
Case-Study: How to Increase the Value of
Computer Science Projects in Higher Education

Daniel Kadenbach, Carsten Kleiner
University of Applied Sciences and Arts Hannover, Germany

{daniel.kadenbach, carsten.kleiner}@fh-hannover.de

Abstract—This paper describes the efforts in the department of
computer science of the University of Applied Sciences and Arts
Hannover to bring forward and sustainably increase the value of
research and teaching projects. The aim is to optimally support
these projects which are carried out by students and staff mem-
bers, using appropriate software tools and virtual environments.
The special requirements for such a supportive system, which
were gathered and refined over time, are analyzed in detail. These
requirements serve as a foundation of our implementation. Its
evolution is described in consecutive stages which continuously
improve the quality of project support by learning from each
stage. Furthermore, challenges and benefits of supportive systems
are discussed and a vision for future developments towards a
virtual, federated value-creating community is drafted.

Index Terms—cscw, collaboration, project support, virtual
communities, education

I. Introduction

The aim of this paper is to describe ways to bring forward
and sustainably increase the value of research and teaching
projects in higher education. Bringing projects forward in this
context means to support and disburden their implementation.
This can be accomplished by facilitating communication,
cooperation and the use of shared resources for project teams
by means of suitable tools. It is especially important when
team members do not always work together at the same place
to improve the awareness of the team members. Depending
on the project, the supporting application of communication
systems like email, mailing lists or instant messengers, of
knowledge management systems like content management sys-
tems in general, especially wikis and of common repositories,
can help to reach this goal.

There are two ways investigated to increase the value of
projects: Firstly, by giving them a framework by means of a
better and coordinated support which improves their develop-
ment and can lead to better results. Secondly, by creating an
increased awareness of the project not only within the project
team and project lifetime but also beyond it. A project should
be visible and durably accessible. Such greater visibility also
leads to increased possibilities concerning the use of the results
of the project, a greater exchange of knowledge and the
possibility to learn from each other. Therefore, it increases
the value of projects not only for single persons but also for
the community and leads to a greater motivation to achieve
results of high quality. By means of a lasting availability of
those results, the value of single projects increases sustainably.
This whole process is illustrated in Figure 1.

Fig. 1. Potential Positive Effects of Project Support

An ideal supporting environment should not only supply
single supporting tools but also integrate them into a complete
system and add comprehensive overall functions to benefit
from synergistic effects and social mechanisms. Still, sup-
porting systems can also lead to risks for projects: For each
project, a reasonable choice of tools needs to be made. The
tools chosen should not only depend on the project’s topic but
also on the experiences and preferences of the team members
and the team culture. The acceptance by the team is essential.
Inappropriate tools can not only create needless additional
expenses but also decrease the motivation of team members
endangering the progress. Therefore, such systems should be
implemented carefully and their use should be a free choice.

A. Motivation and Aims

We have been motivated to create better and more sus-
tainable support for projects by our observation of the usual
development of many previous projects. This development
has been characterized by a lack of visibility which led to
the fact that brilliant achievements of single project teams
even became inaccessible shortly after the end of their project
lifetime. In many cases, special supportive tools which had
been administrated by the project team itself and had not
been accessible for other teams, were used in those projects.
Most often, those tools also disappeared after the projects
were finished. Thus, the knowledge concerning the support
and results of projects has neither been accumulated nor been
available for others. How tragic is it if the results of projects
are above the ordinary, but those results are not used any
further and are not even visible? And how tragic is it if projects
are often implemented completely isolated, so that there is no

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250425



possibility to learn from others, to profit by an exchange of
knowledge and ideas or to build on their results?

The main goals concerning the improvement of this situation
already arise from those questions:

1) Supporting projects by providing optimal sets of tools
2) Protection of the content of projects and the availability

and preservation of access to it – therefore enabling its
reuse and further development

3) Improvement of creation of useful documentation, inter-
action, communication and motivation

4) Encouragement of reasonable and sustainable projects
Implementing a supporting system which fulfills the listed

goals poses a great challenge. The goal of this paper is to
highlight in which way this challenge has been faced in our
department and which experiences we gained, so others may
benefit from them. Since the year 2009 we are working on
such a system, which is constantly improving and refined and
has been used by students and staff members from its start on.
Alas, our efforts are restricted because only one staff member
with a half-time position may concentrate on this task.

B. Related Work

A general introduction into project support systems can be
found in [1]. Different approaches to support projects in higher
education are presented in [2] and [3] among others. We are
focusing more on the requirements which allow to evaluate
different systems and the investigation of different stages of
project support.

The design of our system and the selection of its compo-
nents was heavily influenced by the experiences and research
of other authors [4] [5] [6]. So [7] and [8] describe their ex-
periences with project management supportive tools like Trac,
source code repositories like Subversion and the use of wikis
to support projects for capstone projects. The benefits of the
use of wikis to accumulate and preserve knowledge has also
already been researched. [9] shows their importance to create
an organizational memory. [10] investigate the challenges of
the use of wikis in organizations. How to support learning
with collaborative environments, which is also an aim of the
system described in this paper, is also discussed in [11] and
[12].

