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Abstract—In this paper, a generic data- and undo/redo-
consistency framework for realtime interactive collaboration
applications is evaluated in terms of performance and scalability.
Since data is represented based on Entity-Relationship-Models,
the framework is applicable in a wide range of domains. It
provides a set of state-focusing operations, that is able to
abstract arbitrary data interfaces. In addition, non-reflexive
meta-operations allow to undo/redo any user action. Consistency
is maintained by forcing concurrent operations to commute by
transitive precedence rules. Both convergence and undo/redo
control are mirrored at runtime to provide maximal performance
and scalability regarding session duration, data and number
of participants. These claims are successfully verified in this
paper by analyzing average execution times under a realtime
collaboration workload simulated in a turn-based system.

Index Terms—computer supported collaborative work
(CSCW), optimistic replication, eventual consistency,
commutative replicated data type (CRDT), any-undo/redo,
performance evaluation

I. INTRODUCTION

Realtime interactive collaboration applications (RTICAs)
provide a shared context, where a group of users can interact
simultaneously albeit being spatially separated. To achieve
high responsiveness and fluid interactivity, data representing
the context has to be optimistically replicated, requiring to
actively ensure eventual consistency [1]. In order to be useful,
consistency solutions do not only have to be correct, but
ought to perform as well. In particular, performance of state
retrieval and user action execution must not degrade when the
collaboration setting is scaled.

But many existing consistency solutions actually neither
perform nor scale well. In addition, most systems are limited
to linear data structures or do not provide necessary undo/redo
features. Hence, the authors recently proposed the generic
collaborative undoable entity-relationship-actions or CUERA
framework [2]. But up to now, performance and scalability
have only been examined regarding computational complexity.

Consequently, this paper aims at proving CUERA‘s actual
performance by measuring execution times. But instead of
observing real-world collaboration sessions, workloads are
generated in a turn-based simulation. This approach allows
to specifically and separately address parameters that affect
performance and underlie scaling. Particularly, the effects of
scaling session duration, context data volume and the number
of users are evaluated. In addition, performance and scalability
of several distributed clock techniques is evaluated, to identify
a suitable choice for CUERA implementations.

A1

Site 1 Site 2 Site 3
A1 A2 A3

A4
A5

Fig. 1. Collaboration Network (Time-Space-Diagram)

In sections II and III, the consistency problem and the
fundamental design of the framework is presented. Then
performance and scalability of CUERA is evaluated in section
IV. Finally, section V points at some related research before
section VI summarizes the paper.

II. RTICA CONSISTENCY

A. Optimistic Replication & Eventual Consistency

RTICAs operate in a collaboration network composed of
a set of sites Si. The number of sites dynamically changes,
when users join or leave the collaboration session. Every
participating site maintains a local replica of the shared context
data for fast access. Any action Aj of a user is immediately
executed at the local replica, before it is asynchronously
send over the network. (Figure 1 gives an example of action
propagation and execution timings in a simple collaboration
network of three sites.) This optimistic replication enables high
responsiveness and fluid interactivity, since users are never
blocked from initiating actions and effects are immediately
visible at the local site. However, replicas temporarily diverge
to inconsistent states, while actions are propagated to remote
sites. But convergence to eventual consistency is assumed,
when every action performed in the network has been received
and executed at all sites – including late joining sites.
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B. Causality, Convergence & Intention Preservation

Yet optimistic replication poses significant challenges in
terms of consistency and user expectations, which can be
described using the CCI model by Sun [3].

• Users expect that semantic cause-effect-relations between
actions are preserved. But in general, networks feature
varying propagation times, that can distort order relations.
So to avoid user confusion, RTICAs themselves have to
force causality preservation in place of the network.

• Moreover, eventual consistency is far from self-evident:
Because background propagation does not block users
from contributing actions concurrently, execution orders
can vary among sites (Figure 1). And since actions do not
inherently commute in general [3], different execution
sequences lead to inconsistent replicas. Thus, RTICAs
must take active measures for replica convergence.

