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Abstract—One of the expected benefits of multi-agent systems
is their capacity for redundancy which is expected to promote
system robustness. We examine the impact agents’ probabilistic
action has on generating redundancy in multi-agent systems with
no direct inter-agent communication. We present a mathematical
model of such a system, analyze the factors that influence it,
and empirically examine its effects on multi-agent systems under
perturbations such as removal and insertion of agents. Results
indicate that agents’ probabilistic action can allow a team of
collaborating agents to build a pool of agents with experience
and this redundant pool can promote system robustness under
perturbations.

Index Terms—Response probability, Multi-agent systems, Ro-
bustness, Redundancy, Mathematical framework

I. INTRODUCTION

A multi-agent system (MAS) is a human engineered system
consisting of multiple agents that work together to accomplish
a common goal or an objective. Collaboration among agents in
a MAS to accomplish this goal requires coordination among
agents to take on all necessary and appropriate roles. In the
process of collaboration, agents need to be able to recognize
if roles are unfilled and be able to take on such unfilled roles.
In situations where experience improves agent performance
on a task, it is beneficial to have a pool of extra agents with
experience on each task.

As with any human engineered system, one of the desired
system features is its ability to be robust with some form
of a back up mechanism consisting of identical redundant
components that are capable of taking up tasks of a failed
component. Thus, the ability to build a backup pool of agents
for each role is important in promoting robustness of a team of
collaborating agents. One of the expected benefits of MAS’s
is their inherent potential for redundancy [1], [2]. If an agent
is disabled or lost, there exists a potential that another agent
can take over the role of the missing agent.

We examine how a stochastic tendency of an agent to act,
as defined by a response probability, can generate redundancy
and improve collaboration in MAS’s with no direct interagent
communication. Response probability refers to the probability
that an agent will respond or act when its response threshold
has been met [3]. The fact that this response is probabilistic
means that, unlike traditional response threshold systems,
an agent may not be guaranteed to act when its response
threshold is met. As a result, the lower threshold or the

most willing agents will not always act on a task thus giving
higher threshold agents an opportunity to act on the task. Over
multiple instances of a task, this potentially generates a larger
pool of experienced agents, effectively generating redundancy.

Redundancy in engineering as defined by the Oxford dic-
tionary is “the inclusion of extra components which are not
strictly necessary to functioning, in case of failure in other
components”. Accordingly, redundancy is expected to promote
a system’s stability against potential component failure that
could lead to system failure. An attractive feature of the
MAS architecture for designers of engineering applications
is its ability to naturally lend itself to redundancy due to
the presence of many agents. This feature has a potential of
increasing the robustness of such engineering applications [4].
Studies have shown that the existence of redundancy in an
MAS can promote system stability [1], [2].

The simplest way to introduce redundancy into a system is
to add extra agents for each task to the system. The robustness
of this approach, however, is bounded by the number of extra
agents added and the system may not be able to adapt if all
redundant copies of a type of agent is lost. Threshold-based
systems provide additional flexibility in that potentially a large
number, if not all, of the agents may have the capability to
act on a given task. Agents have a threshold for each task and
act when a task stimulus reaches its threshold for that task.
If low threshold agents are lost and do not perform a task,
higher threshold agents’ thresholds will eventually be reached
and they will act. Although the threshold based approach
provides greater adaptability in terms of having “back up”
agents available for a given task, it typically does not actively
generate a large experience pool. The low threshold agents
will always be the first to act and gain experience, and the
high threshold agents will not act unless there are not enough
low threshold agents. We believe that a simple addition of
a response probability, a nondeterministic probability with
which an agent will act once its threshold has been reached,
can provide an elegant method to generate redundancy in
response threshold systems.

In this paper, we examine the relationship between agents’
response probability and system redundancy. We mathemat-
ically model a system with agents that exhibit this behav-
ior in a single task environment with no direct interagent
communication. We empirically study its effects on system



redundancy and performance under insertion and removal of
agents. Our results show that our model can effectively predict
relationship between response probability and redundancy in
empirical systems.