Furthermore, this paper is based on the experiences of sev-
eral years of project support at our department, and therefore
also on previous results presented in [13], [14] which are
extended and refined. The first paper from 2009 describes
fundamental aspects and requirements for the conception of
project supporting systems using social software mechanisms,
whereas the second paper discusses the results of two surveys
carried out in the department to incrementally refine the
requirements and draft trends. In contrast to that, this paper
builds on those results and describes the experiences with
an actual implementations of the afore drafted system in
consecutive stages. In contrast to that, this paper builds on
those results and describes the experiences with an actual
implementations of the afore drafted system in consecutive
stages.

C. Structure

Section two investigates the requirement analysis for the
support of projects in our department. The analysis process
in this special environment with its unique difficulties is
explained and the results gathered are outlined. Building on
section two, sections 3-7 show the evolution of implementation
stages which have been carried out and are planned to meet
the requirements, summing up our experiences, while section 8
describes alternative approaches. Finally, section 9 summarizes
our conclusions and open questions.

II. Requirements for Project Support

Like with many systems in the field of CSCW, a require-
ment analysis regarding project support has to take special
impeding factors into account. Those factors will be explained
in the following subsection. They lead to the fact that the
requirement analysis can only be a continuing, incremental
and iterative process. Following those observations, the con-
crete methodology and the current results are explained. The
requirement analysis can already be seen as as a valuable
conclusion because of the difficulties which are connected with
its implementation. Still, the results of it in any specific project
of course do not have a general character but rather have to
be adapted to the existing circumstances of each individual
project.

A. Challenges of the Requirement Analysis

Diversity of Projects. Projects often differ significantly
concerning aspects such as their complexity (concerning the
size of the team, the number of stakeholders and the project
lifetime), content, aims, applied technologies, experiences and
preferences of the team members, the team spirit, control
mechanisms and forms of communication. Project support
has to respect those differences. Different projects will need
different supportive tools and tools which are perfectly suited
to support one project can be a burden for others. Therefore,
each project has to have the option to choose supportive tools
individually, which just leads to the next limiting factor: the
experiences of the project team.

Experiences of Target Group. The fact that every per-
son can only give answers according to her or his horizon
of experience and therefore, may fail to discover important
aspects, always has to be considered if surveys are conducted
among people who will use project support in the future. For
example, a person who has not yet gained experience with
the work with wikis will hardly be able to make a statement
about future perspectives concerning the use of wikis in her or
his projects. Therefore it is very important to make students
familiar with as many tools as possible. This is the only way
in which they can gain the ability to evaluate the value of these
tools and decide for or against certain tools for their projects.

Constant Development & Challenging Evaluation. New
tools which are suitable for the support of projects are con-
stantly developed as well as there are new versions of existing
tools. Additionally, there are always new technologies used to
develop projects. Because of those innovations, new promising



tools and new versions of existing tools have to be evaluated
continuously to be able to assess their value. Beyond that,
advantages, disadvantages and challenges which may arise
from the use of a tool can not be evaluated easily. It is
not enough to analyze, list and test the functional and non-
functional features of a tool. In addition to the integration
of the tool into the existing team infrastructure and culture,
another crucial factor is the acceptance by the individual
project teams which can hardly be estimated beforehand. Most
often, it can only be evaluated in the course of the application
of the tool. In this way, experiences develop. However, those
experiences can only be applied to other projects with great
carefulness because of the diversity of projects. Still, tools
with great potential can be distinguished from tools with
less potential and the former can be classified into groups
according to the type of project which can benefit the most
from them.

B. Methodology

The first requirements had been collected by observing
student and staff projects and their special needs. But to create
a comprehensive supporting system which should also be able
to meet further needs and to improve the offered services
for student and staff projects, two surveys have been carried
out, which led to incremental improvements of the support.
In February 2009 and November 2010, students were asked
detailed questions about their experiences and requirements
for their projects. The iterative-incremental approach to the
requirements analysis can already be recognized in those
two surveys. The results of the surveys had to be evaluated
carefully because of the described limitations concerning the
horizon of experience of the respondents. As the core of the
questions had been the same in both surveys, trends could
be deduced from the results [14]. Furthermore requirements
gathered from experiences of the daily work with project teams
were constantly collected. This made it possible to directly
react to them by evaluating possible tools and testing the
most mature ones directly with the teams in their projects.
Additionally, mostly technical requirements came up while
designing and implementing supportive functions.

C. Results

Using the aforementioned sources of information, previ-
ous research and experiences from projects the following
requirements have been identified for a supporting system for
departments with focus on software engineering projects. They
are divided into functional and non-functional requirements, as
shown in Table I and Table II (In these tables the importance
of the requirements for our implementation is additionally
weighted with three to one bullets. For functional requirements
three bullets mean “absolutely necessary”, two bullets “very
sensible” and one bullet “nice to have”). Even though these
requirements might seem obvious, the essence is to integrate
them altogether in a single application to utilize their potential
and synergetic effects. This has not been done hitherto in a
contending way to the knowledge of the authors.

