
Real-time Collaborative Resolving of
Merge Conflicts

Antti Nieminen
Tampere University of Technology

Korkeakoulunkatu 1, FI-33720 Tampere, Finland
antti.h.nieminen@tut.fi

Abstract—Merge conflicts are common especially in large and
distributed software projects. There have been development to
both make the conflicts less frequent by introducing better merge
algorithms and to aid the user in resolving conflicts by better
visualization and other means. However, one element lacking
from the current conflict-resolving tools is the utilization of
collective knowledge of project members, achievable through
web-based collaboration. The person encountering the conflict
may not have all the necessary information and understanding
for resolving the conflict, in which case it would be beneficial to
do the resolving collaboratively by all the parties who have been
involved in causing the conflict or who otherwise have valuable
information about the conflicted part of the project. In this paper,
we present a process for real-time collaborative merging as well
as a web-based tool supporting the process.

Index Terms—real-time collaboration, version control

I. INTRODUCTION

The World Wide Web — or simply the Web — has
revolutionized collaboration. Tools such as social media and
instant messaging help bring people around the world closer
together. The Web has also improved collaboration in the
field of software development. Some of the communication
problems in software projects have been solved by web-based
tools such as bug-reporting systems, wiki sites, blogs and other
use of social media [13].

Despite the wide adoption of web-based tools to coordinate
software projects, this trend has not really gone as far as
to the actual programming. The code lines are still mostly
written using similar code editors that have been used for
decades. There have been some early attempts, such as [6],
[4], to create a development environment where the process
of writing code would be tightly integrated with web-based
communication and collaboration tools. However, for such
real-time collaborative environments to gain wider adaptation,
they still need to answer a lot of unsolved questions related
to issues such as version control, debugging, and testing in a
collaborative environment [8].

Even though the real-time collaborative programming envi-
ronments may not be ready to completely replace the tradi-
tional means of writing code, we see that such environments
could even in the present state offer benefits in some use
cases, more limited in scope and duration than a whole
software project. Real-time collaboration is especially valuable
in situations where there is a particular need for extensive
cooperation and communication.

A prime example of a situation where there is a specific need
for closer collaboration in a software project is the process
of resolving merge conflicts. Merge conflicts occur when two
lines of development are attempted to be merged into one but
the version control system can not automatically execute the
merge. In such a case, the conflict must be resolved manually
by the project members. Typically the resolving is done by the
person first encountering the conflict, possibly using some tool
for visualizing the changes done by each party of the conflict.
In some cases, though, it would be beneficial to resolve the
conflict collaboratively by all the parties involved in causing
the conflict.

In this paper, we describe a process for resolving a merge
conflict in real-time collaboration. As a concrete artifact, we
present a web-based tool supporting the said process for
conflicts occurring in the Git1 version control system.

II. BACKGROUND

A. Real-time Collaboration

A collaborative real-time editor (CRE) enables multiple
users to edit the same document concurrently and to see
each others’ edits in real time. The first CRE was introduced
as early as 1968 in what was to be called “The Mother of
All Demos”2. Lately, along with the Web becoming a viable
application platform, CREs have gained a larger audience. For
example, Google Docs3 is a widely used platform utilizing
real-time collaboration for creating documents.

Collaborative real-time editors must somehow manage con-
current edits by different users by applying each users’
changes into the shared document as well as possible. A naive
approach of, for example, just inserting text in a given position
P in the shared document does not work properly because
after concurrent edits by other users, P often does not refer
to the position the user intended. Two of the most often used
methods for dealing with the concurrency and synchronization
issues are Operational Transformation [14] and Differential
Synchronization [3].

Our solution for collaborative conflict-resolving is based on
CoRED [6]4, which is is a web-based CRE for software de-

1http://git-scm.com/
2http://en.wikipedia.org/wiki/The Mother of All Demos
3http://docs.google.com
4http://cored.cs.tut.fi

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250435



velopment. It is implemented as a Vaadin [5] component con-
taining both client-side and server-side functionality. CoRED
uses Ace5, an open-source code editor component written in
JavaScript, for basic code editor features. Ace offers syntax
highlighting, automatic indenting and other helpful features
for various programming languages.

CoRED utilizes Differential Synchronization algorithm (de-
scribed in [3]) to handle concurrent edits. Along with plain
text, CoRED documents may also contain markers. Markers
are sections within a text document that retain their logical
positions. They have a start position and an end position, and
they are used for example to present code errors or user notes
within a document. In the case of concurrent edits, the position
of the markers, along with the textual edits, is adjusted in
accordance with the Differential Synchronization algorithm.