• In addition, users expect that the effects, they intended
when performing an action, are reflected in the consistent
replica state. But in face of conflicting concurrent actions,
perfect intention preservation is impossible. So instead,
RTICAs have to provide automatic conflict resolution.

In summary, the consistency problem is largely evoked by
properties of the shared data and the actions performed upon
it, non-commutativity and conflicting intentions of concurrent
actions in particular.

C. Replication Transfer Mode & Semantic Resolution

The previous section suggested, that the most important
design decision of optimistically replicated systems is the
definition of actions propagated in the network. According
to Saito et al. [1], two principle replication transfer modes
can be distinguished for the same type of data. State transfer
captures any local action by simply propagating the entire
resulting state. In contrast, operation transfer reflects only
the state differences by explicitly propagating the types of
the performed operations along with their parameters. Thus,
operation transfer can reduce network traffic. But it is more
complicated, because sites have to maintain a history of
operations and agree on the result of its execution.

While both state and operation transfer are equally suited
to achieve convergence, they significantly differ in respect
to intention preservation. With state transfer, all concurrent
actions are in conflict, whereas operation transfer can make use
of semantical information to detect and even resolve conflicts
to preserve user intentions.

Consequently, the intended framework is based on operation
transfer. But still, the level of semantic resolution of operation
transfer can be varied in the design. In fact, semantics of
user interaction is an emergent phenomenon that is difficult
to grasp: The cognitive intention of a user interaction is
not necessarily reflected by the expression via a graphical
user interface and the underlying software abstractions. And
though it is desirable to achieve the highest level of intention
preservation possible, practical reasons argue against full scale
semantic resolution for non-trivial RTICAs:

• Typically many different data types are needed.
• These data types are often very application specific.
• Most data types feature a comprehensive operation set.
• Semantics of operations are rather sophisticated.
• Concurrency further complicates operation semantics.
• Data types are subject to changes during development.
Complexity of convergence and intention preservation

grows quadratically with the number of operation types. So
assuring consistency can be a downright daunting task when
semantic resolution is taken to the limit. Thus, is seems
practical to strike a balance between simplicity and intention
preservation. This applies all the more to the intended generic
consistency solution, as it is impossible to directly generalize
the operation set of arbitrary data types.

III. CUERA FRAMEWORK

A. Data Representation

In order to develop a generic consistency solution, a capable
data representation has to be identified, that is able to serve
common data needs of RTICAs. Therefore, one of the most
universal and promising abstractions of data is considered:
Entity-Relationship-Models (ERMs). The vast majority of soft-
ware projects use ERMs to determine their static data structure.
Hence, ERMs are applicable in a wide range of domains.

Several entity-types (Tent) classify the constituting elements
of the domain, while attribute-types (Tatt) reflect relevant
element properties. Similarly, connections and dependencies
are formalized by relationship-types (Trel) between their
corresponding entity-types. Cardinalities for both directions
specify the number of relations, an element can be part of for
the same type. At least, singular cardinalities (”To-One”) are
distinguished from multiple cardinalities (”To-Many”). Some
advanced features of ERMs are beyond the scope of this
paper, but will be examined in future investigations: Inherently
ordered relationships, specialization/generalization of entity-
types and aggregation/composition of entities.

In object-oriented systems, these abstract descriptions are
translated into class hierarchies, which are instantiated into
a model object graph at runtime. In particular, bidirectional
relationship-types in the ERM are represented by inverse
object reference pairs in the model graph. Based on the private
state represented by objects, member variables and references,
the methods in the model interface expose functionality and
behavior to the application.