TABLE I
List of Functional Requirements

ID Functional Requirements Importance

R1.1 User and Project Administration � � �

R1.2 Project Portal � � �

R1.3 Version Control Systems � � �

R1.4 Knowledge Management � � �

R1.5 Integration and Social Functions � � �

R1.6 Issue Tracking Systems � � �

R1.7 Project Management Support � �

R1.8 Continuous Integration Environments � �

R1.9 Communication System Support �

R1.10 Artifact Repositories �

R1.11 Export Functions �

TABLE II
List of Non-Functional Requirements

ID Non-Functional Requirements Importance

R2.1 User Acceptance � � �

R2.2 Additional Value vs. Additional Effort � � �

R2.3 Teaching & Training � � �

R2.4 User Support � �

R2.5 Response Time � �

R2.6 Extensibility � �

R2.7 Self Administration & Automation � �

R2.8 System Safety & Security � �

R2.9 Updates �

1) Functional Requirements:
• User and Project Administration.(R1.1) To be able to

offer different tools and services user-friendly and to
decrease administrative overhead, the system needs a
central user management component. Thus, users only
need to create one account to use all the different services
of the system. Projects with their corresponding teams
should also be manageable within this component, so that
all necessary settings for the subsystems can be performed
automatically. If applicable, existing user directories (e.g.
via LDAP) should be integrated.

• Project Portal.(R1.2) A central place for all projects is
important to ensure the visibility of projects beyond their
own boundaries and therefore, to facilitate its sustainabil-
ity, better interaction and mutual learning. Such a portal
should clearly list all projects and teams and should offer
links to all project artifacts as well as ways to interact
with the projects. It can then be seen as a project portfolio,
which can also represent the activities of the department
to a broader audience.

• Version Control Systems.(R1.3) A version control system
can be of great value in many situations. Thus, project
members can collectively work with a common file
repository, investigate all changes of the files made by
themselves and others and even be informed instantly
about changes of other users. This can greatly improve the



awareness in the team. Additionally, other users can see
changes and the progress of the project early and can give
feedback. Even more complex workflows are available if
using a sophisticated version control system like Git (for
example, one person of the team who reviews all changes
before they are committed to the repository to ensure their
quality, could be specified).

• Knowledge Management.(R1.4) Another crucial aspect
in every project is how to deal with the gathered in-
formation, experiences and knowledge, whose value is
often significant. Without special tools which ensure the
visibility of this information even beyond the project
lifetime, they often sink into oblivion soon after projects
are finished. Knowledge management can greatly improve
this situation if suitable tools are chosen and if they are
used sensible. They can offer a central place to gather all
information where everyone can find, edit and update it,
therefore greatly simplifying the documentation process
and making it more attractive. It is much more likely
that a useful documentation will be created when each
team member can directly, immediately and without much
effort edit and update her or his own special part of the
documentation in a wiki. Additionally, this improves the
possibility to receive feedback. Blogs are well suited to
document the experiences with and solutions for daily
problems in projects, which otherwise would be forgotten
soon and would require nearly the same amount of time
and effort the next time they arise.

• Integration and Social Functions.(R1.5) Bringing all
these different functions together in a sensible way re-
quires their integration into a surrounding system which
acts as a common interface to the functions. Only then the
different functions can be accessed easily, and even more
important: Only then synergy effects emerging from the
combination of tools can be utilized. Common functions
of the surrounding system should not only enable the user
to control and access the components but also to search,
tag, comment and rate artifacts in all of them.

• Issue Tracking Systems (ITS).(R1.6) ITS are ideally for
collecting and processing bug reports, since they also
offer feedback mechanisms to the person who added the
report. They are also useful to acquire new requirements
through feature requests and therefore improve the inter-
action with the project when people outside the project
team are allowed to add tickets. ITS can even be used
as a tool for project management when tasks are tracked
and multiple tasks are combined into milestones.

• Project Management.(R1.7) Supporting the project man-
agement with tools can be sensible, especially in complex
projects. But also smaller projects can benefit if suitable
tools are used in the right way. Being able to view all open
tasks, their owners and their current state, to bundle tasks
into milestones and monitor the progress and problems,
to add new requirements and feature requests at a central
visible location can greatly increase team awareness. Ad-
mittedly, this requires that the chosen system is accepted

by the team and used sensible. But in this case, tutors
or customers of the project can also easily monitor the
project progress and interact with the project in a defined
and self-documenting way.

• Continuous Integration Environments.(R1.8) Auto-
mated, iterative tests of software are a powerful way
to develop more stable and secure software right from
the beginning of its development, also beyond agile and
test-driven development per se. Continuous Integration
(CI) Environments reduce the effort to automatically test
software and can support the developers even in other
ways. Except from automatically checking out the project
after a commit to the version control system, a CI server
can build the project, run all tests, create code metrics,
run static code analysis tools or code standard conformity
tests and generate reports with all the gathered data – and
all of that completely automatically.