B. Version Control

Version control systems (VCSs) [12], [10] are tools for
managing a collection of documents, typically a software
project. VCSs enable users to inspect the history of the
project and make it possible to revert back to an earlier
version. All the modern VCSs allow for a project to have
multiple independent lines of development, called branches.
For example, a project may have a stable release branch and
another branch for development. Thus, new features are first
committed to the development branch, from where some or
all of the modifications may later be merged to the release
branch.

The purpose of merging is to combine two versions of a
file into one in such a way that the semantics of both files
are preserved. Although finding a merge that preserves the
semantics of both sides of the merge is in a general case
an algorithmically undecidable problem [1], automatic merge
algorithms are very useful in practice. When a merge algorithm
can not execute the merge automatically, a merge conflict is
risen, and the conflict must be resolved manually.

There are a lot of tools to help the user to resolve a merge
conflict. They often offer some kind of visualizations of the
changes done by each party of the conflict, and possibly some
other aids such as shortcuts for easily choosing either one of
the conflicted sections. Some of the existing merge tools are
KDiff36, WinMerge7, Diffuse8, and SourceGear DiffMerge9.
None of the existing merge tools we know of support collab-
oration of multiple users.

Currently, one of the most popular version control systems
— and also the one our implementation can currently be
integrated with — is Git. Git is a distributed VCS, designed to
be efficient and to support distributed, non-linear development.
Branches in Git are lightweight, encouraging developers to
utilize them heavily and merge frequently.

5http://ace.ajax.org/
6http://kdiff3.sourceforge.net/
7http://winmerge.org/
8http://diffuse.sourceforge.net/
9http://www.sourcegear.com/diffmerge/index.html

Git offers support for integrating a mergetool to a conflict-
resolving process. Git can give the merge tool four files as
arguments: LOCAL contains the locally edited version of the
conflicted file, REMOTE is the version to merge with, BASE
is their common ancestor, and MERGED is the combination
of LOCAL and MERGED with the conflicted areas marked.
MERGED is also the working file where the mergetool should
write the result of the merge.

III. THE PROCESS OF COLLABORATIVE RESOLVING OF
MERGE CONFLICTS

When merging, the version control system can perform
the merge automatically in the majority of the cases (90%
according to one study [11]). For the remaining cases, user
input is needed to resolve the conflict. Some of the conflicts
are easily resolved by the person first encountering the conflict.
Occasionally, though, the conflict is so difficult to resolve that
the user can not do it by himself in such a way that the changes
done in both of the merged versions are taken into account, and
without causing any additional errors. The difficult conflicts
are situations where the resolver does not fully understand the
changes done by the other party, based on the information he
has, such as the source code and the commit messages.

A. Basic Workflow

To resolve a difficult conflict, it would be helpful to have
input by all the parties that have contributed to the conflict.
Consider an example where Alice developed a feature A while
Bob concurrently developed a feature B. After both finished,
Alice tried to merge her changes with those of Bob. The
features A and B overlapped each other somehow, thus the
attempt to merge resulted in a conflict. In this case, it would
be beneficial if both Alice and Bob could participate in the
conflict resolution process. In some cases, it would be useful
to even involve another developer, Chuck, who have been
working in the same part of the project earlier.

Our solution provides a way for a real-time collaborative
conflict resolution. When Alice, using the Git version control
system, encounters a conflict she can not resolve by herself,
she can start up a new conflict-resolution session by launching
our tool. The tool uploads the conflicted file to a server,
and launches a web browser pointing to a URL (Uniform
Resource Locator) that opens a conflict-resolving session. In
the session, Alice sees the conflicted file with the conflict areas
marked. She can then edit the file in the browser, mark the
conflicted sections as resolved and finally choose the resolved
version to be downloaded back to her local file system to be
committed. That is how it would be done if Alice can resolve
the merge just by herself. The real benefit of our tool, however,
is the possibility to invite others to the same conflict-resolution
session, which will be described next.

When Alice, the original resolver, has opened the conflicted
file in the web-based merge tool, she has the option to invite
other developers to collaboratively resolve the conflict. Inviting
is done by providing others a URL pointing to the same
conflict-resolution session. The URL can be given to anybody



Fig. 1. The basic workflow of collaborative conflict-resolving.

by any means, such as pasting it into a instant-messaging chat
with Bob. The name and email address of the author of the
commit that the user is trying to merge with is provided for
convenience. Our tool also contains a rudimentary Doodle10

integration. Doodle allows people to schedule an event (such as
a conflict resolution session) by letting each participant mark
the time slots on which they are available, and thus choose
the best matching time for the event. Similar integration could
be done to any collaboration tool. In some cases, a commit is
combined with continuous integration (CI) system, and then
CI could initialize the collaborative resolving.