II. AN OVERVIEW OF RESPONSE PROBABILITY USAGE
VARIATIONS IN MULTI-AGENT SYSTEMS

The term response probability has been used before in
the multi-agent task allocation literature. Examination of the
literature reveals that this term is used in two different con-
texts. We categorize these two contexts as deterministic [5]–[9]
and stochastic [10]–[12]. We present a broad overview of the
variations in using response probability for task allocation in
multi-agent systems in relation to our study.

A. Response probability and deterministic decision making

Response probability when used in the deterministic sense
refers to a description of an agent’s preference for a task
relative to its preference for other tasks. This value can change
over time and is affected by what tasks an agent acts on.
Agents use the response probability value to choose among
available tasks. Given one or more tasks, an agent will choose
one with the highest response probability and will always act
on that task. For example, if an agent’s response probability
for task 1 is 0.3 and for task 2 is 0.1, then it will choose and
act on task 1. It is not the case that it acts on task 1 with
a 30% probability. As such there is not actually a stochastic
element in the agent’s decision to choose or act on a task.

This deterministic process of decision making was first
utilized by Bonabeau et. al [5]. Their study uses a response
function to calculate agents’ response probability values. A
variation of this response function where the response thresh-
old includes weighted parameters, such as remembering and
forgetting coefficients, has been discussed by Campos et. al
[6], Dorigo et. al [7], Reijers et. al [8], and Yu and Ram [9].

B. Response probability and stochastic decision making

Response probability when used in the stochastic sense
refers to the probability that an agent will act on a given
task once that task has been assigned to it. Agents use the
response probability value to decide if they are going to act or
not on the assigned task. For the same example of an agent’s
response probability of 0.3 for task 1 and 0.1 for task 2,
if the agent is assigned task 1, it will act on the task with
a 30% probability and similarly, with a 10% probability on
task 2. Therefore, there actually exists a stochastic element
in the agent’s decision to act on a task.

This stochastic process of decision making has been dis-
cussed and utilized by Merkle et. al [10] in a worker-helper
scenario where a helper acts on a given task based on
its response probability. Similar worker-helper scenarios are
found in Xiang and Lee [11] and Scheidler et. al. [12]. Price
and Tino [13] use response probability as an alternate strategy
to the variable response threshold model for task allocation in
a mail retrieval system where every agent retrieves mail based
on its response probability value.

III. PROBLEM DEFINITION

We study an MAS consisting of n agents and a single task
that requires x agents to act, where x ≤ n. Every agent has
a threshold for working on the task. Thresholds enable agents
to collaborate in a task environment with no direct interagent
communication. If an agent has a low threshold value for
the task, then it is quicker to act on the task. Conversely,
if an agent has a high threshold value for the task, then it is
slower to act on the task. This variation in how quickly an
agent will act on the task defines an ordering in the agent set.
Accordingly, let agent a0 be the first and an−1 be the last to
respond to the task as shown in Figure 1. Let prob act be
the response probability with which agents will act once their
response threshold is met.

Fig. 1. Agents ordered by their response threshold for a task. Agent a0 is
most likely to act on the task due to its low threshold value for performing
it and agent an−1 is least likely to act on it due to its high threshold value
for performing it.

Agents can be in one of three states at any given time:
Inactive, Candidate, or Actor. We define these states as

1) Inactive: An agent that is not a candidate or an actor.
2) Candidate: An agent that is given the opportunity to

act on the task.
3) Actor: An agent that acts on the task.
Figure 2 describes the steps that make up a single trial of our

system. A single trial simulates one instance in which the task
needs to be addressed by the MAS and offers one opportunity
for agents to gain experience. Let i count agents in order of
their threshold values and let xa count the number of agents
that have acted so far. All agents begin in the inactive state.
Agents in order of their willingness to act become candidates
while xa ≤ x. Let Ci be the probability with which an agent
becomes candidate in a single trial. Let Pi be the probability
with which a candidate becomes an actor. If an agent becomes
an actor in a single trial, that agent gains experience on the
task. A trial ends when x agents have become actors or when
all agents have had the opportunity to become actors. Within
a single trial, a maximum of x agents will act and gain
experience. Over multiple trials, potentially more than x agents
may gain experience if not all of the same agents act in each
trial.