• Communication System Support.(R1.9) A mail system
is often already part of the school’s infrastructure and
therefore can easily be used to support asynchronous
communication and to be integrated into several tools. For
example, most version control systems can be configured
to send mails to project participants if some files have
been changed automatically, including a summary of
the changes and its author. Mailing lists whose com-
munication is automatically archived are a very use-
ful extension. Instant messengers, whose infrastructure
is freely available, offer increasingly useful functional-
ity for synchronous communication support. Particularly
logging important conversations, so that the team can
refer to them, or using possibilities like sending files,
sharing desktops, initiating conferences or using shared
virtual white boards can improve the communication
of distributed working team members. Since all those
communication tools are normally already in use by
users of the system and use independent infrastructure,
this requirement has been weighted low for the central
supporting system.

• Artifact Repositories.(R1.10) Especially in complex soft-
ware engineering projects with many dependencies to
other libraries, the use of artifact repositories provides
advantages. If these libraries can be fetched from central
repositories, the dependency handling can be left to
special build tools like maven which automatically fetch
all required versions for all dependencies. Additionally,
artifacts which are uploaded to such repositories are also
available to other developers.

• Export Functions.(R1.11) Ideally, all project contents
should be exportable from the system, so that the users
are not bound to it and can use or refine them in other
environments or just archive them.

2) Non-Functional Requirements:

• User Acceptance.(R2.1) A crucial non-functional require-
ment is the acceptance by the users of the system. This
requirement can hardly be estimated beforehand because



it depends on many non-functional requirements as well
as on a few factors which are hard to measure like the
experience of the team, its team spirit, its preferences, its
ability to learn and its enthusiasm.

• Surplus Values.(R2.2) It is important that the system
and its functions contain an additional value which is
clearly recognizable for the users from the beginning
on. This additional value has to exceed the additional
effort to use the system to a great extend. The effort
concerning the training of new users has to be kept at
a minimum. This can be reached by means of elaborate,
intuitively operable, well-documented tools and teaching.
Furthermore, the daily overhead to use the system has
to stay minimal compared to the directly recognizable
additional value.

• Teaching and Training.(R2.3) Teaching and training users
of the system should never be neglected. It enables future
users to get an idea of it and to use its functions easily.
So they better understand the benefits and drawbacks of
the functions and know how to use them.

• User Support.(R2.4) Errors in the system have to be
detected and fixed quickly. The response time to support
requests should be kept at a minimum. Proposals of
the users concerning changes, extensions and the further
development should always be investigated. Therefore it
makes sense to use one of the mentioned ticket systems
for the system itself. In this way, the support and further
development can be shaped transparently.

• Response Time.(R2.5) In such a complex system, response
times of its services are very important because fast
responses are critical for user acceptance. For example,
the multitude of different components can easily consume
to much RAM if not configured properly, which can lead
to too much swapping of the operating system which
again can slow down access to services in the range of
many seconds per response.

• Extensibility.(R2.6) The system has to be oriented towards
extensibility due to constantly changing and refining
requirements which have to be respected. The integration
of new components should be possible with the least
possible effort.

• Self Administration & Automation.(R2.7) To be able
to provide such a complex system at all, automation is
needed for every process where it can be implemented.
As soon as a relatively small number of users and
projects is exceeded, it becomes completely impossible
to administer and maintain such a system manually in
a satisfyingly way. Self administration should be used
wherever possible, because the system and its functions
should anyhow be used freely. Users should be able to
use all functions through an intuitive interface, creating
their user accounts, projects and choosing and activating
required functions by themselves for each project utilizing
the automation. This is also strictly necessary to provide
the service for a great number of users and minimize
administration overhead.

Fig. 2. Overview of Project Support Stage Zero – Only Supply Hardware

• System Safety and Security.(R2.8) A system like this one,
composed out of a multitude of subsystems, inevitably
has to be reviewed and monitored carefully to ensure its
safety and security. This is even more valid if the system
or some of its functions are exposed to the Internet, which
seems essential to offer a good usability. To monitor
the system, automatic tools can be used for intrusion
detection and system health monitoring. Of course, the
operating system and all components have to be updated
regularly to the most stable version, which can quickly
become a laborious task. Part of the safety and security
concept should be a solid, tested backup concept for all
user data and also the system itself.

• Updates.(R2.9) Every component of the system should
be updated regularly to its last stable version to ensure
security and offer new functionality.

Just like the requirement analysis, an implementation has
to be iterated constantly to sufficiently adapt to the demands
of the users and projects and to take current developments
and newly available tools into account. Due to the variety of
different requirements, it seems nearly impossible to develop a
solution from the ground up or to find a single software system
which already implements them all. Thus in the implementa-
tion, appropriate software components have to be found and
sensibly integrated into an overall system to optimally fulfill
the requirements. To deal with this huge amount of different
requirements for supporting projects, our implementation has
passed through several incremental steps in the course of
time, using the gathered experiences to fulfill the requirements
better. The advantages and disadvantages of these iterations,
so-called stages of project support, shall be exemplified in the
following. The stages are listed chronologically, whereas the
potential of the project support increases from stage to stage.
Thus this model may also allow to classify the state of project
support in other institutions. Every implemented stage gener-
ated positive feedback and was used extensively. Succeeding
stages compensate shortcomings or deal with challenges of the
previous ones to clearly enhance their benefits.