Having connected to the merge tool, all the collaborators can
edit the conflicted file in real time and mark conflicted sections
as resolved. The tool also offers a chat box where the users can
discuss issues such as how to best resolve the conflict. When
all the conflicted sections are marked as resolved, the original
resolver can apply the merge. When the merge is applied, the
conflict resolving session ends, the tool downloads the newly
resolved version of the code back to the original resolvers
local file system and notifies Git of a successful merge. Thus,
the file is ready to be committed. A sequence diagram of a
successful merge resolution session is presented in Figure 1.

The URL provided to other collaborators, and thus their
view of the tool, is a bit different from that of the original
resolver. Only the original resolver has the option to either
cancel the merge or to apply the merge. Also, the possibility to
schedule a Doodle event and other interface elements for invit-
ing collaborators are only available for the original resolver.

10http://doodle.com/

The original resolver is also the only person that needs to have
our tool configured as a Git mergetool. Starting the tool is like
starting any traditional single-user Git mergetool, except that
unlike usually, our tool launches the conflict-resolving session
inside a web browser. Other participants do not need to have
anything installed except a web browser with which to connect
to a URL they received from the original resolver.

B. Delayed Resolving of a Conflict

When a need for a collaborative conflict-resolving emerges,
other collaborators may not be available at that very moment.
In such a case, the original resolver may choose to discard
the merge for the moment and wait for all the collaborators to
schedule a time for a conflict-resolution session. The original
resolver may continue to work on her own branch and later
incorporate all her latest changes to the same conflict resolving
session that has already been scheduled.

Let us say that Alice tried to merge her commit A1 with
Bob’s concurrent commit B1, resulting in a merge conflict
M1. Alice could not resolve the conflict by herself, so she
invited Bob to a collaborative conflict-resolving session. Un-
fortunately, Bob was unavailable at that time, so Alice, after
sending an invite to Bob, chose to discard the merge for now
and to continue further development on her own branch while
waiting for Bob to schedule a conflict-resolving session. Later,
before the session takes place, Alice can attempt to merge the
latest commit in her branch with those of Bob, resulting in
a conflict M2. Even though the two conflicts, M1 and M2,
are different from the version control systems point of view,
the same conflict-resolving session and the same URLs can
be used without the need to do another round of inviting and
scheduling. In the unlikely event of the merge between A2 and
B1 executing automatically, the whole collaborative conflict-
resolving session is canceled.

IV. IMPLEMENTATION

Our implementation of a tool for real-time collaborative
conflict-resolving consists of two components: a Git mergetool
that integrates our solution to a Git version control system
and the actual user interface of our tool, a web application for
collaborative conflict resolution.

The first component of our tool is a locally executed script
that implements the Git mergetool interface. Namely, it takes
as an argument a list of filenames as described earlier, and
returns zero indicating a successful merge and nonzero for an
unsuccessful merge. The mergetool is written in Python11 so
it can be run on all the major operating systems. The tool
collects some information from Git, such as the authors of the
current and the merged commits, and sends them, along with
the conflicted file, to the web application via HTTP (Hypertext
Transfer Protocol).

After successfully sending the file, the mergetool launches
a web browser pointing to a URL that it received from the
web application. Then, the mergetool makes another HTTP

11http://www.python.org/



connection to the web application to wait for the original
resolver to either declare the merge as successful, or to cancel
the merge, after which the tool returns the result back to Git.

The implementation of our web-based conflict resolution
tool is based on CoRED, enabling real-time collaborative
editing of the conflicted file. The conflicted parts of the file
are presented as CoRED markers. The current implementation
directly gets the conflicted sections from the MERGED file
provided by Git. In addition to editing the file manually, users
are offered a shortcut to use any of the two versions of a
conflicted part. Users can also mark a conflicted section as
resolved and chat with each other. All the changes are sent
to other collaborators nearly instantly, using HTML5 Web
Sockets [7] if available.

When creating a new conflict-resolving session, the web
application generates an authentication token. The token is
part of the URL sent to the mergetool script. The authenti-
cation token is a randomly generated string, unique for each
(Session,OrigResolver) pair, where Session is the session
id and OrigResolver is a boolean indicating whether the user
is the original resolver. The authentication token (as well as
the URL containing it) acts as a password: it is only possible
to join a conflict-resolving session if you know the URL.

V. DISCUSSION

In this paper, we described a novel approach to resolving
merge conflicts: utilization of real-time collaboration among
software project participants. As a concrete contribution, we
presented a web-based tool that enables multiple users to
collaboratively resolve merge conflicts, occurring in a Git
version control system.