We develop a mathematical model that explores the relation
between the system response probability and agents’ ability
to gain experience over multiple trials. This model is used to
answer the following questions:

• What is the expected probability that an agent, ai, will
become a candidate, where 0 ≤ i ≤ n− 1?
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Fig. 2. Flowchart describing the steps that make up a single trial of our
system. An agent becomes a candidate if the required x actors have not
been obtained. Once a candidate, an agent becomes an actor with probability
prob act. This process is repeated until x agents act or we run out of agents.

• What is the expected probability that an agent, ai, will
become an actor, where 0 ≤ i ≤ n− 1?

• Given prob act and x, what is the expected number of
trials needed for an agent ai to act at least once?

• Given a fixed number of trials, what value of prob act
is needed for an agent ai to gain experience?

The ability to answer these questions will provide guidance as
to how one can build response threshold MAS teams that are
able to maintain a desired experience pool.

IV. ANALYSIS

Our analysis can be broken down into two cases, the
first in which prob act = 1.0 and the second in which
prob act < 1.0. Because of the presence of threshold-based
ordering among agents, we must calculate separate Ci and Pi

values for 0 < i < x and x ≤ i < n. Once we calculate Pi,
we can use it to calculate the estimated response probability
needed to ensure that a given number of agents will gain
experience. Table I summarizes the calculations which will
be presented in the following sections.

TABLE I
EFFECT OF PROBABILISTIC ACTION ON Ci AND Pi

0 ≤ i < x x ≤ i < n

Ci Pi Ci Pi

prob act
< 1.0 1 prob act CBD(i) prob act*CBD(i)
= 1.0 1 1 0 0

A. Calculating Pi when prob act is equal to 1.0

When prob act = 1.0, all agents that become candidates
become actors. Since x agents are required to complete
the task, agents a0 through ax−1 will always become both
candidates and actors. Consequently, agents ax through an−1

do not ever become candidates or actors. Over multiple trials,
the total number of agents with experience, xa, is equal to x
agents. The probability that agent ai gains experience acting
on the task, as shown in the second row of Table I, is

Pi =

{
100% if i < x
0% if i ≥ x

B. Calculating Pi when prob act is less than 1.0

When prob act < 1.0, not all agents that become candi-
dates will become actors. The following subsections describe
and model the processes by which an agent becomes a
candidate and then an actor when prob act < 1.0.

1) Entering the Candidate state: Due to the ordering con-
straint, the first x agents, a0 through ax−1, always become
candidates as shown in Figure 2. This is shown by the left
branch of the decision node i < x, where Ci equal to one. For
agent ai, i ≥ x, the probability that it will become a candidate
is given by the Cumulative Binomial Distribution up until i.
This is shown by the right branch of the decision node i < x
and is indicated in the first row of Table I as CBD(i)

Ci =

x∑
k=0

(
i

k

)
prob actk(1− prob act)i−k, i ≥ x

Figure 3 plots Ci for n equal to 100 and x equal to 45 with
prob act values varying from 0.1 to 1.0 with a 0.1 increment.
The first 45 agents always become candidates and, therefore,
their Ci is equal to 1. The Ci for remaining agents is less than
1 as given by the cumulative distribution function.

2) Entering the Actor state: When prob act is less than
1.0, agents chosen to become candidates are not guaranteed
to become actors. While only x agents will act in any one trial,
the same agents may not act from one trial to the next. As a
result, over multiple trials we expect the number of agents that
gain experience to be greater than x. The expression for Pi,
as shown in the first row of Table I,

Pi = prob act× Ci

Equivalently,

Pi = prob act×

(
x∑

k=0

(
i

k

)
prob actk(1− prob act)i−k

)
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Fig. 3. Expected probability of an agent becoming a candidate estimated
using Cumulative Binomial Distribution. The expected probability of agents
a0 to ax−1 becoming a candidate is equal to 1; these always become
candidates. The expected probability of agents ax to an−1 becoming a
candidate is equal to Ci. Here x = 45 and n = 100.
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Fig. 4. Expected probability of an agent becoming an actor. The expected
probability of agents a0 to ax−1 becoming an actor is equal to the prob act
value. The expected probability of agents ax to an−1 becoming an actor is
equal to prob act ∗ Ci. Here x = 45 and n = 100.