III. Project Support Stage Zero – Only Supply Hardware
A. Description

In this stage, projects are supported by the department
only by providing them with hardware, e.g. servers, for their
work. The project team then has to administer and use the
provided hardware autonomously by installing and configuring
operating systems, software and tools as needed. For example,
a project team could install a version control system like
Subversion on its server, configure it and offer access for the
team members to use it.

B. Implementation

The department only has to provide and manage hardware
for the projects. Since the employee to which this task is
assigned does not have to know anything about project sup-
porting systems, she or he could be a technical assistant from
the network or infrastructure team. This stage is shown in
Figure 2.

C. Assessment

The advantages and disadvantages are obvious (a plus
sign marks an advantage, a minus sign a disadvantage or
challenge):

+ The administration overhead for the employee of the
department is rather small. The provision of hardware like
servers can be carried out by a member of the department
network team with no further special knowledge about
project support. Installations are carried out by the project
teams, so that the computers only have to be brought back
into their original state after a project finishes.

+ The project team has maximum freedom on how to use
its resources, for example: which operating system to use
and which software and tools to install.

– The usage of the supplied resources is significantly re-
stricted by the horizon of experiences and the administra-
tive competence of the project team members. Students
who have never worked with a version control system
before will very likely not install one and struggle through
all its configuration issues. The time which the project
team can offer for administrative tasks also limits the
usage of the resources.

– Gained knowledge and results are not collected at a
central, sustainable and accessible place, so they will very
likely vanish by the end of the project. Additionally, there
is no central place where knowledge regarding project
support and the administration of tools is gathered. So
even if a project team evaluates particularly suitable tools
in its project, other teams will probably not benefit from
it. Even worse: The project environments and data are
very likely to be lost after the lifetime of the projects,
when the hardware is returned. The chance to incremen-
tally build on or enhance carried out projects, which is a
central aspect of computer science, is lost.

– Access from outside of the department network may be a
problem because of the security risks which may originate
from self-administered servers.

Fig. 3. Overview of Project Support Stage One – Central Project Support
by Project Assistant

IV. Project Support Stage One – Central Project Support by
Project Assistant

A. Description

In this stage, an employee who is exclusively dedicated to
assist projects and who is called project assistant (PA) from
now on is introduced. The PA is then able to perform recurring
administrative tasks at a central place, relieving the project
teams. Thus, she or he is also able to gather deeper knowledge
about these tasks and document them accordingly, preserving
all experiences.

The PA is responsible for installing and configuring all tools
for the project support on central servers of the department.
Therefore, the PA is likely to use automation for repetitive
tasks, speeding up the process significantly. This stage is
illustrated in Figure 3.

B. Implementation

The PA has to install and administer central project servers,
which are at least accessible from the department network but
preferably also from the Internet. Even if they do not offer a
project portal to expose some projects to a greater audience,
the access from the Internet will allow the project teams to
use their project tools from everywhere. The PA will probably
install and configure commonly used tools like version control
management software and the required infrastructure for them,
so that project teams can be provided with accounts to use the
services quickly. The PA also has to keep the project servers,
their services and tools up to date and ensure their safety by
implementing an automated backup strategy.

Since the PA is the central person for project support, she
or he will gather knowledge about CSCW, experiences with
available tools and feedback from the users of the project
servers over time and should refine all this information and
make it available to the users, so that it is not lost like in
the previous stage. Therefore, the PA can also assist project
teams as a consultant and should offer training courses, so that
students can easily learn how to use the supportive tools.



C. Assessment

+ Unburdens the project teams who do not have to perform
administrative tasks themselves any more and therefore
are able to use a far more sophisticated project support
environment. This also makes it more attractive for stu-
dents to try new tools and evaluate their value for their
projects, because they do not have the overhead to install
and administer them and therefore encourages learning.
Additionally, more complex projects are possible since
the teams can concentrate on their projects.

+ Repetitive tasks can be automated by the PA.
+ Services which are administered by the PA are more likely

to be accessible also outside of the department network.
+ Furthermore, the PA can install special or new tools if

project teams need them and document experiences with
them, also offering them to other teams if applicable.

+ The chance to have sustainable projects increases, be-
cause project data is stored at a central well-known place
and there is at least one person, the PA, who has an
overview of all projects.

– The overhead to manage all the projects increases rapidly
with their number and may soon exceed the PA’s time.
The manual administration of different tools, even with
the help of scripts, may not be feasible over time. Of-
ten user accounts have to be configured for every tool
separately and updating the tools manually is very time
consuming.

– Without a central management software, such a system
tends to become hard to manage for its users. It is likely
that even if the project data of a specific project still exists
in the system, it is hard or impossible to find and use
or even be aware of it. Therefore, the sustainability and
chance to reuse projects is compromised.

It has to be mentioned that even in a stage 1 project
environment, it can be sensible to provide special projects with
stage 0 support if the project characteristics will profit by it.
For example, a technically high experienced team which needs
very special supporting software may benefit from dedicated
hardware.