In order to provide this common data scheme for RTICAs,
a replicated entity relationship graph (RERG) data type is
introduced, that literally realizes an ERM: The graph‘s vertices
are incarnations of entity-types defined therein and contain
their respective attributes, while its bidirectional edges are
incarnations of relationship-types. According to the previous
section, operation-types are intentionally constrained to simple
semantics, primarily focusing the private model state. Since
user intentions commonly refer to non-atomic tasks, a closed
action is composed of an ordered set of operations of the
following operation-types:



• EntityOperation (Tent, IDent)
- Create
- Destroy

• AttributeOperation (Tatt, IDent, [Parameters])
- Set (. . . , V alue)

• RelationshipOperation (Trel, IDsrc, IDdst)
- Add
- Remove

As the operation signatures suggest, entities are identified
by unique and unambiguous IDent generated at the initiating
site. Moreover, entities are non-reviving: Once destroyed, they
cannot be created again. Integrity of this graph is assured by
invalidating relationships, that feature destroyed entities. In a
very similar way, conformance with the ERM is enforced: Any
existing relationship at a singular cardinality is replaced, when
a new relationship of the same type is added to the entity.

When facing concurrency, it is substantially easier to obey
these criteria for valid relationships than controlling integrity
of the implicit reference representation commonly used in
model object graphs. Still, the reference representation has
to be translated to and from the relationship representation to
provide a familiar programming model. Consequently, using
the RERG data type does not involve a conceptual change
in comparison to using native constructs: In both cases, the
model interface and the semantics of its operations are build
upon a syntax of private state.

B. Consistency Maintenance

As stated above, convergence is threatened by any non-
commutativity of concurrent operations. So all combinations
of operation-types are analyzed for inherent commutativity.
In particular, a naive RERG implementation is assumed, that
respects the invalidation and replacement criteria for relation-
ships mentioned above. In general, operations, that do not
overlap in the RERG, always commute. Thus analysis takes
place within the same region of the graph. Due to unique and
non-reviving entities, strictly no operation can involve an entity
created concurrently. From the remaining combinations, only
three do not inherently commute:

• Concurrently setting the same attribute of the same entity
to different values does not commute, since the attribute
always reflects the last executed operation.

• Concurrently adding and removing the same relationship
does not commute, because the relationship reflects the
last executed operation.

• Concurrently adding different relationships to the same
singular cardinality does not commute, because the last
executed addition replaces all previous ones.

For replicas to converge, these critical combinations have
to be forced to commute. The Operation Commutativity by
Precedence Transitivity (OCbyPT) concept introduced by Roh
et al. [4] provides a theoretically proved way to do this.
Basically, all actions are brought into a linear precedence
order, mimicking a single stream of events in time. This allows
to conceptually treat concurrent actions in the same way, as if
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Fig. 2. Important Undo/Redo Modes

they were truly subsequent in time. So the consistent state is
defined to be the result of executing actions in this linear order.
Any other valid execution order has to exactly reveal this state
by commuting actions as if they were executed in precedence
order. The correct effect of any action can be inferred based
on the precedence relations (PR) to actions already executed.

This approach does not restrict execution to precedence
order. In practice, the precedence order is derived from
timestamps of the logical clock commonly used for causality
preservation. Still, convergence is not dependent on causality
preservation, although precedence relations should be defined
to generalize causal relations.

Because of state-focusing operation semantics, Thomas‘
write rule (LWW - Last Writer Wins) can be leveraged to force
commutativity and resolve conflicts of RERG operations. Only
one operation is effective for each element in the graph:

• The set operation with the highest precedence is effective
for an attribute and defines its value.

• The addition or removal with the highest precedence is
effective for a relationship and defines its existence.

• The relationship with the highest addition precedence is
effective for a singular cardinality – regardless of being
removed, invalidated or replaced (in ”One-To-One”).