Figure 4 plots Pi for n = 100 and x = 45 with prob act
values varying from 0.1 to 1.0 with a 0.1 increment. Because
Ci = 1.0 for the first x agents, their Pi = prob act. The
remaining agents become actors with the expected probability
equal to the product of prob act and their Ci.

Figure 5 shows the mean of total number of agents with
experience from an empirical study of prob act on an agent
based simulation. The simulation consists of n = 100 agents
and x = 45 required agents. The prob act values vary from
0.001 to 1.000 in steps of 0.001. The simulation is observed
over 1000 trials. As prob act increases we see an increase in
the number of agents that gain experience. Around prob act =
0.25 − 0.3 to a little under prob act = 0.6, all the agents in
the system gain experience. From then on, the total number
of agents with experience steadily decreases as agents that
become candidates are more likely to become actors. Finally,
when prob act close or equal to 1.0, exactly 45 agents gain
experience.
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Fig. 5. Mean of total number of agents with experience after 1000 trials
for each response probability value. More number of agents gain experience
when the prob act value is low than when it is high.

C. Estimating response probability value given Pi

Given Pi, we calculate the expected number of trials or
runs, Mi, necessary for a given agent to act at least once as

Mi =
1

Pi
(1)

Using Equation (1) we can estimate the response probability
value for agent ai to gain experience in a given number of
runs. The calculation presented below estimates the prob act
value for this to occur. In this analysis, s is used in place of
prob act for clarity. This estimated s value is given by

s =
(Pi + iPi)±

√
((Pi + iPi)

2 − 4(i)(Pi))

2 ∗ i
(2)

Equation (2) is obtained by considering the given Mi value
to be the least number of runs in which agent ai acts.

Mi =
1

s×

(
x−1∑
k=0

(
i

k

)
sk(1− s)i−k

)
The equation of Mi is then differentiated to obtain its slope.

dMi

ds
=

d

(
1

s×

(
x−1∑
k=0

(
i

k

)
sk(1− s)i−k

))

ds

=

d

(
1

Pi

)
ds

= − 1

P 2
i

∗ dPi

ds

= − 1

P 2
i

x−1∑
k=0

(
i

k

)
sk(1− s)i−k

(
(1 + k)− s(1 + i)

1− s

)



The resulting equation when set to zero denotes the mini-
mum point on the Mi curve.

x−1∑
k=0

(
i

k

)
sk(1− s)i−k

(
(1 + k)− s(1 + i)

1− s

)
= 0 (3)

Solving (3), we obtain the equation that denotes the condi-
tion for agent i to gain experience in least number of runs.
x−1∑
k=0

(
i

k

)
ksk(1−s)i−k = (s(1+ i)−1)

x−1∑
k=0

(
i

k

)
sk(1−s)i−k

(4)

In equation (4),
x−1∑
k=0

(
i
k

)
ksk(1− s)i−k denotes the mean of

values up until i.
This can be approximated as i∗s using the approximation to

the Cumulative Binomial Density function (CDF). This results
in

i ∗ s = (s(1 + i)− 1)

x−1∑
k=0

(
i

k

)
sk(1− s)i−k

x−1∑
k=0

(
i

k

)
sk(1− s)i−k =

(is)

(s(1 + i)− 1)
(5)

Next, using equation (5) in the equation of Pi, the following
quadratic equation in s is obtained.