V. Project Support Stage Two – CentralManagement
Software with UserManagement and User Interface

A. Description

In this stage, a central management software is introduced
to compensate the disadvantages of the previous stage. This
management software also controls a central user database
which should be used by as many tools as possible to avoid
multiple user accounts for a single user for different tools
or projects. The management of the tools is automated by
the management software. The functions of the management
software are accessible through a user interface (preferably a
web interface), so they can be directly used by the end-users
and normally do not have to be administered by the PA. In
this way, the users are able to manage the most frequently
used functions of the system themselves through the user

Fig. 4. Overview of Project Support Stage Two – Central Management
Software with User Management and User Interface

interface and only have to use the help of the PA if they have
special requirements or problems. Additionally, the central
management software can ideally take over all administrative
tasks for common tools.

B. Implementation

Since this stage is the last one we have fully implemented,
we will have a closer look at its implementation.

1) Implementation Process: One iteration in the implemen-
tation process consists of the following phases:
• Selection of Appropriate Tools. Since it is very unlikely

that a single tool can satisfy all requirements, a set of
appropriate tools for each category has to be chosen
using the results of the requirement analysis. Therefore,
available tools have to be found, categorized, evaluated
and rated, which by itself can be a sophisticated process.
In some situations the only reliable method to measure the
user acceptance of a tool is to evaluate it in real projects.
This especially applies for relatively new tools.

• Implementation or Improvement of Central User Inter-
face. The set of tools has to be integrated into an easy to
use user interface which offers access to the tools while
hiding all administrative details. The user interface has
to automate all administrative tasks and maximize the
potential of the different tools by integrating them in a
sensible, clearly arranged way, improving their interaction
and offering additional synergetic social and awareness
functions. It therefore has to:

– Manage a central user database, where new users can
autonomously create accounts which enable them to
create projects and manage their teams.

– Offer the possibility to instantiate tools for projects.
These instantiated tools have to use the central user
database and preferably should be accessible via a
single sign-on to the system, so the users do not have
to supply their credentials multiple times.

– Support project life cycles. Since many projects will
only last for a few weeks or months, the system has
to deal with a lot of projects which lose their main-
tainers and teams. It therefore should be possible that



TABLE III
Requirements and Selected Tools

Requirement Selected Tool

User and Project Management / Apache2, PHP-application
Portal MySQL-DB, LDAP

Version Control System Subversion, Git

Knowledge Management Wikis: Dokuwiki, Mediawiki
CMS: Joomla; Blog: Wordpress

Project Management Redmine, Trac

Communication Systems Email

Tracker Mantis, Bugzilla

Artifact Repositories Sonatype Nexus

Continuous Integration Server Jenkins

System Health Monitoring Munin

an orphaned project can be resumed and continued
by other users.

– Offer additional synergetic functions like a project
portal, feedback mechanisms, notifications, com-
menting and rating functions for projects and artifacts
to increase awareness and interaction between users.

• Awareness & Training. Beyond increasing the awareness
between users who actually use the system and other
users, projects and artifacts through the aforementioned
mechanisms, it is also very important to increase the
awareness of new users to the system. The implementa-
tion can only be a success if new users are introduced to
the system, motivated to use it and trained so that they are
able to assess the value of its functions and to fully utilize
them in their projects. The usage of supportive functions
should be a part of the curriculum, since it is an important
part of current software engineering practices.

• Gather Feedback & Usage Statistics. To constantly im-
prove the system, it is important to gather and process
direct and indirect user feedback. Direct feedback is
acquired by asking users about their experiences, likes
and dislikes. Indirect feedback by collecting anonymous
usage statistics to investigate how the services are used.

For our concrete implementation, two servers with Ubuntu
Linux are used. Table III shows the current selection of
supportive tools. In the course of the implementation, two
principles have been followed:
• Open-source software is used so the system is free

software as well and therefore, available for everyone.
• Self-management of the system is meant to minimize the

administrative effort and to let the users decide which
functions they want to use on their own. Of course, it
is essential that the users are educated appropriately and
know how to deal with the different functions.

2) User Interface: The administration of users, projects
and supportive functions is the core of the system. With their
school’s email address, users are able to generate accounts on
their own using a web interface. Afterwards, they can create
new projects, form teams and activate supporting functions for

Fig. 5. Project Server Homepage

their projects on their own. The web interface and the functions
behind it have been realized with the use of a PHP application.
PHP was used for its fast prototyping qualities, to respond to
changing requests quickly. At first, user data had been stored
in a MySQL database, but meanwhile has been switched to
an LDAP directory. Using LDAP has the advantage that many
tools already have an interface to LDAP directories and are
able to authenticate users through them. See Figure 5 for the
welcome-page of the user interface.

3) Evaluation: The following short evaluation shows usage
data from March 2011 to July 2012 for this stage, although
many projects (about 120) which have to be migrated to the
new system have been created on the server before. As can
be seen in Figure 6, after the introduction of the system
the number of users in the new user management system at
first increased only slowly. But then many users registered
in October, when new projects were started in courses and
the system was offered as a voluntary choice for the students.
This shows how important it is to integrate a supportive system
into the teaching itself. In this period, about 50 projects have
been created. Figure 7 shows the number of subversion and
git commits of these projects as well as the number for old
projects.

C. Assessment

+ For the first time it is now possible to offer sustainable,
accessible and perceptible projects through the central
user interface and the gathered user and project data
from the central management software. With this data,
a project portal can easily be generated as a part of the
user interface.