C. Collaborative Undo/Redo

In addition to directly manipulating data, users must be
able to recover from erroneous manipulations by invoking
undo/redo features. Figure 2 visualizes several undo/redo
modes, that have been proposed to help users selecting the
action(s), they need to undo/redo to achieve the intended
error recovery effect. To support these modes, collaborative
undo/redo features have to be able to toggle the meta-state
of any action initiated by any user. In the background, an
algorithm has to produce the desired data state, that reflects
all actions‘ meta-states. The convergence control technique
introduced in the previous section already implies the approach
to a consistent collaborative undo/redo: The result is produced
by executing only actions in precedence order, that currently
are not undone.
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Fig. 3. The CUERA Framework

In order to align with the granularity of user intentions,
undo/redo features have to target operations at the action level.
Equivalently, expressing an error recovery user intention in
general requires to undo/redo more than one original action as
well. Hence, meta-actions are introduced, which are composed
of an ordered set of meta-operations:

MetaOperation(IDact)
- UndoAction
- RedoAction

Again, the signatures state that actions are identified by
IDact generated at the initiating sites. Moreover, the non-
reflexive definition of undo/redo is revealed: To undo an undo
meta-operation, the original action has to be redone. This
both simplifies the structure that determines the meta-state of
actions, as well as the user-facing undo/redo feature.

To force commutativity of concurrently undoing and redoing
the same action, meta-actions and meta-operations take part
in the same LWW scheme used by the RERG elements:
An action‘s meta-operation with the highest precedence is
effective and defines its meta-state.

D. Model State Retrieval

The previous sections introduced all CUERA concepts used
to represent data and user actions. At runtime, both the LWW
convergence and meta-state control are exactly mirrored by an
efficient scope organization as depicted in Figure 3:

Each element references its affecting operations and sorts
them by precedence. In addition, the operation with the
highest precedence and active meta-state is explicitly tracked
as the effective operation. The same organization stretches
out to actions and their affecting meta-operations. Moreover,
relationships track their topmost preceding Add operation.
This allows to track the effective relationship at singular
cardinalities. Then, both invalidation by destroyed entities and
replacement at singular cardinalities can be taken into account,
when retrieving relationship states. So this scope organization
mostly reduces state retrieval to single operation inspection:

• An entity exists, if its Create operation is effective.
• If the surrounding entity is existent, all the contained

attributes are defined by their effective Set operations.
• To provide a familiar model interface, relationships have

to be translated into a reference representation: If the
entity at the origin of the retrieval exists, connected
relationships of the type in question are inspected (for
a singular cardinality at the origin of retrieval only the
effective relationship is considered):

– The existence of the relationship itself is checked:
Its effective operation must be of Add type.

– In case of singular target cardinality, it is examined
if the relationship is the effective one.

– The target entity is tested for existence.
If all conditions are met, a reference to the target entity
is included in the result.

• An action is only active regarding meta-state, if no
UndoAction operation is in effect.

E. Local & Remote Action Execution

Local interaction with the public model interface has to be
recorded into a (meta-)action object. To assure that a local
(meta-)action always precedes all existing (meta-)actions, first
the timestamps are attached to the action with the clock being
incremented in between. Then the action components can be
recorded:

• Create/Destroy operations for entities. Moreover, a
fresh IDent is generated for created entities.

• Set operations for attributes.
• Again, the reference representation has to be translated

into relationships: From the IDent of each reference the
Add/Remove operation can be build. In addition, the
relationship element has to be created if necessary.

• Undo/RedoAction meta-operation for actions.
To be reflected in the private model state, each recorded

(meta-)operation must be inserted into its affected elements‘
scope. Because of its most recent timestamp, it immediately



becomes the effective operation, which in turn triggers a
change notification: For example, when an UndoAction meta-
operation becomes effective on its affected action, the action
changes to inactive meta-state. So it notifies all its contained
operations, which notify their affected elements of becoming
inactive. This process goes down the chain of dependent
elements, updating the scope of each affected element.

Finally, the local (meta-)action is encoded and propagated
in the collaboration network. After reception at a remote site,
the (meta-)action is decoded before it can be executed. But
causality constrains the execution of remote (meta-)actions: If
happened-before relations were violated, the execution must be
delayed until every happened-before is received and executed.

When it is causally ready for execution, the remote (meta-)
action is integrated in the private model state representation.
At first, affected elements must be retrieved or created, if they
do not exist yet. Then, the same as for local execution, each
(meta-) operation is inserted into the scope of its affected ele-
ment: Precedence of the received (meta-)operation is compared
to all existing ones in this scope in top-down progression. If
it becomes effective and the resulting state changes, a change
notification is triggered.