Pi = s ∗
x−1∑
k=0

(
i

k

)
sk(1− s)i−k

= s ∗ (is)

(s(1 + i)− 1)

Pi(s(1 + i)− 1) = is2

is2 − s(Pi + iPi) + Pi = 0

Thus, the value of s is estimated by the roots of this quadratic
equation s1 and s2, where

s1 =
(Pi + iPi)−

√
((Pi + iPi)

2 − 4(i)(Pi))

2 ∗ i
(6)

s2 =
(Pi + iPi) +

√
((Pi + iPi)

2 − 4(i)(Pi))

2 ∗ i
(7)

Due to the approximation using the CDF, it is necessary
that the following constraint be placed

Pi ∗ i ≥ 5

The prerequisites for obtaining an estimated s value are that
the number of trials in which the agents are expected to
gain experience be known and the approximation using CDF
constraint be met.

Figures 6 and 7 show the estimated s1 and s2 values for
agents i=45 to i=99. In both plots, the x-axis shows the agents
and y-axis measures the estimated s1 and s2 values. We next
use these estimated values in an empirical study to determine
agents’ gain of experience consisting 100 simulations of 11
trials each in which n=100, x=45 and Pi=0.091. We expect
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Fig. 6. Estimated s1 values for agents i, x ≤ i ≤ n− 1 with Pi = 0.091.
Here x = 45 and n = 100.
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Fig. 7. Estimated s2 values for agents i, x ≤ i ≤ n− 1 with Pi = 0.091.
Here x = 45 and n = 100.

agents to gain experience at least once and expect the curve
in a plot showing this to be close to one.

Figure 8 plots the average number of times an agent acts in
11 trials when using the corresponding s1 value from Figure
6. Each black square is averaged over 100 simulations and the
error bars show the standard deviation. The x-axis indicates the
agent number and the y-axis indicates the average number of
times acted. As the agent number increases from 45 to 99, the
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Fig. 8. A plot of the empirical results of using s1 values from Figure 6
showing the mean of the number of times agent i acts in 11 trials over 100
simulations.
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Fig. 9. A plot of the empirical results of using s2 values from Figure 7
showing the mean of the number of times agent i acts in 11 trials over 100
simulations.

average number of times each agent acts decreases gradually
from just under 3.5 to approximately 1.5. As expected, all
agents on average act at least once and all values are close
to one. These empirical results indicate that s1 is a good
estimation of the probability needed for a given agent to act
at least once within a specified number of trials.

Figure 9 plots the same data as Figure 8 but for s2.
Interestingly, as the agent number increases from 45 to 99,
the average number of times each agent acts increases from
approximately six to just over seven times. The data generated
from using s2 instead of s1 shows an opposite trend as agent
number increases and results in a much higher count in the
number of times an agent acts. We do not have a clear
explanation for these differences as yet. We speculate that they
may be due to the conficting forces between the probability
that an agent will become a candidate and the probability that
a candidate will act, and are investigating this as well other
explanations for this anomaly.

In summary, this section presents the mathematical analysis
along with supportive empirical results of variables of interest
that could possibly aid in obtaining more than the required
number of agents for a given task. We describe equations for
the expected probability of an agent becoming a candidate,
the expected probability of an agent becoming an actor, and
an estimation of the prob act value when the number of runs
in which agents are required to gain experience is known.

V. EXAMPLE SCENARIO

Imagine an 18th century wagon train consisting of travellers.
The travellers must set up camp every night when the group
halts. Each night only a limited number of travellers need
to participate in the set up. Each traveller has a willingness
level for set up. The most willing travellers are usually the
first to set up and the least willing may or may not get an
opportunity to particiapte in the set up. Each time a traveller
participates in the set up, he gains experience that allows him
to work faster the next time. If the most willing travellers are
always the ones that participate, then over a period of time,
those will be the only individuals with experience and the

wagon train is completely dependent on them. If, however,
those most willing individuals do not always participate in
the set up, then other individuals may have an opportunity to
participate, gain experience and the wagon train will have a
larger pool of travellers with experience in the set up.

We next present an empirical analysis of the performance of
two MAS based on this wagon train scenario with insertion
and removal of travellers. Performance is measured by the
average of the work speed of all travellers at each trial. If one
MAS has a lower average work speed than the other, then its
performance as a group, or group performance, is better.