+ The high degree of automation allows a system which is
able to scale to high numbers of projects and users.

– The huge amount of user and project data which develops
over time may cause a loss of overview. As soon as
a user cannot find information easily, the sustainability
of all projects in the system is at risk. Therefore, the
system has to offer functions to search through all data,



2011-03
2011-06

2011-10
2012-01

2012-04
2012-07

0

50

100

150

200
N

um
be

r
of

U
se

rs
/P

ro
je

ct
s

Users
Projects

Fig. 6. User and Project Development in Stage Two

2011-03
2011-06

2011-10
2012-01

2012-04
2012-07

0

500

1,000

1,500

N
um

be
r

of
C

om
m

its

SVN Stage 1
SVN Stage 2
Git Stage 2

Fig. 7. Subversion- and Git-Commits in Stage One and Two

rate, comment and tag data and even to rate users and
their experiences themselves, so that their ratings can be
weighted. There is a great need for social functions.

– The development and maintenance efforts to realize the
central management software and user interface are very
high. A single PA is likely not able to implement and
maintain such a system.

VI. Project Support Stage Three – Central User Database
and Integration of Functions into Established Framework

A. Description

The aim of stage three tries is to compensate the high
development and maintenance efforts of stage two, which
exceeded the possibilities of our PA, while preserving its
benefits. For that it uses an existing software as the framework
of the management software component. These tools are
integrated as modules or plugins into the framework where
applicable. We are currently in the implementation process
of this stage. The structure of this stage is very similar to
that of the previous stage shown in Figure 4, only that the
user interface and project portal functions are now offered by
the integration platform and all services are modules of this
platform.

B. Implementation

As an integration platform, Redmine has been chosen.
Redmine is an open-source project management software
implemented with Ruby on Rails. It already offers many
functions, which would otherwise have to be implemented and
maintained independently for a central management compo-
nent as in stage two. These functions include: User and project

management functions (where an existing LDAP-directory can
also be used as a user-database) with role-based access control,
a simple project portal, a issue tracking system, version control
system integration, wikis, forums, feeds, email notifications,
news, documents, file management, calendar and Gantt charts.
Additionally, Redmine is already structured modularly, so that
new functions can be integrated as modules or plugins. Every
project can also choose which functions it wants to use and
therefore is not burdened with unused functions. Admittedly,
some functions are missing or need reworking for this use.
For example, Redmine does not create Subversion or Git
repositories. It can only use existing ones. Therefore this
functionality has to be added.

C. Assessment

+ Comprises all benefits from the previous stage.
+ Much of the burden of the implementation is relieved

by using Redmine as an integration platform for tools,
because it already offers many functions and can be
extended easily.

+ Plugins which are developed for Redmine may also be
used by everyone else.

– If direct changes to the codebase of Redmine are made,
they have to be applied to every new version of Redmine.

VII. Project Support Stage Four – Federation ofMultiple
Project Environments

A. Description

Ideally project support should not end at institutional bor-
ders. Quite the contrary, often the most interesting projects are
projects which form their teams beyond institution boundaries.
Therefore a system which allows users from different institu-
tions to collaborate easily on projects would be desirable. This
stage will introduce federation mechanisms to join multiple
project support environments together. This enables their users
to collaborate beyond institutional borders, but also respects
the demand of each institution to administer their project
support system themselves, internally using whatever system
suites them best. In this way they are able to respond to special
needs of their institution.

B. Implementation

Common interfaces of project environments have to be de-
fined, so that project environments of different institutions can
be joined together in a federation. User directories based on
LDAP already support federation. Only the project metadata
has to be shared between the environments through a well
defined interface. For example Redmine already exposes its
functions through a REST interface, upon which the federation
could be built. But generally every institution could implement
their own system, and could be part of the federation as long
as it also implements the defined interfaces. This could even
be a way to integrate external services like GitHub if they
support the interface or a proxy is used.



C. Assessment

+ Such an approach would finally enable different insti-
tutions to work together easily, so they are able to
jointly reach far higher aims with their projects but also
preserving their own project environment domains.

VIII. Project Support Alternatives – Use of Hosting
Services

An alternative to administer a project support environment
is to use services which offer this functionality partly for
free on the Internet (like SourceForge, GitHub and others).
This may be the perfect solution for many projects because
it relieves the institution from all administrative burdens. But
this approach also imposes some restriction on the projects and
the project support. Most free services require the projects to
be open source projects and only offered tools can be used.
Finally, institutional project support environments have the
special chance to form a social network in the institution and
benefit from this communities.

IX. Conclusion

The aim of this paper is to investigate ways of how to
increase the value of computer science projects especially
in the field of software engineering, research and teaching
to avoid projects which are only carried out for their own
sake and without a further value for the community. Most of
these ways are based upon a higher visibility, accessibility
and sustainability of the project and its results throughout the
whole project lifetime and beyond it. This can be the key to
more awareness, feedback and interaction with a project.