IV. EVALUATION

A. Evaluation Design

While the time complexity analysis, that is included in the
CUERA introduction [2], provided a valuable starting point
to estimate the scalability characteristics, it is not sufficient
to prove its actual performance. This can only be fulfilled by
evaluating in-depth measurements of the framework in action,
which is the main contribution of this paper. At first glance,
this seems to inevitably require inspection of collaborations of
human users. Though it is unquestionable, that such evaluation
can be worthwhile, indeed it is more appropriate to analyze
the characteristics of collaboration sessions than those of the
software system. Instead, necessary collaboration workloads
can be simulated computationally, which has some important
advantages: Besides easily producing results, the relevant
parameters potentially influencing performance and scalability
can be adjusted precisely and studied independently:

• Session Duration (Number of Actions)
• Data Volume (Amount of Entities & Relationships)
• Network Size (Number of Participants)
• Undo/Redo (Percentage of Meta-Actions)
• Area-Of-Interest (Scope Concurrency)
According to Roh et al. [4], collaboration workloads can

be modelled using a turn-based simulation system: In each
turn, every participating site randomly either generates a local
action or executes a remote action. At the end of each turn, a
simple propagation system inserts remote actions into a queue
maintained for each site. Thus, the duration of remote action
propagation is simulated by the residence time in the queue.
Since all sites have to generate an action in the first turn, the
queues get filled immediately. In the course of the simulation,
the length of the queues fluctuates due to random generation

of actions. So, a realistic variation of the propagation interval
can be assumed. Still, causality is preserved, if the queue is
operated in strict FIFO order.

This simulation approach is leveraged for performance
evaluations by recording execution times in different setups.
Within the following test series, a basic driving model for
the simulation network is employed: In each run, a constant
number of sites (s) produce the same number of actions (a),
uniformly distributed over turns. For each action, a constant
amount of operations (o = 4) is generated. A fairly simple data
model is used, that connects two entity-types in a relationship-
type with ”One-To-Many” cardinalities. The entity-types both
feature one attribute-type only. Despite being simple, this data
model serves the purpose of this evaluation well.

In general, every setup is executed in 10 simulation runs,
to provide better statistics. Furthermore, only computations
related to the framework are observed, while any support tasks
required for the simulation itself are filtered out. Particularly,
times are logged separately for all operation-types as well as
actions, both split into local and remote execution. Precisely,
action execution time measurement does not include execution
of the contained operations, in order to clearly separate the
clock related aspects of causality preservation, timestamp
generation and inclusion. In addition to performance analysis,
convergence of replicas is verified at the end of the run.

Simulations were conducted on a dual-core 2.66 GHz
Intel Xeon processor with 6 GB of DDR-2 RAM running
Mac OS 10.6.8. The following results are based on a very
basic in-memory implementation of the CUERA framework in
Objective-C. While it is functionally complete and serves the
requirements of this evaluation, it is not a production system
and there is a lot of potential for optimization. For example,
destroyed entities, invalid relationships as well as obsolete
actions and operations might be purged from memory and
lazily fetched from storage if needed to support unconstrained
undo/redo of any action.

Besides evaluating the CUERA framework itself, this paper
also addresses the performance of distributed clock techniques.
To determine the raw performance of CUERA, its acausal-
convergence-property (Section III) is exploited: A simple
loosely synchronized wall clock [5] can be used, that is not
sufficient for causality preservation, but still allows to derive
a precedence order. In relation to this and the standard vector
clocks [6][7], the performance of Interval Tree Clocks (ITC)
is compared, that were introduced by Almeida et al. [8]. ITC
was chosen, because its high dynamism and decentralized
operation are interesting features for RTICAs. Moreover, ITC‘s
performance has not yet been evaluated.