Our two MASs are Set A and Set B. Here, we consider
a traveller as an agent. In Set A, response probability is 1.0
and the most willing travellers always participate in the set up
each night. In Set B, response probability is less than 1.0 and
the most willing travellers participate with some probability in
the set up each night. Our experiment consists of 100 agents
in each set. The set up activity requires 14 agents. The work
speed of all agents is initialized to 1.0. Each time an agent acts,
its work speed is multiplied by 0.9. Participation in the set up
for one night constitutes one trial. If a traveller participates
in the set up for more than one night, then this constitutes
participation in multiple trials. One simulation consists of 100
trials. We perform 10 such simulations.

The group performance is observed in four cases:
1) Base case: We determine the effect of prob act.
2) Base case with insertion of agents: We combine

prob act with insertion of agents. Let us denote an
inserted agent as new agent and the agent before which
it is inserted as existing agent. A new agent has a work
speed equal to 1.0. The probability with which the inser-
tion routine in each trial is executed is denoted as trial
insertion probability and within which the probability
to insert a new agent before an existing agent as agent
insertion probability. Here, trial insertion probability is
0.6 and agent insertion probability is 0.1.

3) Base case with removal of agents: We combine prob act
with removal of agents. The probability with which the
removal routine in each trial is executed is denoted as
trial removal probability and within which the proba-
bility to remove an agent as agent removal probability.
Here, trial removal probability is 0.5 and agent removal
probability is 0.1.

4) Base case with insertion and removal of agents: We
combine prob act, insertion and removal of agents. The
routine to insert an agent is executed every 10 trials
and the routine to remove an agent is executed every
15 trials. This mechanism allows us to observe the
combined effect of insertion and removal every 30 trials
on group performance.

VI. RESULTS

The plots shown in this section have been selected to show
the behavior of Set B at three prominent prob act values of
0.1, 0.5, and 0.9 and of Set A, though the simulations were run
for all prob act values from 0.1 to 1.0 in increments of 0.1.



The reason for choosing these values is that at prob act equal
to 0.1, an agent is most likely not to act. This gives other agents
a better chance to act. At prob act equal to 0.5, an agent is
equally likely to either act or not act on a task. At prob act
equal to 0.9, an candidate agent is more likely to become an
actor. This gives other agents a lesser chance to act. The y-axis
measures the average of average group performance over 10
simulations, where each simulation consists of 100 trials. The
x-axis denotes the number of trials. The curve labelled Set A
shows the group performance of Set A. The curve labelled Set
B shows the group performance of Set B.

Figure 10 shows our base case in which we present the
effect of agents responding stochastically at prob act values
equal to 0.1, 0.5, and 0.9. The group performance of Set A
does not vary with prob act and reaches a plateau at around
0.86 as shown by curve labelled Set A. This is because only
the first 14 agents gain experience on each trial and as a result,
the value of their individual work speed approaches zero over
multiple trials while the remaining agents’ work speed remains
unchanged at 1.0. As no further improvement in the group
performance of Set A is possible, the average of the average
group work speed does not get better than 0.86. Therefore, the
base case group performance value for Set A is 0.86.

The group performance of Set B varies with prob act as
shown by the curve labelled Set B in all three plots. At
the end of the simulation, the average of the average group
work speed is approximately 0.4, 0.7, and 0.8 for prob act
equal to 0.1, 0.5, and 0.9 respectively. This is because as
more agents gain experience, the group work speed decreases.
Therefore, the base case group performance values for Set
B at prob act = 0.1 is 0.4, prob act = 0.5 is 0.7 and
prob act = 0.9 is 0.8. Since these values are lower than the
base case group performance value for Set A, Set B has better
performance. As seen from the plots, the difference between
the group performances is most prominent when prob act is
0.1, moderately prominent at 0.5 and least prominent at 0.9. As
expected, this trend shows that at low prob act values most
agents gain experience, conversely, at high prob act values
some agents may not gain experience.