Our tool, although implemented for Git, could also be used
with other version control systems with modest modification.
Only the local script (mergetool in the case of Git) needs to
be reimplemented and the web application can be used as is.
In fact, the web application could be used to resolve any kind
of merge conflict; it does not even have to originate from a
version control system. Just a local executable to upload and
download data to/from web application is needed.

The web-based interface could be further improved by
implementing more of the features seen in existing single-
user merge tools, such as side-by-side views of both versions
and their common ancestor, better visualization of changes,
and more intuitive methods for choosing which part of which
version to use. Additionally, the presence awareness [2] of
the collaborative tool could be improved by, for example,
showing the cursor positions of other collaborations, and
clearly presenting which part of the code was written by
whom, and whether it was written during the conflict-resolving
session or earlier. Another important point for improvement
would be to provide a more comprehensive view of the
conflicted project, not just a single conflicted file as in the
current implementation. However, in terms of Git integration, a
problem with this multi-file approach is that resolving conflicts
spanning multiple files is not directly supported by the Git
mergetool workflow.

Another interesting question is who should be invited to a
conflict-resolving session. An obvious choice, along with the
original resolver, is the author of the commit that is on the
other side of the merge. However, there might be cases where
additional collaborators provide benefit. In version control
systems, it is possible to find out who have been editing a
certain line in a file, and use that information to invite people
who have been editing the conflicted file lately. Even more
advanced methods for finding a person with the most expertise
in some aspect of a software project could be used, such as
presented in [9].

As future work, we aim to test our solution for merge
conflict resolution in actual real-world cases, first in a limited
setting, and hopefully later, as the tool is released as open-
source software, with a larger number of users. Based on those
results we may better be able to justify our approach as well
as understand the situations where it provides benefits. After
real-word testing it is also easier to see how the tool can be
further improved.

REFERENCES

[1] V. Berzins. On merging software extensions. Acta Informatica, 23:607–
619, 1986. 10.1007/BF00264309.

[2] J. Espinosa, S. Slaughter, R. Kraut, and J. Herbsleb. Team knowledge
and coordination in geographically distributed software development. J.
Manage. Inf. Syst., 24(1):135–169, July 2007.

[3] N. Fraser. Differential synchronization. In Proceedings of the 9th ACM
symposium on Document engineering, DocEng ’09, pages 13–20, New
York, NY, USA, 2009. ACM.

[4] M. Goldman, G. Little, and R. C. Miller. Real-time collaborative coding
in a web ide. In Proceedings of the 24th annual ACM symposium on
User interface software and technology, UIST ’11, pages 155–164, New
York, NY, USA, 2011. ACM.

[5] M. Grönroos. Book of Vaadin, 4th ed. Uniprint, Turku, Finland, 2011.
[6] J. Lautamäki, A. Nieminen, J. Koskinen, T. Aho, T. Mikkonen, and

M. Englund. Cored: browser-based collaborative real-time editor for
java web applications. In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, CSCW ’12, pages 1307–1316,
New York, NY, USA, 2012. ACM.

[7] P. Lubbers and F. Greko. Html5 web sockets: A quantum leap
in scalability for the web. http://www.websocket.org/quantum.html.
[Online; accessed 2012-09-17].

[8] T. Mikkonen and A. Nieminen. Elements for a cloud-based development
environment: online collaboration, revision control, and continuous
integration. In Proceedings of the WICSA/ECSA 2012 Companion
Volume, WICSA/ECSA ’12, pages 14–20, New York, NY, USA, 2012.
ACM.

[9] A. Mockus and J. D. Herbsleb. Expertise browser: a quantitative ap-
proach to identifying expertise. In Proceedings of the 24th International
Conference on Software Engineering, ICSE ’02, pages 503–512, New
York, NY, USA, 2002. ACM.

[10] B. O’Sullivan. Making sense of revision-control systems. Commun.
ACM, 52(9):56–62, Sept. 2009.

[11] D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes in large-scale
software development: an observational case study. ACM Trans. Softw.
Eng. Methodol., 10(3):308–337, July 2001.

[12] D. Spinellis. Version control systems. Software, IEEE, 22(5):108 – 109,
sept.-oct. 2005.

[13] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng. The impact
of social media on software engineering practices and tools. In Pro-
ceedings of the FSE/SDP workshop on Future of software engineering
research, FoSER ’10, pages 359–364, New York, NY, USA, 2010. ACM.

[14] C. Sun and C. Ellis. Operational transformation in real-time group
editors: issues, algorithms, and achievements. In Proceedings of the
1998 ACM conference on Computer supported cooperative work, CSCW
’98, pages 59–68, New York, NY, USA, 1998. ACM.