As no precedence relation has been specified for ITC, it
is defined similar to the one for vector clocks [4]: First,
timestamps are ordered by comparing the integral values of
the event function component. For timestamps with identical
event integrals, its first moment in relation to zero is used
as secondary order relation. This definition guarantees the
total order of actions required by the CUERA frameworks
consistency maintenance technique (OCbyPT and LWW).
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B. Duration & Data Effect

With the first series of tests, the baseline performance of
the CUERA implementation in a collaboration network of
constant size (s = 8) is targeted: Both operation-types and
parameters (affected entities, attributes and relationships) are
chosen randomly, while undo/redo features remain untouched
for this fundamental performance evaluation. In particular, it
is tested if performance remains stable after prolonged periods
of collaboration. Besides its increasing number of actions
and operations, extended collaboration duration with randomly
chosen operations is characterized by constantly growing data
volumes. Therefore this test series will also highlight the
capabilities and limits of the simulation routine.

With each test, the number of actions per site is increased in
an exponential sequence (a = 25, 50, 100, 200, 400, 800). To
verify the random choice of operations, the number of actually
performed operations and actions is depicted in the upper half
of Figure 4. The lower half reflects the effect on data volume:
Its exponential growth is clearly visible, especially tombstones
(destroyed entities and invalid relationships) are making up
the major part. So in fact, two of the scaling factors to be
analyzed are comprised in this series of tests: Duration & Data.
Therefore the averaged execution times of 10 runs depicted
in Figure 5 indeed represent the baseline performance of the
CUERA implementation.

The overall level of performance is in the range of tens
of microseconds, with a slight logarithmic increase across the
board. But in detail, local operation execution faces a major
rise between a = 200 and a = 800, particularly the creation
of entities. This does not fit well into the expectations, since
in theory, local operations are not susceptible to scaling. It can
be assumed, that this in fact highlights the limitations of the
CUERA, simulation and data acquisition implementations in
terms of memory management.

Therefore, additional detail about the statistics is provided
by the frequency distributions in the histograms of Figure 6.
For local execution of Create, the initial quasi mono-modal
characteristics split into bi-modal distributions over the course
of the duration. The histogram supports the conclusion, that
the second mode emerges in the later part of the simulated
session.
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A distinct point of separation can be estimated at a duration
parameter of a = 200. Contrastingly, remote execution shows
a similar distribution from the beginning, that remains stable.
Additional data beyond the scope of this discussion suggests,
that this effect is part of the intense memory paging needed
within the operation generation part of the simulation system.
This aligns with the fact, that Create operations involve
significantly more memory allocation, because the internal
infrastructure for attributes and relationships is instantiated.

In summary, operation execution performance is provably
stable even in extended collaboration sessions. The result for
remote operations is remarkable, since they are particularly
decisive for the overall performance of RTICAs [4].

Action execution performance has been measured as well, to
determine performance of the distributed clock mechanisms.
In Figure 7, the paging effect on local execution is visible
again. All clocks feature a very moderate logarithmic local
and almost constant remote execution. Most importantly the
simple wall clock outperforms ITC by a factor of 10. Thus,
performance reflects the increasing complexity of the tested
techniques. Still, all of them perform acceptably well when
compared to the execution of the contained operations.
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Finally, the propagation simulation using action queues is
verified: Figure 8 presents average and standard deviation of
action propagation delay measured in turns. It shows, that the
queue propagation scheme induces a reasonable amount of
concurrency in terms of delay. Still, the random operation
generation does not result in a significant concurrency in
terms of operation scope: The area-of-interest (AOI) of the
simulated ”users” barely overlap. The metric used in Figure
8 is gripped from the scope insertion process and reflects the
number of concurrent operations already present in the same
scope, that possess higher precedence. Therefore, this baseline
performance evaluation can only provide a starting point.