Figure 11 shows the second case in which we present the
effect of response probability and insertion of agents at every
trial. As compared to the base case group performance value of
0.86, the group performance value for Set A is approximately
0.95. As compared to the base case group performance value
of 0.4, 0.7, and 0.8 for prob act values of 0.1, 0.5, and
0.9 respectively, the group performance values for Set B are
approximately 0.5, 0.8, and 0.9 for prob act values of 0.1,
0.5, and 0.9 respectively. We observe an increase in the group
performance values as compared to the base case. This is
because though the number of agents have increased, the
number of required agents remain the same and this increases
the number of non-participating agents leading to an increase
in the average group performance value. In this scenario, Set
B is able to perform better than Set A as these new agents
may also gain experience and contribute to the overall group
performance. This is only possible in Set A if a new agent is
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Fig. 10. Base case: effect of response probability on work speed when
response probability is equal to 0.1, 0.5, and 0.9 respectively. At low values,
Set B has a comparably better work speed than Set A as more agents gain
experience. At prob act=0.9, Set B is slightly better than Set A as less agents
gain experience.

inserted before any of the first 14 agents. This, however, has
a little effect on group performance as only the first 14 agents
participate in the set up.

Figure 12 shows the third case in which we present the
effect of response probability and removal of agents at every
trial. As compared to the base case group performance value of
0.86, the group performance value for Set A is approximately
equal to zero. As compared to the base case group performance
value of 0.4, 0.7, and 0.8 for prob act values of 0.1, 0.5, and
0.9 respectively, the group performance values for Set B are
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Fig. 11. Effect of inserting agents at every trial on group performance
when response probability values are 0.1, 0.5, and 0.9. Insertion of agents
at every timestep decreases the overall group performance of both sets, in
that the average values with low standard deviations (< 0.001) are higher
as compared to the base case. The decrease in performance is a result of
increase in non-participating agents. Overall, Set B has lower, and therefore,
better group performance than Set A.
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Fig. 12. Effect of removing agents at every trial on group performance
when response probability values are 0.1, 0.5, and 0.9. Removal of agents
at everytime step increases group performance possibly due to removal of
non-performing agents and the average values are lower as compared to the
base case. Large standard deviations (< 0.05) indicate that these sets are less
stable to agent loss at each trial. For prob act of 0.1, Set A performs better
than Set B due to a constant presence of participating agents that maintain a
lower group work speed. At other instances, these two sets have comparable
performances.



approximately 0.3 for prob act = 0.1 and close to zero at
prob act equals 0.5 and 0.9. We observe a decrease in the
group performance values as compared to the base case. This
may be attributed to constant reduction in the group size which
has a potential to remove non-performing agents.

At prob act equal to 0.1, Set B does not perform better than
Set A. We explain this behavior as follows. In Set A, the first
14 agents always act. Now if one among these agents is lost,
then the next agent in the ordering acts. This mechanism of
including the next in the ordering has the advantage that there
exists only one extra agent with a higher work speed than the
other 13 actors’ work speed. If another actor is removed, then
the next in the ordering is chosen. This mechanism allows
for a cushioning effect in that majority of the actors have a
lower work speed as compared to the newly added actors.
This effect, however, is hard to achieve for agents in Set B at
a low prob act value. This is because the agents chosen to act
have a low probablity of acting, which for analytical purposes
may be assumed as inaction. Along with this, actors of one
trial are not guaranteed to act in another trial. Thus, if an
experienced agent is removed, then a new agent chosen to act
may or may not have had previous experience. This affects
the overall group performance and Set B as a group is less
capable of adapting to rapid change as seen in this situation.

A lower group performance in the case of removing agents
at each trial does not mean that these sets perform better as
one runs the risk of losing most of the agents leading to
task incompletion. We present a set of results when agents
are removed at every 45th and 98th trial when prob act is
equal to 0.1. At these longer interval, we expect to see the
effect of having a redundant experience pool of agents. As
seen from the plots shown in Figure 13, these removals have
little effect and the group performances of Set A and Set B
are comparable to their base case performance, in that at the
end of the simulation these values are close to 0.86 and 0.7
respectively. Also, Set B has better group performance than
Set A. Therefore, if an MAS has a redundant experience pool
of agents, then it has a potential to promote its robustness.

