using Rinda’s update notification mechanism. This implemen-
tation could serve 381 requests per second (as described in
Section V-B) with a single physical machine.

To serve more requests per second, we need a better
key-value store than Rinda. CouchDB5 and memcached6 are
replacement candidates. Since these key-value stores provide
the append procedure, it would be possible to implement the
append_attr procedure described in Section III-B.

VI. CONCLUSION

In this paper, we have described a new collaborative method
for egress access control in Web proxy servers that enables
us to use advanced user attributes of modern complex au-
thentication mechanisms such as Shibboleth and OAuth. Our
collaborative method simplifies communications among Web
browsers, Web proxy servers, and authentication servers by
using a trusted shared repository that stores user attributes. In
our method, a new authentication mechanism can be added
to the system by deploying an authentication server of the
new authentication mechanism. Since an authentication server
is a regular Web application, we can implement the appli-
cations with widely available libraries and tools. We have

5http://couchdb.apache.org/
6http://memcached.org/

implemented the authentication servers for Shibboleth and
Facebook OAuth. They were simple CGI programs running
on the Apache HTTP server. Their code sizes were 14 and 33
lines of code, respectively. Unlike in SPNEGO, neither Web
browsers nor proxy servers are required to include extensions
for modern complex authentication mechanisms.

Our method uses authentication mechanism-independent
user identifiers that function as keys to access user attributes
in the trusted shared repository. Web browsers send requests
to authentication servers and proxy servers along with user
identifiers. We have shown two ideal implementations that use
HTTP headers and one practical implementation that uses IP
addresses.

On the basis of our collaborative method, we have imple-
mented the egress access control system for the Web in our
university library. This system supports Shibboleth and has
been fully operational for more than a year. The system’s
performance was good enough to serve 182 kiosk terminals
with a single physical machine.

In future, we intend to implement better authentication
mechanism-independent user identifiers, specifically, with user
tracking techniques [14]. For example, if we rewrite HTML
content in response messages and embed Web bugs in that
content, we can identify individual users. We also plan to apply
our method to a large system with a scalable key-value store.

REFERENCES

[1] “Internet2 Middleware Architecture Committee for Education(MACE)
Directory Working Group,” http://middleware.internet2.edu/dir/.

[2] G. Appenzeller, M. Roussopoulos, and M. Baker, “User-friendly access
control for public network ports,” in IN IEEE INFOCOM, 1998, pp.
699–707.

[3] Apple Inc., “Mac OS X v10.5, 10.6: About the Parental Controls Internet
content filter,” http://support.apple.com/kb/HT2900.

[4] L. Bauer, M. A. Schneider, and E. W. Felten, “A general and flexible
access-control system for the web,” in Proceedings of the 11th USENIX
Security Symposium, 2002, pp. 93–108.

[5] D. W. Chadwick, A. Otenko, and E. Ball, “Role-based access control
with x.509 attribute certificates,” IEEE Internet Computing, vol. 7, no. 2,
pp. 62–69, Mar. 2003.

[6] E. E. Hammer-Lahav, “The OAuth 1.0 Protocol,” RFC 5849, 2010.
[7] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn, “A role-based access

control model and reference implementation within a corporate intranet,”
ACM Trans. Inf. Syst. Secur., vol. 2, no. 1, pp. 34–64, Feb. 1999.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,” RFC 2616,
1999.

[9] R. T. Fielding and G. Kaiser, “The apache http server project,” IEEE
Internet Computing, vol. 1, pp. 88–90, 1997.

[10] M. Foundation, “Block and unblock websites with parental con-
trols,” http://support.mozilla.org/en-US/kb/block-and-unblock-websites-
with-parental-controls.

[11] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luo-
tonen, and L. Stewart, “HTTP Authentication: Basic and Digest Access
Authentication,” RFC 2617, 1999.

[12] D. Gelernter and N. Carriero, “Coordination languages and their signif-
icance,” Commun. ACM, vol. 35, no. 2, pp. 97–107, Feb. 1992.

[13] E. Glass, “The NTLM Authentication Protocol and Security Support
Provider,” 2003, http://davenport.sourceforge.net/ntlm.html.

[14] W. T. Harding, A. J. Reed, and R. L. Gray, “Cookies and web bugs: What
they are and how they work together.” Information Systems Management,
vol. 18, no. 3, p. 17, 2001.

[15] K. Jaganathan, L. Zhu, and J. Brezak, “SPNEGO-based Kerberos and
NTLM HTTP Authentication in Microsoft Windows,” RFC 4559, 2006.

[16] O. Kornievskaia, P. Honeyman, B. Doster, and K. Coffman, “Kerberized
credential translation: a solution to web access control,” in Proceedings
of the 10th conference on USENIX Security Symposium - Volume 10,
ser. SSYM’01, 2001.

[17] D. Kristol and L. Montulli, “HTTP State Management Mechanism,”
RFC 2109, 1997.

[18] J. Linn, “Generic Security Service Application Program Interface,” RFC
2743, 2000.

[19] T. Narten and R. Draves, “Privacy Extensions for Stateless Address
Autoconfiguration in IPv6,” RFC 3041, 2001.

[20] OASIS Standard, “Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0,” 2005,
http://docs.oasisopen.org/security/saml/v2.0/saml-core-2.0-os.pdf
Accessed: 2012/06/18.

[21] P. P. Pal and M. Atighetchi, “Supporting safe content-inspection of web
traffic,” in The Journal of Defense Software Engineering, 2008, pp. 19–
23.

[22] J. S. Park, R. Sandhu, and G.-J. Ahn, “Role-based access control on the
web,” ACM Trans. Inf. Syst. Secur., vol. 4, no. 1, pp. 37–71, Feb. 2001.

[23] M. Seki, “dRuby and Rinda: Implementation and Application of Dis-
tributed Ruby and its Parallel Coordination Mechanism,” International
Journal of Parallel Programming, vol. 37, no. 1, pp. 37–57, 2009.

[24] J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An authentication
service for open network systems,” in proceedings of the Winter 1988
Usenix Conference, 1988.

[25] S. Suzuki, Y. Shinjo, T. Hirotsu, K. Kato, and K. Itano, “Name-level
approach for egress network access control,” in Networking - ICN, 2005,
vol. 3421, pp. 284–296.

[26] K. Takaaki, S. Hiroaki, D. Noritoshi, and M. Ken, “Design and Imple-
mentation of Web Forward Proxy with Shibboleth Authentication,” in
Applications and the Internet (SAINT), 2011 IEEE/IPSJ 11th Interna-
tional Symposium on, july 2011, pp. 321–326.

[27] K. Watanabe, M. Otani, S. Tadaki, and Y. Watanabe, “Opengate on
cloud,” International Conference on Advanced Information Networking
and Applications Workshops, pp. 1027–1030, 2012.

[28] W. Xu, D. W. Chadwick, and S. Otenko, “Development of a Flexible
PERMIS Authorisation Module for Shibboleth and Apache Server.” in
EuroPKI, ser. Lecture Notes in Computer Science, vol. 3545. Springer,
2005, pp. 162–179.

[29] L. Zhu, P. Leach, K. Jaganathan, and W. Ingersoll, “The Simple and
Protected Generic Security Service Application Program Interface (GSS-
API) Negotiation Mechanism,” RFC 4178, 2005.