Students can gain the chance to learn from carried out
and running projects. Former projects can be accessed more
easily and it can be built on their results to create much
greater values in the long range. This has already been done
in our department, since there are projects which reuse results
from former ones. Admittedly, the so far described functions
and implementations of this paper will not be enough. It
is not enough to implement the described infrastructure for
projects: The infrastructure sure will provide the possibility
to manage projects and easily access, edit and update their
data in their lifetime and also beyond it, making it possible
to reuse their results. But it has to be considered that the
multitude of projects, which will eventually be created over
time, will complicate a sensible use of their results without
further actions. Therefore, the system has to be extended with
proper mechanisms to categorize, tag, search for and browse,
rate, review and comment projects and even their artifacts
weighed by the users’ reputation. This could also lead to an
increased interaction from which the quality of the projects
can benefit.

This is also a prerequisite for students to learn from other
projects. They have to have a possibility to judge which
projects and artifacts can be used as remarkable examples for
e.g. good code quality, well-written documentation, intelligent
framework use, or the use of special technologies. Ratings
and comments from experienced users can be of inestimable

value in this case. A student of architecture who did not
examine excellent former examples of architecture in his or
her studies is not imaginable. Nevertheless, many software
engineering students – future software architects – often do
not investigate excellent works in their studies. This situation
could be improved with such a system and the possibility to
learn from each other could be encouraged. The aim of such
a development is a virtual community whose members benefit
mutually from their work, creating common values.

References
[1] T. Gross and M. Koch, Computer-Supported Cooperative Work. Old-

enbourg, 2007.
[2] K. L. Reid and G. V. Wilson, “DrProject: a software project management

portal to meet educational needs,” in SIGCSE ’07: Proceedings of the
38th SIGCSE technical symposium on Computer science education.
New York, NY, USA: ACM, 2007, pp. 317–321.

[3] C. Herrmann, T. Kurpick, and B. Rumpe, “Sselab: A plug-in-based
framework for web-based project portals,” in Developing Tools as Plug-
ins (TOPI), 2012 2nd Workshop on, june 2012, pp. 61 –66.

[4] A. Majumdar and S. Krishna, “Social computing implications for tech-
nology usage and team interactions in virtual teams,” in Collaborative
Computing: Networking, Applications and Worksharing (Collaborate-
Com), 2011 7th International Conference on, oct. 2011, pp. 443 –450.

[5] M. Schaal and Y. Eren, “Dynamics of commitment and contribution
quality in collaborative communities,” in Collaborative Computing: Net-
working, Applications and Worksharing, 2007. CollaborateCom 2007.
International Conference on, nov. 2007, pp. 294 –298.

[6] K. Swigger, R. Brazile, B. Harrington, X. Peng, and F. Alpaslan,
“Teaching students how to work in global software development envi-
ronments,” in Collaborative Computing: Networking, Applications and
Worksharing, 2006. CollaborateCom 2006. International Conference on,
nov. 2006, pp. 1 –7.

[7] R. Keith Stanfill and Ethan I. Blackwelder, “Adapting Lightweight
Source Control and Project Management Software for Use by Mul-
tidisciplinary Product Design Teams,” in Proceedings of the National
Capstone Design Conference 2010, 2010.

[8] A. Radermacher, A. Helsene, and D. Knudson, “Improving Capstone
Courses with Content Management Systems and Virtualization,” in Pro-
ceedings of the National Capstone Design Conference 2010, 2010, on-
line: http://capstoneconf.org/resources/2010%20Proceedings/index.html.

[9] S. A. Munson, “Motivating and enabling organizational memory with a
workgroup wiki,” in Proceedings of the 4th International Symposium on
Wikis, ser. WikiSym ’08. New York, NY, USA: ACM, 2008, pp. 18:1–
18:5. [Online]. Available: http://doi.acm.org/10.1145/1822258.1822283

[10] J. Grudin and E. S. Poole, “Wikis at work: success factors and
challenges for sustainability of enterprise Wikis,” in Proceedings of
the 6th International Symposium on Wikis and Open Collaboration,
ser. WikiSym ’10. New York, NY, USA: ACM, 2010, pp. 5:1–5:8.
[Online]. Available: http://doi.acm.org/10.1145/1832772.1832780

[11] J. T. Langton, T. J. Hickey, and R. Alterman, “Integrating tools and
resources: a case study in building educational groupware for collabora-
tive programming,” J. Comput. Small Coll., vol. 19, no. 5, pp. 140–153,
2004.

[12] I. Giannoukos, I. Lykourentzou, G. Mpardis, V. Nikolopoulos,
V. Loumos, and E. Kayafas, “Collaborative e-learning environments
enhanced by wiki technologies,” in PETRA ’08: Proceedings of the 1st
international conference on PErvasive Technologies Related to Assistive
Environments. New York, NY, USA: ACM, 2008, pp. 1–5.

[13] D. Kadenbach and C. Kleiner, “Benefits and Challenges of Using Col-
laborative Development Environments with Social Software in Higher
Computer Science Education,” in Proceedings of the 3d International
Conference on Online Communities and Social Computing: Held as
Part of HCI International 2009, ser. OCSC ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 479–487.

[14] ——, “Recent Trends in Software Support for Online Communities for
Teaching and Research Projects in Higher Education,” in Proceedings
of the 4th International Conference on Online Communities and Social
Computing, ser. OCSC’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 50–59.