Figure 14 shows the final case in which we present the effect
of agents responding with prob act coupled with insertion
and removal of agents. Insertion every 10 trials and removal
every 15 trials allow us to observe a combined effect every
30 trials. At these instances, the value of the overall group
performance slightly increases possibly as a result of loss of
experienced and gain of inexperienced agents. The average of
the average group performances of both sets are comparable to
the base case values, in that at the end of the 10 simulations Set
A’s group performance is approximately 0.86, Set B’s group
performance is approximately 0.4, 0.6 and 0.8 for prob act
values of 0.1, 0.5 and 0.9 respectively. Overall, Set B has
lower, therefore better, group performance value than Set A.

In summary, our results support our hypothesis that when
agents respond probabilistically, there is an increase in the
number of agents that gain experience. The increase is more
prominent when response probability is lower and less promi-
nent when response probability is higher. This redundant
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Fig. 13. Effect of removing agents at every 45th and 98th on group
performance when response probability value is 0.5. These plots show that
when the sets have generated a pool of agents with experience, then removal of
agents at larger intervals has little effect. The sets performance is comparable
to their base cases and Set B performs better than Set A.

experience pool of agents promotes system robustness under
varying conditions of insertion of new and loss of agents.
Except under the extreme condition of losing one agent at
every time step, a system consisting of agents that respond
stochastically consistently performs better than a system that
consists of agents that do not respond stochastically.

VII. CONCLUSION

One of the expected benefits of multi-agent systems is
their capacity for redundancy which is expected to promote
system robustness. We examine the impact probabilistic action
has, beyond response threshold, on generating redundancy in
multi-agent systems. We present a methodology to introduce
redundancy in a multi-agent system consisting of collaborating
agents with no direct inter-agent communication. This method
explores how probabilistic action in a set of ordered agents
affects the system’s ability to create a redundant pool of agents
with experience.

We present a mathematical analysis of the effect of response
probability on the system. The analysis indicates an increase in
the number of agents with experience as response probability
decreases below 1.0. We provide calculations for the expected
probability of an agent becoming a candidate, the expected



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100A
vg

. o
f a

vg
. g

ro
up

 p
er

fo
rm

an
ce

prob_act = 0.1, ins. intv = 10, rem. intv = 15 

Set A

Set B

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100A
vg

. o
f a

vg
. g

ro
up

 p
er

fo
rm

an
ce

prob_act = 0.5, ins. intv = 10, rem. intv = 15 

Set A

Set B

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100A
vg

. o
f a

vg
. g

ro
up

 p
er

fo
rm

an
ce

Trials

prob_act = 0.9, ins. intv = 10, rem. intv = 15 

Set A

Set B

Fig. 14. Effect of combining probabilistic action, insertion and removal of
agents on group work speed when response probability is equal to 0.1, 0.5,
and 0.9, insertion interval is 10 and removal interval is 15. The results are
comparable to the base case results, in that Set B has a lower, and therefore
better, group performance than Set A in all three cases.

probability of an agent becoming an actor, the expected
number of runs in which an agent gains experience at least
once, and finally, an estimation of response probability that
can be used when the number of runs in which it is expected
to gain experience is known a priori.

Empirical studies investigate the effects of response proba-
bility on the size of experience pool in a static scenario as well
as a dynamic scenario where there is loss or gain of agents in
the group. Results support the hypothesis that a probabilistic
response can allow a team of agents to build a pool of agents

with experience. This pool of experienced agents results in
a robust system in uncertain environments that may include
disturbances such as insertion and removal of agents. The
factors that influence the gain of experience by an agent are
found to be the agent’s position in the ordering, the number
of agents required to complete the task, the total number of
agents in the system and the response probability value. The
estimation of response probability using the equation derived
here shows that if actual response probability values are not
known, then this estimation may be used to obtain similar
results as using the actual values.

In conclusion, response probability has the ability to gener-
ate redundancy in a multi-agent system when combined with
response threshold. This feature has a promising aspect, in
that the variations that are present in the agents as a result of
fabrication or calibration may be viewed in a positive way as a
feature that produces useful inter-agent variations rather than
viewed in a negative manner as errors that must be eliminated.
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