C. Network Effect

But before this matter is explored in depth, the effect of
scaling the network in size is examined. To avoid the memory
management concerns and still provide reasonable session
duration, the a = 200, s = 8 setup is chosen to base the
variation upon. All other simulation settings are equal to the
first series of tests to maximize comparability. Once again,
network sizes are modulated in a exponential fashion, so
scalability effects become visible (s = 2, 4, 8, 16, 32, 64). In
order to keep the overall number of actions (A = s×a = 1600)
constant, the amount of actions per site is varied accordingly.

That this strategy worked out, can be read from Figure 9:
Both the number of performed operations and actions, as well
as the amount of data is approximately constant over the series
of tests. Thus, it can be assumed, that any duration and data
effect is eliminated and solely network scaling is in effect.

Again execution times of operations underlie very modest
logarithmic progression as depicted in Figure 10. These results
confirm the assumption, that the memory paging effect visible
above could be avoided. Hence, operation execution is proved
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to scale well even in terms of network size, with average times
in the range of tens of microseconds. Equal to the duration and
data effect results in Figure 5, execution of Create operations
is significantly slower than the other operations, because it
involves creating the internal infrastructure of attributes and
relationships. In a similar way, Add operations are executed
slightly slower, because of the overhead of controlling relation-
ship replacement at singular cardinalities. In agreement with
this, Set operations feature the fastest execution, since they
do not involve any side effects.

The most severe insight of this investigation of the network
effect is related to action execution performance. According
to Figure 11, both causality-preserving clocks linearly degrade
with network size, while the precedence-only wall technique
features constant performance. This highlights the importance
of CUERA‘s ability to converge even in face of acausally
executed actions: It allows perfectly scaling massive user
collaboration, either by relying on causal propagation within
the network itself or by sacrificing causality preservation.

Still, Vector clocks seriously outperform ITC concerning
the slope of this degradation. Thus, the advantages of ITC‘s
dynamism and decentralization come at a significant cost in
scalability. But still it is remarkable, that the accumulated
execution time of an action and its contained operations in
a network of 64 users are well beyond the limit of 50 ms
commonly denoted as acceptable from a user perspective.
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Finally, Figure 12 increases confidence in the metric used
for AOI measurement based on scope insertion: The already
low level of concurrent operations, that actually require replica
convergence control, steadily declines with network size under
the regime of random operation and AOI generation.

D. Undo/Redo Effect
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To include undo/redo features, another series of tests has
been conducted based on the a = 200, s = 8 setup, that
varies the percentage of meta-actions m of all generated
actions in a wide range. According to the results in Figure
13 meta-operations perform in similar ways as data-targeting
ones. The supposed effect of increased execution time due
to change notification down the chain of dependent elements
is comparable to the aforementioned Create overhead. In
summary, RTICAs are able to feature sophisticated and still
performant undo/redo facilities.

E. Area-Of-Interest Effect

Finally, the last series of tests addresses the remaining
issue of operation scope concurrency. A different operation
generation scheme is employed to simulate a reliably focused
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area-of-interest shared by all virtual ”users”: Within the first
turns of each run, a definite number of entities (E = 320)
is created. After this initial setup, the number of entities
remains constant and no relationships are added. Instead, all
sites exclusively produce Set operations targeting the single
attribute-type of the existing entities. Then, the area-of-interest
is varied by restricting access to a definite subset of entities (e).
The rationale behind this generation scheme arises from the
conceptual and behavioral similarities of all operation-types.
Hence, the Set operations are considered prototypical and the
observed performance characterstics can be generalized.

Figure 14 presents the results of this evaluation. First and
foremost, operation execution time remains almost constant.
And correctness of this result is confirmed by the exponential
trend of the scope concurrency metric: It clearly indicates
the massive amount of concurrent operations targeting the
same attribute of the same entity. In fact, this density of
scope concurrency will barely be present in any real-world
collaboration session of human users. Therefore it is safe to
assume, that performance of the CUERA framework is suitable
for most collaborative settings.

In summary, the evaluation results support the scalability
and performance claims: The CUERA framework performs
in the range of tens of microseconds and scales well in
terms of collaboration duration, data and scope concurrency.
Only the linearly degrading action execution constraints its
scalability regarding the network size, but is related to the
clock mechanism not the framework itself. Since convergence
is assured even with violated causality, future investigations
will try to improve action execution scalability by relaxing
causality preservation.

V. RELATED WORK

The previous sections are related to the following research
relevant within the scope of this paper. Most of it is rooted in
the field of collaborative text editing systems, featuring insert
and delete operations on a linear data type. Operational
Transformation (OT) [9] dominates research in this area and
has been extended to a wide range of domains. Conceptually,
concurrent operations are transformed against each other to
let different execution orders converge. In fact, elaborating
this basic idea has led to a plethora of algorithms [10], most
of them failing in special situations called ”puzzles” [11].
Algorithms known to be correct are very complex to design
in practice and computationally expensive when implemented
[12], [13], so performance and scalability are a serious issue.



In reaction, some recent research targets convergence by
commutativity of operations without transformation. In par-
ticular, Shapiro et al. [14] and Roh et al. [4] developed
commutatively replicated variants of important abstract data
types (Counters, Registers, Sets, Arrays and even Graphs). But
none of them offers the spectrum of capabilities targeted in this
paper and especially undo/redo has been neglected.

Though many OT based systems support undo/redo of
any action [15][16], non-OT research on this matter is rare.
Most of it is related to text editing in P2P-Wikis [17] [18]:
Besides the limitation to sequential data, their counter-based
undo/redo results in a user experience not suitable for realtime
collaboration. The latter also holds for the XML tree editing
system in [5], but XML nodes and attributes at least partly
resemble the model object graph concepts identified in Section
III. Hence, some of its approaches did inspire the development
of the intended CUERA framework: The history organization
of operations in their respective scope and the LWW technique
for attribute convergence. But most aspects of a generic data
and undo/redo consistency solution are still unresolved and
motivate this paper.

Actual performance evaluations beyond complexity analysis
are rare in research literature. Most notably, Roh et al. [4]
presented the idea of simulating collaboration workloads using
a turn-based system. Their work on evaluating the RGA
(replicated growable array) data type has greatly influenced
this paper. In contrast to CUERA, the RGA type does not
provide undo/redo features and therefore allows to purge
obsolesced data elements. Most recently, Ahmed-Nacer et al.
[19] conducted a comparison evaluation of several consistency
solutions for collaborative text editing. The study actually
monitored collaborating human users and acquired logs of the
sessions. Later on, the logs were replayed against a variety of
algorithms to determine their performance. In particular, it was
confirmed, that post-OT systems can outperform the top OT
algorithms. Neither of those investigations had to deal with the
AOI variation, because text editing as well as array operations
take place in a single scope.

VI. CONCLUSION

This paper evaluated performance of the CUERA frame-
work, that was recently proposed by the authors. Its foundation
is a capable replicated data representation based on ERMs. In
order to allow abstraction of arbitrary data interfaces, a state-
focusing approach is taken for the definition of the operation
set. In face of concurrent actions, replica convergence is
assured using a LWW rule backed by the proven OCbyPT
technique, even in face of acausal action execution. Powerful
undo/redo features allow recovery of any mistaken actions.

The core part of this paper aimed at proving scalability
and performance of the framework. In particular, a turn-
based simulation was used to generate intense collaboration
workloads. By measuring execution times in different settings,
scalability regarding collaboration duration, number of sites,
volume of shared data and degree of concurrency has been
studied. The results attested, that the framework performs

tasks in the range of tens of microseconds across the bank.
Moreover, performance remains stable even when important
parameters are scaled in a wide range. Only if the framework
has to preserve causality in place of the propagation network,
performance of the distributed clocks linearly degrades with
the number of users. Still performance has been found to be
acceptable for at least up to 64 participating users.

Future research will enhance the data representation features
by adding support for ordered ”To-Many” relationships. In
addition, removal of obsolete action and data elements will
be examined to reduce memory consumption and still support
full unlimited undo/redo.
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